O Teorema dos Números Primos (este programa é um oferecimento de ET)

Tamanho: px
Começar a partir da página:

Download "O Teorema dos Números Primos (este programa é um oferecimento de ET)"

Transcrição

1 Seja p n o n-ésimo número primo: O eorema dos Números Primos Nível U este programa é um ofereimento de E Do que se trata? p = ao ontrário da rença popular, não é primo!, p = 3, p 3 = 5, p 4 = 7,... Uma questão que sempre preoupou os tios e tias na esola é a questão do resimento dos primos. Em resposta à esta importante questão sóio-familiar, dois matemátios, Hadamard e de la Vallée Poussin, independentemente provaram o famoso eorema. eorema dos Números Primos lim n p n n log n = Em outras palavras, para n 0 i.e., n muito grande, tipo n =, temos que p n é aproximadamente n log n. Aqui, log denota o logaritmo em sua ase predileta que, eu sei, é e =, A estreia do eorema dos Números Primos em 896 foi um suesso instantâneo. Desde então, este teorema tem figurado no topo das paradas de suesso, om diversas versões relançadas ao longo do tempo. Uma das mais populares utiliza a função πx = quantidade de números primos x eorema. eorema dos Números Primos, is lim x πx x/ log x = Existe ainda uma tereira versão muito popular do eorema dos Números Primos, que utiliza a hamada função de von Mangoldt: { Λn def log p se n = pr é potênia do primo p = 0 aso ontrário Uma maneira de interpretar a função πx é omo uma soma πx = n x a n onde atriuímos peso a n = se n é primo e peso a n = 0 aso ontrário. Com uma atriuição de pesos um pouo diferente, a la von Mangoldt, ψx def = n x Λn, o eorema dos Números Primos adquire uma forma partiularmente simples: eorema.3 eorema dos Números Primos, tris ψx lim x x = É esta a forma do teorema que iremos provar. As equivalênias entre as três formas será mostrada mais tarde. Por enquanto, aredite em mim, pois é verdarde!

2 Prova miojo fia pronto em 3 minutos! Agora vou mostrar uma prova ozinhada do eorema dos Números Primos. Iniialmente, preisamos de alguma forma onetar a Análise om primos. Mas isto é fáil: qualquer matemátio da esquina sae fazer isto, espeialmente se este matemátio se hama Euler. Considere a seguinte série ζs def = que onverge asolutamente para Rs >, diria Euler se ele souesse falar Português. Só relemrando: se s = σ + it, om σ, t R, definimos def = n σ e log n it = n σ ost log n + i sint log n de modo que = n σ. Diria ainda Euler, note que = + p s + p s + p 3s + soma = da PG p s pois expandindo o produto do termo entral, pela fatoração únia em primos, otemos otemos ada parela / da série definindo ζs exatamente uma únia vez. Assim, temos ζs = p s para Rs > A função ζs pode ser estendida a uma função meromorfa em todo o semi-plano Rs > 0, om um únio polo simples em s = e resíduo. A ideia ásia é aproximá-la por uma integral que onverge nesta região. emos onde ada função = dx x s + n+ n φ def = n+ n dx x s ζs s = φ x s dx é analítia, e φ sup x [n,n+] n s x s /n Rs+ e portanto a soma dos φ s onverge para uma função analítia em Rs > 0. Note ainda que no semi-plano Rs > a função zeta não possui zeros pois se s = σ + it, om σ, t R e σ >, ζs = p s + p σ + p σ + p σ + p 3σ + = ζσ > 0 Mas qual a relação entre a função zeta e o eorema dos Números Primos? Para ver isto, na fatoração de Euler asta tomar o logaritmo ou, mais preisamente, a derivada logarítmia de zeta: d def log ζs = ds ζs Para Rs > temos ζs = e assim p s ζs = ζs = ζs = Λn d ds log p s = log p p s + p s + p 3s + log p p s p s Em outras palavras, o eorema dos Números Primos onsiste em estimar a soma dos oefiientes da série de Dirihlet de ζ s/ζs. Isto é feito em dois atos: o primeiro onsiste em expressar a soma destes oefiientes em sua versão integral, utilizando o

3 3 Lema. runamento Sejam > e y > 0 números reais. emos Mais preisamente, temos +i i def ds = lim s +i i = +i { se y > i = 0 se 0 < y < + O y O log y y log y se y > se 0 < y < Assim, é de se esperar que, para > e x > 0 não inteiro, +i i ζs xs = +i i = Λn Λn +i i xs x/ ds s manora suspeita mas otimista = n x Λn = ψx trunamento Emora a manora suspeita não se justifique, a versão mais preisa om erro do trunamento ainda permite esrever ψx utilizando a integral de ζ s/ζs. O segundo ato ontém a passagem mais deliada de todo o argumento, pois utiliza a ontinuação analítia de ζs na região 0 < Rs e a seguinte versão fraa da hipótese de Riemann. A hipótese de Riemann originalmente afirma que, nesta região, ζs = 0 Is = /; mas isto deixo omo exeríio para o leitor! eorema. Poor man s Riemann Hypothesis Existe uma onstante > 0 tal que. Rs log Is + ζs 0. ζ s ζs = Olog para Rs log +, Is Utilizando as estimativas aima, uma integração de ontorno padrão que invade a região 0 < Rs ompleta a demonstração do teorema: eorema.3 Flipping Seja x = N para algum N N e seja omo no teorema anterior. Sejam ainda 0, a = log +, < < Então. ψx = +i i ζs xs + O x logx + O x log x. +i i ζs xs x = x + Oxa log 3 + O log x log

4 4 Assim, existe uma onstante > 0 tal que e portanto lim x ψx/x =. Bem, vejamos agora os detalhes! ψx = x + Ox exp log x 3 Provas honestas 3. Equivalênias entre as diversas formas do eorema dos Números Primos A título de exemplo, vamos mostrar que ψx πx lim = lim x x x x/ log x = deixando a outra equivalênia omo exeríio para o leitor. emos ψx = Λn = log x log p log x = πx log x log p n x p x p x de modo que Por outro lado, se < y < x, ψx x πx x/ log x omando y = x log x, temos πx πx = πy + x log x + ψx log x log x y<p x Basta agora tomar o limite quando x. πy + y<p x πx x/ log x log p log y y + ψx log y log x + ψx log x x log x log log x 3. runamento Suponha iniialmente que y >. Basta fazer uma integração em torno de um retângulo de vérties a±i e ± i om a < 0. Como /s possui um únio polo em s = 0 e resíduo no interior deste retângulo, temos +i i + a+i +i + a i a+i + i a i = e estimativas e a i i = a i a+i a+i +i a y σ dσ y log y ya 0 quando a a donde o resultado segue. A prova no aso em que 0 < y < é análoga, agora om a > ; oserve que neste aso /s é analítia no interior do retângulo.

5 5 3.3 Flipping Vejamos iniialmente omo esrever ψx em sua versão integral. Note que, para Rs >, temos Λn log n n 0 quando N n N de modo que +i i n x/ ou n x Λn n N onverge uniformemente em Rs >. Assim, ζs xs = +i i Λn = x/n Λn Λn + O logx/n n x xs = +i Λn i x/ ds s Vamos estimar o termo de erro. Dividimos a soma em dois pedaços: o primeiro ontendo os termos para os quais logx/n log n x/ ou n x: x/n Λn logx/n x log log n x log x n = O x dx x = O O segundo termo é x/ n x x/n Λn logx/n logx N x/ logx = O x log x +i Vejamos agora omo mostrar que i ζs du logn + 0.5/u + x logn + 0.5/N + N+ du log u/n xs s ds é assintotiamente igual a x. Para isto, onsidere a integral em torno do retângulo de vérties ± i e a ± i. Lemrando que ζs = s + possui um polo simples om resíduo em s = e que ζs 0, o únio polo simples de ζs xs s interior deste retângulo é s =, om resíduo Portanto +i i s lim s ζ ζs xs ζ ss s = lim xs s s ζss s = x xs ζs + a+i xs +i ζs + a i xs a+i ζs + i xs a i ζs = x Agora fazemos algumas estimativas. emos a i a+i ζs xs = ζs xs i Finalmente a i ζs xs a+i +i ζ a + it x a ζa + it a + it dt = O x a a Para onluir o teorema, asta fazer as esolhas = + log x 3.4 Poor man s Riemann Hypothesis a ζ σ + i ζσ + i xσ 0 = exp log x dt + x a log x dσ = O log x log no dt = Ox a log 3 t Esta é a estimativa mais deliada da prova. A prova agora emprega um engenhoso truque, devido a Mertens, aseado na identidade os θ + os θ = + os θ 0

6 6 que implia para t e σ > reais utilizando a expansão 3R ζ σ ζσ 4Rζ σ + it ζσ + it Rζ σ + it ζσ + it 0 R ζ σ + it ζσ + it = ΛnRn σ it = Λnn σ ost log n Para relaionar a desigualdade aima om os zeros de ζs, vamos oter algumas estimativas para os três termos em. A ideia ásia é utilizar a seguinte deomposição em frações pariais ζs = s + B s + n n s + onde B é uma onstante e perorre todos os zeros não trivias de ζs i.e., om 0 R. Esta fórmula é disutida mais tarde, por hora vejamos omo ela enerra a prova do teorema. Menionamos que existem maneiras mais elementares de deduzir estimativas um pouo piores, mas já sufiientes para demonstrar o eorema dos Números Primos, porém um tanto traalhosas ver por exemplo o livro do Landau itado na iliografia. Então, por preguiça, vou apresentar esta prova mais simples. Seja σ e t reais om 0 σ e t. Para s = σ + it temos s + n n n t n + + n n> t s = Olog t 4n de modo que ζs = s + + Olog t Agora suponha σ >. Como 0 R, temos R 0 e R s = a + i om a, R, otemos Logo, de, temos R ζ σ ζσ σ + O R ζ σ + it ζσ + it R + Olog t = + Olog t σ + it σ a R ζ σ + it Olog t ζσ + it Ou seja, para alguma onstante A > 0, temos 3 σ 4 + Olog t 0 σ a A log t σ σ a 0, para um zero não trivial Se agora a = δ para algum δ > 0, tomando σ = +4δ otemos A log t /0δ δ / log t + para alguma onstante > 0. Isto mostra que ζs 0 na região Rs log Is +, Is Vamos agora oter uma estimativa para ζ s/ζs. Iniialmente, tome s = + it em : ζ + it ζ + it = + it + + Olog t

7 7 Como ζ + it/ζ + it Λn/n = O, otemos + it + = Olog t Esta expressão permite oter algumas estimativas sore a distriuição dos zeros não triviais de ζs. Por exemplo, omo R 0 e R +it /5 se t I, temos que #{ é zero não trivial e t I } = Olog t Da mesma forma, se t I, omo R +it /5 t I, temos t I = Olog t t I Vamos retornar à estimativa para ζ s/ζs. Sutraindo de fiamos om ζ s ζs = s + Olog t + it = t I s + it + Se t I, omo Rs 0 temos s + it t I Por outro lado, se t I e Rs t I t I s + Olog t + it = Olog t t I, Is, log + omo já saemos que R log I + log +, temos s + it s + log + + Como a quantidade de s satisfazendo t I é Olog, otemos ζ s ζs log + Olog + Olog = Olog 4 Mais sore Zeta Por fim, algumas palavras sore omo oter a deomposição em frações pariais da função zeta. Como este material é relativamente padrão dos livros de eoria dos Números e Análise Complexa e omo a Nelly está me orando urgentemente este material, aqui vou só fazer alguns omentários. Primeiramente, temos a famosa eorema 4. Equação Funional A função ζs se estende a uma função meromorfa em todo o plano omplexo. A função é inteira e satisfaz a equação funional Ξs = ss π s/ Γs/ζs Ξs = Ξ s Aqui, Γs denota a função gama de Euler. Prova Ver Conway, VII, 8, p. 87 ou Neukirh, VII, p. 49.

8 8 Como Γs possui polos simples em s = 0,,, 3,..., temos da equação aima que ζ n = 0 para n =,, 3,..., os hamados zeros triviais. Como vimos, qualquer outro zero de ζs pertene à região 0 < Rs < e são simétrios em relação à reta Rs = / pela equação funional. A hipótese de Riemann onjetura que na verdade todos estes zeros pertenem à reta Rs = /. Agora um resultado geral de funções inteiras ver Conway, XI, p. 79 implia que eorema 4. emos a fatoração Ξs = e A+Bs s e s/ onde perorre todas as raízes triviais e não triviais de Ξs. A deomposição em frações pariais é otida tomando-se a derivada logarítmia da expressão aima e separando os zeros triviais e não triviais. 5 Referênias. J. H. Conway, Funtions of One Complex Variale, Springer-Verlag.. A. A. Karatsua, Basi Analyti Numer heory, Springer-Verlag. 3. E. Landau, Handuh der Lehre von der Verteilung der Primzahlen, Chelsea. 4. J. Neukirh, Algerai Numer heory, Springer-Verlag.

1 Primos em uma PA? 2 Pequeno teorema de Dirichlet

1 Primos em uma PA? 2 Pequeno teorema de Dirichlet Pequeno teorema de Dirichlet Primos em uma PA? O famoso teorema de Dirichlet, também conhecido como PCP princípio das casas dos primos), diz: Teorema. Dirichlet) Sejam a e n dois inteiros com a, n). Então

Leia mais

Polos Olímpicos de Treinamento. Aula 1. Curso de Álgebra - Nível 3 Prof. Antonio Caminha. Desigualdades 1

Polos Olímpicos de Treinamento. Aula 1. Curso de Álgebra - Nível 3 Prof. Antonio Caminha. Desigualdades 1 Polos Olímpios de Treinamento Curso de Álgebra - Nível 3 Prof Antonio Caminha Aula Desigualdades Nesta aula, aprenderemos e exeritaremos a desigualdade entre as médias aritmétia e geométria e a desigualdade

Leia mais

A reta numérica. Matemática Básica. A reta numérica. Expansões decimais: exemplo 1. Folha 1. Humberto José Bortolossi. Parte 6

A reta numérica. Matemática Básica. A reta numérica. Expansões decimais: exemplo 1. Folha 1. Humberto José Bortolossi. Parte 6 Folha 1 Matemátia Básia Humberto José Bortolossi Departamento de Matemátia Apliada Universidade Federal Fluminense A reta numéria Parte 6 Parte 6 Matemátia Básia 1 Parte 6 Matemátia Básia 2 A reta numéria

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE OUTUBRO DE 2016

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE OUTUBRO DE 2016 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 4 DE OUTUBRO DE 206 Convergênia uniforme implia onvergênia pontual, mas o reíproo não é verdadeiro. Exemplo anterior: Vimos que z k é pontualmente

Leia mais

A Hipótese de Riemann

A Hipótese de Riemann A Hipótese de Riemann Gustavo Granja Departamento de Matemática, IST 21 de Novembro de 2012 Gustavo Granja (IST) A Hipótese de RIemann 21 de Novembro de 2012 1 / 16 Resumo 1 O enunciado da conjectura 2

Leia mais

Sobre o número de números primos que não excedem uma grandeza dada

Sobre o número de números primos que não excedem uma grandeza dada Sobre o número de números primos que não excedem uma grandeza dada José Carlos Santos Seminário Diagonal 12 de Dezembro de 2012 Números primos Um número primo é um número natural p > 1 que não tem outros

Leia mais

Os Teoremas de Cavalieri 1. 2 Os Princípios de Cavalieri para áreas e volumes

Os Teoremas de Cavalieri 1. 2 Os Princípios de Cavalieri para áreas e volumes Os Teoremas de Cavalieri 1 Roerto Rieiro Paterlini 1 Introdução O estudo de volumes de sólidos no ensino médio tem omo ase o Prinípio de Cavalieri Esse prinípio tamém pode ser usado para áreas de regiões

Leia mais

Introdução aos Métodos de Crivos em Teoria dos Números (Aula 1)

Introdução aos Métodos de Crivos em Teoria dos Números (Aula 1) Introdução aos Métodos de Crivos em Teoria dos Números (Aula 1) Julio Andrade j.c.andrade.math@gmail.com http://www.math.brown.edu/ de-andrade/ ICERM - Brown University e University of Bristol 29 o Colóquio

Leia mais

Binomiais e Primos. p p 2 + p 3 + p k. Demonstração. No produto n! = n, apenas os múltiplos de p contribuem com um fator p.

Binomiais e Primos. p p 2 + p 3 + p k. Demonstração. No produto n! = n, apenas os múltiplos de p contribuem com um fator p. Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 16 Binomiais e Primos Começamos lembrando a Proposição 1 (Fatores do Fatorial) Seja p um primo Então a maior

Leia mais

Transformadas aritméticas relacionadas com a função zeta de Riemann

Transformadas aritméticas relacionadas com a função zeta de Riemann Transformadas aritméticas relacionadas com a função zeta de Riemann Hélder Lima Orientado por: Semyon Yakubovich Programa Novos Talentos em Matemática Transformadas aritméticas relacionadas com a função

Leia mais

Análise de algoritmos

Análise de algoritmos Análise de algoritmos Prova por indução Conteúdo O que é uma prova? Métodos de prova Prova por indução Ideia do funionamento Generalizações Exemplos Exeríios Referênias O que é uma prova? Uma prova é um

Leia mais

Problema 4.40 do livro do Symon

Problema 4.40 do livro do Symon Problema 4.4 do livro do Symon O problema 4.4 do livro do Symon é uma variação do que vimos na postagem Dois osiladores harmônios aoplados pois onsta de três massas presas a duas molas ao longo de um eixo

Leia mais

Convergência, séries de potência e funções analíticas

Convergência, séries de potência e funções analíticas Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 13, 2015 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova

Leia mais

A equação de onda com fonte

A equação de onda com fonte A equação de onda om fonte Na postagem, Invariânia de alibre ou gauge, vimos que podemos esolher o alibre de Lorentz e resolver a mesma equação de onda om fonte para as três omponentes do potenial vetorial

Leia mais

ANALYTICAL METHODS IN VIBRATION. Leonard Meirovitch Capitulo 1

ANALYTICAL METHODS IN VIBRATION. Leonard Meirovitch Capitulo 1 ANALYTICAL METHODS IN VIBRATION Leonard Meirovith Capitulo Comportamento de sistemas Um sistema é definido omo uma montagem de omponentes atuando omo um todo. Os omponentes são lassifiados e definidos

Leia mais

Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I

Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I Gláucio Terra Sumário 1 Introdução 1 2 Notações 1 3 Notas Preliminares sobre Funções Polinomiais R R 2 4 Definição do Polinômio de Taylor

Leia mais

Aquilo que ainda não sabe(mo)s sobre números primos

Aquilo que ainda não sabe(mo)s sobre números primos Aquilo que ainda não sabe(mo)s sobre números primos José Carlos Santos Seminário Diagonal 2 de Novembro de 2011 Números primos Um número primo é um número natural p > 1 que não tem outros divisores além

Leia mais

MATEMÁTICA. OS MELHORES GABARITOS DA INTERNET: (19) O ELITE RESOLVE IME 2011 MATEMÁTICA - DISCURSIVAS

MATEMÁTICA. OS MELHORES GABARITOS DA INTERNET:  (19) O ELITE RESOLVE IME 2011 MATEMÁTICA - DISCURSIVAS OS MELHORES GAARITOS DA INTERNET: www.eliteampinas.om.r (9) 5-0 O ELITE RESOLVE IME 0 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO 0 A ase de um prisma reto ACA C é um triângulo om o lado A igual ao lado

Leia mais

Voo Nivelado - Avião a Jacto

Voo Nivelado - Avião a Jacto - Avião a Jato 763 º Ano da ieniatura em Engenharia Aeronáutia. oo de ruzeiro () O voo de uma aeronave é normalmente omposto por várias fases diferentes. As fases de voo que formam um programa de voo simples,

Leia mais

Consequências do Teorema do Valor Médio

Consequências do Teorema do Valor Médio Universidade de Brasília Departamento de Matemática Cálculo 1 Consequências do Teorema do Valor Médio Neste texto vamos demonstrar o Teorema do Valor Médio e apresentar as suas importantes consequências.

Leia mais

Macroeconomia Revisões de Derivadas para aplicação no cálculo de multiplicadores

Macroeconomia Revisões de Derivadas para aplicação no cálculo de multiplicadores Maroeonomia 64 Revisões de Derivadas para apliação no álulo de multipliadores Nota introdutória: O que se segue é uma pequena revisão do oneito de derivada e algumas regras de derivação que são utilizadas

Leia mais

1 n s = s s s p s. ζ(s) = p

1 n s = s s s p s. ζ(s) = p Introdução A chamada série harmónica, n= n = + 2 + 3 + +... desde cedo suscitou interesse entre os 4 matemáticos. Infelizmente esta série diverge, o que se verifica por os termos termo n, apesar de tenderem

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

Lista 4. Esta lista, de entrega facultativa, tem três partes e seus exercícios versam sobre séries, funções contínuas e funções diferenciáveis em R.

Lista 4. Esta lista, de entrega facultativa, tem três partes e seus exercícios versam sobre séries, funções contínuas e funções diferenciáveis em R. UFPR - Universidade Federal do Paraná Departamento de Matemática CM095 - Análise I Prof José Carlos Eidam Lista 4 INSTRUÇÕES Esta lista, de entrega facultativa, tem três partes e seus exercícios versam

Leia mais

Convergência, séries de potência e funções analíticas

Convergência, séries de potência e funções analíticas Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 16, 2011 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova

Leia mais

A hipótese de Riemann 150 anos

A hipótese de Riemann 150 anos A hipótese de Riemann 50 anos José Carlos Santos Em 859, Bernhard Riemann, então com 3 anos, foi eleito para a Academia das Ciências de Berlim. Fazia então parte do regulamento daquela instituição que

Leia mais

1. Planeta-disco. (a) Fazendo as correspondências. Se, por um lado, para o campo eléctrico, se tem. a forma da Lei de Gauss para o campo gravítico é

1. Planeta-disco. (a) Fazendo as correspondências. Se, por um lado, para o campo eléctrico, se tem. a forma da Lei de Gauss para o campo gravítico é . Planeta-diso (a) Fazendo as orrespondênias q 4π ε qq 4π ε r m G m m G r Se, por um lado, para o ampo elétrio, se tem q Φ e ε a forma da Lei de Gauss para o ampo gravítio é Φ g 4π G m. (b) Usando uma

Leia mais

7 Modelo transiente para a formação do reboco externo

7 Modelo transiente para a formação do reboco externo 7 Modelo ansiente para a formação do reboo externo Iniialmente, durante o proesso de filação, as partíulas apturadas formam um reboo interno. Após o tempo de ansição (Pang e Sharma, 1987), oorre somente

Leia mais

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução.

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. Universidade Federal do ABC Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. BCN0402-15 FUV Suporte ao aluno Site da disciplina: http://gradmat.ufabc.edu.br/disciplinas/fuv/ Site

Leia mais

Exemplo para Fixar a Matéria Vista Até Agora: Modelagem de Reações Químicas

Exemplo para Fixar a Matéria Vista Até Agora: Modelagem de Reações Químicas Exemplo para Fixar a Matéria Vista Até Agora: Modelagem de eações Químias. Introdução Em uma reação químia, um onjunto de ompostos químios hamados reagentes e indiados aqui por i se ombina para formar

Leia mais

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que O Teorema de Peano Equações de primeira ordem Seja D um conjunto aberto de R R n, e seja f : D R n (t, x) f(t, x) uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e

Leia mais

O Teorema Mestre da Complexidade

O Teorema Mestre da Complexidade O Teorema Mestre da Complexidade Luís Fernando Schultz Xavier da Silveira Departamento de Informática e Estatística - INE - CTC - UFSC 23 de aril de 2010 Conteúdo 1 Enunciado 2 Preliminares Peso das Folhas

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 2018 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 7 5 DE MARÇO DE 08 Condições Suficientes de Diferenciabilidade Teorema Seja f(z) = u(, y) + iv(, y). Se u e v têm derivadas parciais contínuas em torno

Leia mais

Lista 2 - Métodos Matemáticos II Respostas

Lista 2 - Métodos Matemáticos II Respostas Lista - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele fornecer

Leia mais

Fórmulas de Taylor. Notas Complementares ao Curso. MAT Cálculo para Ciências Biológicas - Farmácia Noturno - 1o. semestre de 2006.

Fórmulas de Taylor. Notas Complementares ao Curso. MAT Cálculo para Ciências Biológicas - Farmácia Noturno - 1o. semestre de 2006. Fórmulas de Taylor Notas Complementares ao Curso MAT0413 - Cálculo para Ciências Biológicas - Farmácia Noturno - 1o. semestre de 2006 Gláucio Terra Sumário 1 Introdução 1 2 Notações 1 3 Notas Preliminares

Leia mais

A Hipótese de Riemann: uma Perspectiva Generosa

A Hipótese de Riemann: uma Perspectiva Generosa 05: Trabalho de Conclusão de Curso do Mestrado Profissional em Matemática - PROFMAT Universidade Federal de São João del-rei - UFSJ Sociedade Brasileira de Matemática - SBM A Hipótese de Riemann: uma Perspectiva

Leia mais

A HIPÓTESE DE RIEMANN

A HIPÓTESE DE RIEMANN A HIPÓTESE DE RIEMANN Willian Cleyson Fritsche 1, Alexandre Shuji Suguimoto 2 1 Acadêmico do curso de Licenciatura em Matemática, UNICESUMAR-EAD-Maringá-Pr. Bolsista PROBIC-UniCesumar 2 Docente do curso

Leia mais

) a sucessão definida por y n

) a sucessão definida por y n aula 05 Sucessões 5.1 Sucessões Uma sucessão de números reais é simplesmente uma função x N R. É conveniente visualizar uma sucessão como uma sequência infinita: (x(), x(), x(), ). Neste contexto é usual

Leia mais

Método Simplex Resolução Algébrica. Prof. Ricardo Santos

Método Simplex Resolução Algébrica. Prof. Ricardo Santos Método Simple Resolução Algébria Prof. Riardo Santos Método Simple Dada uma solução fatível: Essa solução é ótima? Caso não seja ótima omo determinar uma melhor? Considere uma solução básia fatível: em

Leia mais

como aproximar bem números reais por números racionais

como aproximar bem números reais por números racionais Frações contínuas: como aproximar bem números reais por números racionais Carlos Gustavo Moreira - IMPA A teoria de frações contínuas é um dos mais belos assuntos da Matemática elementar, sendo ainda hoje

Leia mais

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α).

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α). Teoria de Galois Vamos nos restringir a car. zero. Seja K/F uma extensão finita de corpos. O grupo de Galois G(K/F ) é formado pelos isomorfismos ϕ : K K tais que x F, ϕ(x) = x. Lema. G(K/F ) [K : F ].

Leia mais

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α).

Lema. G(K/F ) [K : F ]. Vamos demonstrar usando o Teorema do Elemento Primitivo, a ser provado mais adiante. Assim, K = F (α). Teoria de Galois Vamos nos restringir a car. zero. Seja K/F uma extensão finita de corpos. O grupo de Galois G(K/F ) é formado pelos isomorfismos ϕ : K K tais que x F, ϕ(x) = x. Lema. G(K/F ) [K : F ].

Leia mais

Área de uma Superfície de Revolução

Área de uma Superfície de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área de uma Superfície

Leia mais

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática. O Teorema de Arzelá. José Renato Fialho Rodrigues

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática. O Teorema de Arzelá. José Renato Fialho Rodrigues Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática O Teorema de Arzelá José Renato Fialho Rodrigues Belo Horizonte - MG 1994 José Renato Fialho Rodrigues O Teorema

Leia mais

Invariância da integral por homotopia, fórmula de Cauchy e séries de Taylor

Invariância da integral por homotopia, fórmula de Cauchy e séries de Taylor Invariância da integral por homotopia, fórmula de Cauchy e séries de Taylor Roberto Imbuzeiro Oliveira 6 de Abril de 20 Preliminares Nestas notas, U C sempre será um aberto e f : U C é contínua. Duas curvas

Leia mais

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados.

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados. 11 Sequências e Séries Infinitas Copyright Cengage Learning. Todos os direitos reservados. 11.3 O Teste da Integral e Estimativas de Somas Copyright Cengage Learning. Todos os direitos reservados. O Teste

Leia mais

MAT146 - Cálculo I - Cálculo de Áreas

MAT146 - Cálculo I - Cálculo de Áreas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Anteriormente, definimos a área de uma região plana como sendo o limite de uma soma de Riemann e que tal limite é uma integral definida.

Leia mais

DCC008 - Cálculo Numérico

DCC008 - Cálculo Numérico DCC008 - Cálculo Numérico Polinômios de Taylor Bernardo Martins Rocha Departamento de Ciência da Computação Universidade Federal de Juiz de Fora bernardomartinsrocha@ice.ufjf.br Conteúdo Introdução Definição

Leia mais

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. A Lei dos Cossenos Revisitada. Primeiro Ano do Ensino Médio

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. A Lei dos Cossenos Revisitada. Primeiro Ano do Ensino Médio Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas Lei dos ossenos Revisitada Primeiro no do Ensino Médio utor: Prof. Farício Siqueira enevides Revisor: Prof. ntonio aminha M. Neto

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

6.3. Cálculo de Volumes por Cascas Cilíndricas

6.3. Cálculo de Volumes por Cascas Cilíndricas APLICAÇÕES DE INTEGRAÇÃO 6.3 Cálculo de Volumes por Cascas Cilíndricas Nesta seção aprenderemos como aplicar o método das cascas cilíndricas para encontrar o volume de um sólido. VOLUMES POR CASCAS CILÍNDRICAS

Leia mais

Notas sobre os anéis Z m

Notas sobre os anéis Z m Capítulo 1 Notas sobre os anéis Z m Estas notas complementam o texto principal, no que diz respeito ao estudo que aí se faz dos grupos e anéis Z m. Referem algumas propriedades mais específicas dos subanéis

Leia mais

Continuidade de processos gaussianos

Continuidade de processos gaussianos Continuidade de processos gaussianos Roberto Imbuzeiro Oliveira April, 008 Abstract 1 Intrudução Suponha que T é um certo conjunto de índices e c : T T R é uma função dada. Pergunta 1. Existe uma coleção

Leia mais

DANIEL V. TAUSK. se A é um subconjunto de X, denotamos por A c o complementar de

DANIEL V. TAUSK. se A é um subconjunto de X, denotamos por A c o complementar de O TEOREMA DE REPRESENTAÇÃO DE RIESZ PARA MEDIDAS DANIEL V. TAUSK Ao longo do texto, denotará sempre um espaço topológico fixado. Além do mais, as seguintes notações serão utilizadas: supp f denota o suporte

Leia mais

2.3 Relações de tempo e frequência

2.3 Relações de tempo e frequência .3 Relações de tempo e frequênia Denotam-se as transformadas de Fourier direta e inversa, respetivamente, por: e Teorema da superposição: Se a 1 e a são onstantes independentes de t, e então Este resultado

Leia mais

S o l u ç ã o d o s i m u l a d o 01

S o l u ç ã o d o s i m u l a d o 01 S o l u ç ã o d o s i m u l a d o 01 Questão 1 160% 100% 160. 6000 60% 6000 7,5% 160 esposta: Letra e UT SLUÇÃ 160% 100% 6,5% 100% % redução é 100-6,5 7,5% Questão Vamos usar a Média ritmétia 1 + Média

Leia mais

MAT Cálculo para funções de uma variável II. Revisitando a Função Logaritmo

MAT Cálculo para funções de uma variável II. Revisitando a Função Logaritmo MAT 1352 - Cálculo para funções de uma variável II Profa. Martha Salerno Monteiro IME-USP - Novembro de 2004 Revisitando a Função Logaritmo Considere a curva y = 1 t, t > 0. Para cada x > 1 defina a função

Leia mais

Lista 8 de Análise Funcional - Doutorado 2018

Lista 8 de Análise Funcional - Doutorado 2018 Lista 8 de Análise Funcional - Doutorado 2018 Professor Marcos Leandro 17 de Junho de 2018 1. Sejam M um subespaço de um espaço de Hilbert H e f M. Mostre que f admite uma única extensão para H preservando

Leia mais

SMA 5878 Análise Funcional II

SMA 5878 Análise Funcional II SMA 5878 Análise Funcional II Alexandre Nolasco de Carvalho Departamento de Matemática Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo 16 de Março de 2017 Objetivos da Disciplina

Leia mais

(x, y) = 0. Análise Complexa e Equações Diferenciais 2 o Semestre 2016/ de abril de 2017, às 9:00 Teste 1 versão A

(x, y) = 0. Análise Complexa e Equações Diferenciais 2 o Semestre 2016/ de abril de 2017, às 9:00 Teste 1 versão A Análise Complexa e Equações Diferenciais 2 o Semestre 26/27 22 de abril de 27, às 9: Teste versão A. Considere a função definida em R 2 por em que a e b são constantes reais. MEFT, MEC, MEBiom, LEGM, LMAC,

Leia mais

OS TEOREMAS DE JORDAN-HÖLDER E KRULL-SCHMIDT (SEGUNDA VERSÃO)

OS TEOREMAS DE JORDAN-HÖLDER E KRULL-SCHMIDT (SEGUNDA VERSÃO) ! #" $ %$!&'%($$ OS TEOREMAS DE JORDAN-HÖLDER E KRULL-SCHMIDT (SEGUNDA VERSÃO) Neste texto apresentaremos dois teoremas de estrutura para módulos que são artinianos e noetherianos simultaneamente. Seja

Leia mais

Demonstração. Sabemosqueϕémultiplicativa. Poroutrolado,sen = p α pαm m é a fatoração canônica de n em primos então temos uma fórmula explícita

Demonstração. Sabemosqueϕémultiplicativa. Poroutrolado,sen = p α pαm m é a fatoração canônica de n em primos então temos uma fórmula explícita Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 15 Funções multiplicativas e a função de Möbius 1 Funções Multiplicativas Umafunçãof definidasobren >0 éditamultiplicativa

Leia mais

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o Integral de Linha As integrais de linha podem ser encontradas em inúmeras aplicações nas iências Eatas, como por eemplo, no cálculo do trabalho realizado por uma força variável sobre uma partícula, movendo-a

Leia mais

Exercício 18. Demonstre a proposição anterior. (Dica: use as definições de continuidade e mensurabilidade)

Exercício 18. Demonstre a proposição anterior. (Dica: use as definições de continuidade e mensurabilidade) Proposição 2.7. Sejam Y e Z espaços métricos e X um espaço mensurável. Se f : X Y é uma função mensurável e g : Y Z é uma função contínua então g f : X Z é uma função mensurável. Exercício 18. Demonstre

Leia mais

Teoremas de uma, duas e três séries de Kolmogorov

Teoremas de uma, duas e três séries de Kolmogorov Teoremas de uma, duas e três séries de Kolmogorov 13 de Maio de 013 1 Introdução Nestas notas Z 1, Z, Z 3,... é uma sequência de variáveis aleatórias independentes. Buscaremos determinar condições sob

Leia mais

No que segue, X sempre denota um espaço topológico localmente compacto

No que segue, X sempre denota um espaço topológico localmente compacto O TEOREMA DE REPRESENTAÇÃO DE RIESZ PARA MEDIDAS DANIEL V. TAUSK No que segue, sempre denota um espaço topológico localmente compacto Hausdorff. Se f : R é uma função, então supp f denota o{ suporte (relativamente

Leia mais

O comprimento do período de dízimas a b não depende do numerador

O comprimento do período de dízimas a b não depende do numerador O comprimento do período de dízimas a não depende do numerador Prof. Edson Rieiro Alvares Departamento de Matemática Universidade Federal do Paraná. Na Revista do Professor de Matemática número 5, tivemos

Leia mais

Resumo: Regra da cadeia, caso geral

Resumo: Regra da cadeia, caso geral Resumo: Regra da cadeia, caso geral Teorema Suponha que u = u(x 1,..., x n ) seja uma função diferenciável de n variáveis x 1,... x n onde cada x i é uma função diferenciável de m variáveis t 1,..., t

Leia mais

Séries de Laurent e Teoremas de Cauchy

Séries de Laurent e Teoremas de Cauchy Séries de Laurent e Teoremas de Cauchy Roberto Imbuzeiro Oliveira 3 de Abril de 20 A maior parte destas notas tem como refererência o livro de David Ullrich, Complex Made Simple. Preliminares sobre séries

Leia mais

PROVAS DE ANÁLISE COMPLEXA

PROVAS DE ANÁLISE COMPLEXA PROVAS DE ANÁLISE COMPLEXA PROFESSOR RICARDO SA EARP () Seja Ω um domínio do plano complexo. Sejam f e g funções holomorfas em Ω. Assuma que g nunca se anule em Ω e que f(z) ( ) R, para todo z Ω. g(z)

Leia mais

Lista de Exercícios 6: Soluções Funções

Lista de Exercícios 6: Soluções Funções UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios 6: Soluções Funções Ciências Exatas & Engenharias o Semestre de 06 Conceitos. Determine e justifique se a seguinte afirmação é verdadeira ou não

Leia mais

Universidade do Estado do Rio de Janeiro. Cálculo I e Cálculo Diferencial I - Professora: Mariana G. Villapouca Aula 5 - Aplicações da derivada

Universidade do Estado do Rio de Janeiro. Cálculo I e Cálculo Diferencial I - Professora: Mariana G. Villapouca Aula 5 - Aplicações da derivada Universidade do Estado do Rio de Janeiro Cálulo I e Cálulo Diferenial I - Professora: Mariana G. Villapoua Aula 5 - Apliações da derivada Regra de L Hôspital: Suponha que f e g sejam deriváveis e que g

Leia mais

Primeira Lista de Exercícios 2004/2...

Primeira Lista de Exercícios 2004/2... UFLA Universidade Federal de Lavras Departamento de Ciênia da Computação COM62 Linguagens Formais e Autômatos Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Primeira Lista de Exeríios 24/2...

Leia mais

META: Introduzir o conceito de derivada de funções de variáveis complexas.

META: Introduzir o conceito de derivada de funções de variáveis complexas. AULA 3 META: Introduzir o conceito de derivada de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir derivada de funções de variáveis complexas e determinar

Leia mais

1 Grupos (23/04) Sim(R 2 ) T T

1 Grupos (23/04) Sim(R 2 ) T T 1 Grupos (23/04) Definição 1.1. Um grupo é um conjunto G não-vazio com uma operação binária : G G G que satisfaz as seguintes condições: 1. (associatividade) g (h k) = (g h) k para todos g, h, k G; 2.

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Prove que para todo x 0 IR

Leia mais

Curso: MAT 221- CÁLCULO DIFERENCIAL E INTEGRAL IV Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 2008

Curso: MAT 221- CÁLCULO DIFERENCIAL E INTEGRAL IV Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 2008 Curso: MAT 221- CÁLCULO DIERENCIAL E INTEGRAL IV Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 2008 SÉRIES E SOMAS EM ÁLGEBRAS: C([a, b]), M n n (R), M n n (C), etc. O PRODUTO DE

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Probabilidade IV. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período

Probabilidade IV. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período Probabilidade IV Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.2 Ulisses Umbelino (DE-UFPB) Probabilidade IV Período 2014.2 1 / 20 Sumário 1 Apresentação

Leia mais

Estatísticas Inferenciais Distribuições Amostrais. Estatística

Estatísticas Inferenciais Distribuições Amostrais. Estatística Estatística Na descrição dos conjuntos de dados x 1,..., x n, não foi feita menção ao conceito de população. Estatísticas inferenciais: preocupadas com a fonte dos dados e em tentar fazer generalizações

Leia mais

Micro I: Aula 04. Preferências Reveladas. February 2, 2011

Micro I: Aula 04. Preferências Reveladas. February 2, 2011 Micro I: Aula 04 Preferências Reveladas February 2, 2011 Seja B o conjunto de conjuntos de escolha do agente. Considere uma regra de escolha definida em B como sendo uma regra que associaa a cada conjunto

Leia mais

Polinómio e série de Taylor

Polinómio e série de Taylor Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA II - o Semestre 05/06 Exercícios Suplementares (Eng a Física Tecnológica, Matemática Aplicada e Computação

Leia mais

24 a Aula AMIV LEAN, LEC Apontamentos

24 a Aula AMIV LEAN, LEC Apontamentos 24 a Aula 2004.11.10 AMIV LEAN, LEC Apontamentos (Ricardo.Coutinho@math.ist.utl.pt) 24.1 Método de Euler na aproximação de EDO s Métodos numéricos para a determinação de soluções de EDO s podem ser analisados

Leia mais

4.1 Preliminares. 1. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = 1=x; x 6= 0 (c) f (x) = 1= p x; x > 0:

4.1 Preliminares. 1. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = 1=x; x 6= 0 (c) f (x) = 1= p x; x > 0: 4. FUNÇÕES DERIVÁVEIS ANÁLISE NO CORPO R - 208. 4. Preinares. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = =x; x 6= 0 (c) f (x) = = p x; x > 0: 2. Mostre que

Leia mais

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e Lista Especial de Exercícios de Física Matemática I Soluções (Número complexo, sequência de Cauchy, função exponencial e movimento hamônico simples) IFUSP - 8 de Agosto de 08 Exercício Se z x + iy, x,

Leia mais

Polo Olímpico de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 2 o semestre de 2018

Polo Olímpico de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 2 o semestre de 2018 Polo Olímpio de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 2 o semestre de 2018 Vitor Emanuel Gulisz Grafos: Introdução Definição 1. Um grafo 1 é um par G = (V, A), onde V = {v 1,..., v

Leia mais

1 Números Complexos e Plano Complexo

1 Números Complexos e Plano Complexo UNIVERSIDADE FEDERAL DE SANTA CATARINA Centro de Ciências Físicas e Matemáticas Departamento de Matemática SEMESTRE CÓDIGO DISCIPLINA TURMA 09-1 MTM5327 Variável Complexa 0549 Professor Lista de Exercícios

Leia mais

Cálculo Diferencial e Integral Química Notas de Aula

Cálculo Diferencial e Integral Química Notas de Aula Cálculo Diferencial e Integral Química Notas de Aula João Roberto Gerônimo 1 1 Professor Associado do Departamento de Matemática da UEM. E-mail: jrgeronimo@uem.br. ÍNDICE 1. INTRODUÇÃO Esta notas de aula

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 01 Lista 1 Números Naturais 1. Demonstre por indução as seguintes fórmulas: (a) (b) n (j 1) = n (soma dos n primeiros ímpares).

Leia mais

2 Conceitos de Teoria da Probabilidade

2 Conceitos de Teoria da Probabilidade 2 Conceitos de Teoria da Probabilidade Neste capítulo, enunciaremos algumas denições e resultados de teoria de probabilidade. justicativa deste capítulo reside no fato que u objetivo nal é estimar momentos

Leia mais

Teoria da Medida e Integração (MAT505)

Teoria da Medida e Integração (MAT505) Teoria da Medida e Integração (MAT505) Modos de convergência V. Araújo Mestrado em Matemática, UFBA, 2014 1 Modos de convergência Modos de convergência Neste ponto já conhecemos quatro modos de convergência

Leia mais

Lista de Exercícios 4 Disciplina: CDI1 Turma: 1BEEN

Lista de Exercícios 4 Disciplina: CDI1 Turma: 1BEEN Lista de Exercícios 4 Disciplina: CDI1 Turma: 1BEEN Prof. Alexandre Alves Universidade São Judas Tadeu 1 Limites no infinito Exercício 1: Calcule os seguintes limites (a) (b) (c) (d) ( 1 lim 10 x + x +

Leia mais

André Vignatti DINF- UFPR

André Vignatti DINF- UFPR Notação Assintótica: O André Vignatti DINF- UFPR Notação Assintótica Vamos expressar complexidade através de funções em variáveis que descrevam o tamanho de instâncias do problema. Exemplos: Problemas

Leia mais

PROVA G2 FIS /05/2008 FLUIDOS E TERMODINÂMICA

PROVA G2 FIS /05/2008 FLUIDOS E TERMODINÂMICA PROV G FIS 04 /05/008 FLUIDOS E TERMODINÂMIC NOME N O TURM QUESTÃO VLOR GRU REVISÃO,5,0,5 TOTL 0,0 O tempo de proa é de h 50 min. Mantenha o elular desligado e seu doumento de identidade sobre a arteira:

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

MAT Cálculo I - POLI Gabarito da P2 - A

MAT Cálculo I - POLI Gabarito da P2 - A MAT 45 - Cálculo I - POLI - 006 Gabarito da P - A Questão A) Calcule (.0) (a) lim ( cos() ) / (.0) (b) 0 ( ( π ) ) cos + e d (a) Tem-se, ( π/4, π/4) \ {0}: (cos ) / = ep( ln(cos )). Pondo f() =. ln(cos

Leia mais

PRODUTOS NOTÁVEIS. Duas vezes o produto do 1º pelo 2º. Quadrado do 1º termo

PRODUTOS NOTÁVEIS. Duas vezes o produto do 1º pelo 2º. Quadrado do 1º termo PRODUTOS NOTÁVEIS QUADRADO DA SOMA DE DOIS TERMOS ( + y) = + y + y Quadrado da soma de dois termos Duas vezes o produto do 1º pelo º Eemplo 1: a) ( + 3y) = +..(3y) + (3y) = + 6y + 9y. ) (7 + 1) = c) (a

Leia mais

Números Primos: onde estão? Por que encontrá-los? Ana Cristina Vieira MAT/UFMG. Primos

Números Primos: onde estão? Por que encontrá-los? Ana Cristina Vieira MAT/UFMG. Primos 1 Números Primos: onde estão? Por que encontrá-los? Ana Cristina Vieira MAT/UFMG Primos Definição: Livro VII dos Elementos de Euclides de Alexandria (360 a.c - 295 a.c). Dado qualquer número inteiro n,

Leia mais