Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido."

Transcrição

1 Matemática Discreta ESTiG\IPB Cap1 Lógica pg 1 I- Lógica Informal Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido. Afirmação falsa: frase, falada ou escrita, que declara um facto que não é aceite no momento em que é ouvido ou lido. Proposição: é uma afirmação cujo valor lógico é definido (ou é verdadeira ou é falsa). Exemplo 1 (a) Proposições verdadeiras: O Sol é uma estrela. 2+2=4. (b) Proposições falsas: Lisboa é a capital de França. 3 é um número par. (c) Frases e expressões que não são proposições: Corre! Onde ficam os correios? 2+3. amarelo é uma cor bonita. Argumento: sequência de proposições com que se pretende que a verdade das última delas (chamada conclusão) seja suportada pela verdade das que a antecedem (chamadas premissas). Exemplo 2 (no seguinte considerar a legenda : Premissas Conclusões)

2 Matemática Discreta ESTiG\IPB Cap1 Lógica pg 2 (a) O triângulo ABC tem ângulos iguais Cada um dos ângulos do triângulo ABC mede 60º. (b) 4 é um número ímpar. Todos os números ímpares são iguais a pi. 4=pi. (c) Geralmente o céu está nublado quando chove. Agora está a chover. Agora o céu está nublado. (d) Usain Bolt é um corredor de 100 metros muito alto. Os corredores de 100 metros muito altos costumam ser lentos na partida. Usain Bolt é lento na partida. (a) e (b) são exemplos de argumentos dedutivos. Um argumento diz-se dedutivo quando a conclusão é verdadeira sempre que as premissas são verdadeiras, i.e., não pode acontecer que as premissas sejam verdadeiras e a conclusão falsa. Existe uma diferença sensível entre os argumentos (a) e (b): as premissas de (a) são verdadeiras, enquanto as premissas de (b) são falsas. Um argumento dedutivo com premissas verdadeiras diz-se um argumento sólido. (b) e (d) são exemplos de argumentos indutivos. Um argumento diz-se indutivo se há uma certa probabilidade de a conclusão ser verdadeira quando as premissas o são, mas também pode acontecer que a conclusão seja falsa. Do valor desta probabilidade depende a qualidade do

3 Matemática Discreta ESTiG\IPB Cap1 Lógica pg 3 argumento. Uma boa parte dos argumentos que utilizamos no nosso discurso do dia-a-dia são de natureza indutiva. Exercício 3 Escrever os seguintes argumentos na forma standard (a forma dos argumentos do Exemplo 2). Quais os argumentos dedutivos e quais os indutivos? a) Todos os corvos observados até hoje são pretos. Por isso todos os corvos são pretos. b) Todos os humanos são mortais. José é humano. Logo José é mortal. c) Se n é um inteiro par, então existe um inteiro k tal que n=2k. Considerando n=2k podemos escrever n+2=2k+2=2(k+1). Então n+2 é também um número par. d) Todos os humanos são mortais. Einstein é mortal. Logo Einstein é humano. Um argumento pode ser fornecido com a intenção de ser um argumento dedutivo, i.e., com a intenção de as premissas suportarem a conclusão, mas não o ser (i.e. as premissas podem ser verdadeiras mas a conclusão é falsa). Nesse caso o argumento dizse inválido, ou dedutivamente inválido, ou falácia. Um exemplo de argumento inválido é o seguinte. Se k é um número primo, então k é igual a 2 ou k é ímpar. k não é primo nem é igual a 2. k não é ímpar. De facto k=7 satisfaz as premissas (torna-as verdadeiras) mas não satisfaz a conclusão (torna-a falsa). Um argumento que é fornecido com a intenção de ser dedutivo e que o é de facto, diz-se argumento válido ou dedutivamente válido (as expressões argumento dedutivo e argumento válido ). O argumento (a) do exemplo 1 é válido.

4 Matemática Discreta ESTiG\IPB Cap1 Lógica pg 4 Esta qualificação de argumentos, supostamente dedutivos, em dedutivamente válidos e dedutivamente inválidos, faz parte de um tipo de estudo normalmente designado por avaliação de argumentos, que pretende identificar os argumentos considerados bons. Os argumentos válidos são melhores que os inválidos, uma vez que nos permitem de certas verdades (premissas) deduzir outras verdades (conclusões). Neste curso não vamos falar da avaliação de argumentos indutivos uma vez que a lógica que vamos estudar (lógica matemática) lida com argumentos dedutivos. Argumentos com premissas ou conclusões implícitas Por vezes, no discurso do dia-a-dia, as premissas ou as conclusões podem estar implícitas no discurso [i.e., podem não aparecer nas frases ditas ou escritas, mas estarem presentes no nosso pensamento quando interpretamos essas frases]. Por exemplo a afirmação: Se fosses minha amiga não falavas nas minhas costas. representa o seguinte argumento: Se alguém é meu amigo então essa pessoa não fala nas minhas costas. Tu falas nas minhas costas Tu não és minha amiga. Subentende-se aqui que falar nas costas de alguém significa dizer a terceiros coisas desagradáveis sobre essa pessoa, quando ela não está presente. Argumentos complexos São argumentos contendo conclusões intermédias, que são usadas como premissas de outros argumentos. Todos os números racionais se podem escrever como quocientes de inteiros. O número Pi não se pode escrever como quociente de inteiros.

5 Matemática Discreta ESTiG\IPB Cap1 Lógica pg 5 Então Pi não é um número racional. No entanto Pi é um número. Então existe pelo menos um número que não é racional. Exercício 4 Escrever na forma standard cada um dos seguintes argumentos complexos. (a) O João disse que ia à festa, o que quer dizer que a Rosa também vai. Por isso ela não vai poder ir ao cinema connosco. (b) Hoje ou é Quarta-feira ou é Quinta-feira. Mas não pode ser Quinta-feira porque o consultório está aberto e nunca abre à Quinta-feira. Então hoje é Quarta-feira. II- Lógica formal A lógica informal presta-se à análise de argumentos expressos numa linguagem natural, como por exemplo o português, e dos contextos nos quais ocorrem. A lógica formal, por seu lado, permite-nos analisar argumentos atendendo à sua forma, independentemente dos conteúdos das proposições envolvidas. Esta análise recorre a um cálculo (i.e., uma estrutura com operadores e operandos, que permite efectuar certas operações). O tipo de lógica formal que vamos estudar é a chamada lógica proposicional (faremos também uma breve referência à lógica de predicados). Estrutura de um argumento Vamos agora ver o que se entende por estrutura de um argumento. Consideremos o argumento válido A Lua é cúbica.

6 Matemática Discreta ESTiG\IPB Cap1 Lógica pg 6 Se a Lua é cúbica, então os humanos voam. Os humanos voam. A estrutura deste argumento é o esquema C Se C então H. H com C= A Lua é cúbica e H= Os humanos voam. O exemplo diz-se uma instanciação concretização ou concretização da estrutura. Para obter esta estrutura substituímos por letras todas as proposições simples (que não contêm outras proposições) do argumento. Outra instanciação desta estrutura é o argumento seguinte. 3 é um número primo maior que 2. Se um número primo é maior que 2, então esse número é ímpar. 3 é um número ímpar. Estruturas como a anterior costumam designar-se por esquemas de argumentos, uma vez que representam não apenas um argumento concreto, mas todos os infinitos argumentos que são suas instanciações. Alguns esquemas de argumentos são importantes, por serem usados com frequência em instanciações que fazem parte de argumentos mais complexos. Têm por isso designações próprias, como por exemplo as estruturas no exercício seguinte. Exercício 5 Escrever uma instanciação para cada esquema de argumentos.

7 Matemática Discreta ESTiG\IPB Cap1 Lógica pg 7 C Se C então H Modus Ponens H Se C então H H é falsa C é falsa Modus Tollens Se C então H Argumento em Cadeia Se H então P. Se C então P Um argumento é válido se todas as instanciações da estrutura que o representa são argumentos válidos. Exercício 6 Escrever o esquema correspondente a cada argumento. Dizer se o argumento é válido. (a) A Rita está a jogar ténis. Se a Rita está a jogar ténis então não está a ler. Se a Rita está em casa então está a ler. A Rita está em casa ou hoje é sábado. Hoje é sábado.

8 Matemática Discreta ESTiG\IPB Cap1 Lógica pg 8 (b) Eu passei no teste se tu tiveres passado. Tu passaste no teste. Eu passei no teste. (c) Se estás a passear na Lua então estás vivo. Estás vivo. Estás a passear na Lua. Resumo da terminologia Raciocínio: processo mental que origina opiniões. Proposição: expressão com valor lógico definido. Argumento: sequência de proposições. Objectivo da Lógica: analisar argumentos no sentido de verificar se as conclusões derivam das premissas. Inferência: acto de deduzir uma proposição de outra. Lógica Informal e Lógica Formal: estudo dos argumentos nas linguagens naturais (português, castelhano, crioulo, inglês, francês, etc) e dos contextos nos quais esses argumentos ocorrem. Enquanto a lógica formal se apresenta com uma estrutura matemática (cálculo) e dá ênfase às generalizações e às teorias (com importantes aplicações práticas tais como electrónica digital, teoria da computação, linguagens de programação, inteligência artificial), a lógica informal detém-se na análise prática de argumentos, tendo profundo impacto em todos os ramos da Filosofia. A lógica formal e informal não são antagónicas, são complementares sem lógica informal não havia lógica formal.

9 Matemática Discreta ESTiG\IPB Cap1 Lógica pg 9 Argumento dedutivo: se as premissas são verdadeiras, então a conclusão também é verdadeira. Argumento indutivo: se as premissas são verdadeiras, então a conclusão é verdadeira sob uma certa probabilidade [se a probabilidade for igual a 1 temos um argumento dedutivo]. Argumento Simples: sequência de proposições que pretende justificar a verdade da última delas (conclusão) com a verdade das anteriores (premissas). Argumento Complexo: encadeamento de argumentos simples, em que as conclusões intermédias são usadas como premissas de argumentos seguintes. Argumento válido (lógica formal): todas as instanciações do esquema de argumentos que lhe corresponde são argumentos válidos. Bibliografia:

Exemplos de frases e expressões que não são proposições:

Exemplos de frases e expressões que não são proposições: Matemática Discreta ESTiG\IPB Lógica: Argumentos pg 1 Lógica: ramo da Filosofia que nos permite distinguir bons de maus argumentos, com o objectivo de produzirmos conclusões verdadeiras a partir de crenças

Leia mais

Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido.

Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 1 I- Lógica Informal Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido. Afirmação

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade

Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade Resumo de Filosofia Capítulo I Argumentação e Lógica Formal Validade e Verdade O que é um argumento? Um argumento é um conjunto de proposições em que se pretende justificar ou defender uma delas, a conclusão,

Leia mais

ÍNDICE. Bibliografia CRES-FIL11 Ideias de Ler

ÍNDICE. Bibliografia CRES-FIL11 Ideias de Ler ÍNDICE 1. Introdução... 5 2. Competências essenciais do aluno... 6 3. Como ler um texto... 7 4. Como ler uma pergunta... 8 5. Como fazer um trabalho... 9 6. Conteúdos/Temas 11.º Ano... 11 III Racionalidade

Leia mais

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1 Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados

Leia mais

O que é o conhecimento?

O que é o conhecimento? Disciplina: Filosofia Ano: 11º Ano letivo: 2012/2013 O que é o conhecimento? Texto de Apoio 1. Tipos de Conhecimento No quotidiano falamos de conhecimento, de crenças que estão fortemente apoiadas por

Leia mais

Resumo aula. Conceituação; Origem; Lógica de programação; Argumentos; Lógica simbólica; Dedutivos; Indutivos;

Resumo aula. Conceituação; Origem; Lógica de programação; Argumentos; Lógica simbólica; Dedutivos; Indutivos; Aula 02 - Lógica Disciplina: Algoritmos Prof. Allbert Velleniche de Aquino Almeida E-mail: allbert.almeida@fatec.sp.gov.br Site: http://www.allbert.com.br /allbert.almeida Resumo aula Conceituação; Origem;

Leia mais

Afirmações Matemáticas

Afirmações Matemáticas Afirmações Matemáticas Na aula passada, vimos que o objetivo desta disciplina é estudar estruturas matemáticas, afirmações sobre elas e como provar essas afirmações. Já falamos das estruturas principais,

Leia mais

Lógica e Metodologia Jurídica

Lógica e Metodologia Jurídica Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão julianomaranhao@gmail.com Quais sentenças abaixo são argumentos? 1. Bruxas são feitas de madeira.

Leia mais

Iniciação a Lógica Matemática

Iniciação a Lógica Matemática Iniciação a Lógica Matemática Faculdade Pitágoras Prof. Edwar Saliba Júnior Julho de 2012 1 O Nascimento da Lógica É lógico que eu vou!, Lógico que ela disse isso! são expressões que indicam alguma coisa

Leia mais

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados

Leia mais

Lógica de Predicados. Correção dos Exercícios Regras de Inferência

Lógica de Predicados. Correção dos Exercícios Regras de Inferência Lógica de Predicados Correção dos Exercícios Regras de Inferência O que foi visto até agora... Predicado Proposição Quantificadores Conjuntos Quantificadores com restrição Operações Lógicas com predicados

Leia mais

18/01/2016 LÓGICA MATEMÁTICA. Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA

18/01/2016 LÓGICA MATEMÁTICA. Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi fabianotaguchi@gmail.com http://fabianotaguchi.wordpress.com Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA A lógica está

Leia mais

LÓGICA I. André Pontes

LÓGICA I. André Pontes LÓGICA I André Pontes 1. Conceitos fundamentais O que é a Lógica? A LÓGICA ENQUANTO DISCIPLINA Estudo das leis de preservação da verdade. [Frege; O Pensamento] Estudo das formas válidas de argumentos.

Leia mais

Matemática Computacional. Introdução

Matemática Computacional. Introdução Matemática Computacional Introdução 1 Definição A Lógica tem, por objeto de estudo, as leis gerais do pensamento, e as formas de aplicar essas leis corretamente na investigação da verdade. 2 Origem Aristóteles

Leia mais

Dedução Natural e Sistema Axiomático Pa(Capítulo 6)

Dedução Natural e Sistema Axiomático Pa(Capítulo 6) Dedução Natural e Sistema Axiomático Pa(Capítulo 6) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Sistemas axiomático Pa 4. Lista

Leia mais

Lógica Matemática. Definição. Origem. Introdução

Lógica Matemática. Definição. Origem. Introdução Lógica Matemática Introdução 1 Definição A Lógica tem, por objeto de estudo, as leis gerais do pensamento, e as formas de aplicar essas leis corretamente na investigação da verdade. 2 Origem Aristóteles

Leia mais

Lógica e Metodologia Jurídica

Lógica e Metodologia Jurídica Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão julianomaranhao@gmail.com Puzzle 2 pessoas A e B fazem uma oferta um ao outro. O problema é identificar

Leia mais

Lógica Proposicional. 1- O que é o Modus Ponens?

Lógica Proposicional. 1- O que é o Modus Ponens? 1- O que é o Modus Ponens? Lógica Proposicional R: é uma forma de inferência válida a partir de duas premissas, na qual se se afirma o antecedente do condicional da 1ª premissa, pode-se concluir o seu

Leia mais

Modus ponens, modus tollens, e respectivas falácias formais

Modus ponens, modus tollens, e respectivas falácias formais Modus ponens, modus tollens, e respectivas falácias formais Jerzy A. Brzozowski 28 de abril de 2011 O objetivo deste texto é apresentar duas formas válidas de argumentos o modus ponens e o modus tollens

Leia mais

Curso Científico-Humanístico de Ciências e Tecnologias Filosofia - 11º A

Curso Científico-Humanístico de Ciências e Tecnologias Filosofia - 11º A Curso Científico-Humanístico de Ciências e Tecnologias 2011-2012 Filosofia - 11º A Silogismo 12/10/11 Silogismo categórico Premissa maior Todo o gato é mamífero Premissa menor Os siameses são gatos Conclusão

Leia mais

Cálculo proposicional

Cálculo proposicional O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais

Leia mais

Lógica Matemática e Computacional. 3.1 Relações lógicas de Euler

Lógica Matemática e Computacional. 3.1 Relações lógicas de Euler Lógica Matemática e Computacional 3.1 Relações lógicas de Euler Lógica Ciência dos argumentos; tem por objeto de estudo os argumentos, procurando elaborar procedimentos que permitam distinguir os argumentos

Leia mais

Expressões e enunciados

Expressões e enunciados Lógica para Ciência da Computação I Lógica Matemática Texto 2 Expressões e enunciados Sumário 1 Expressões e enunciados 2 1.1 Observações................................ 2 1.2 Exercício resolvido............................

Leia mais

Introdução à Lógica de Predicados

Introdução à Lógica de Predicados Introdução à Lógica de Predicados Matemática Discreta I Rodrigo Ribeiro Departamento de Ciências Exatas e Aplicadas Universidade de Federal de Ouro Preto 10 de dezembro de 2012 Motivação (I) Considere

Leia mais

Exercícios de lógica -sensibilização

Exercícios de lógica -sensibilização Exercícios de lógica -sensibilização 1. Lógica matemática: Qual a lógica da seqüência dos números e quem é x? 2,4,4,6,5,4,4,4,4,x? 2. Charadas: lógica filosófica. Um homem olhava uma foto, e alguém lhe

Leia mais

Departamento de Engenharia Informática da Universidade de Coimbra

Departamento de Engenharia Informática da Universidade de Coimbra Departamento de Engenharia Informática da Universidade de Coimbra Estruturas Discretas 2013/14 Folha 1 - TP Lógica proposicional 1. Quais das seguintes frases são proposições? (a) Isto é verdade? (b) João

Leia mais

Lógica predicados. Lógica predicados (continuação)

Lógica predicados. Lógica predicados (continuação) Lógica predicados (continuação) Uma formula está na forma normal conjuntiva (FNC) se é uma conjunção de cláusulas. Qualquer fórmula bem formada pode ser convertida para uma FNC, ou seja, normalizada, seguindo

Leia mais

MATEMÁTICA PARA A VIDA

MATEMÁTICA PARA A VIDA MATEMÁTICA PARA A VIDA B2 6 Interpretar, organizar, analisar e comunicar informação usando processos e procedimentos matemáticos. Utilizar a moeda única europeia e outra familiar em actividades do dia

Leia mais

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior Lógica Formal Matemática Discreta Prof. Vilson Heck Junior vilson.junior@ifsc.edu.br Objetivos Utilizar símbolos da lógica proposicional; Encontrar o valor lógico de uma expressão em lógica proposicional;

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL FACULDADE PITÁGORAS Curso Superior em Tecnologia Redes de Computadores e Banco de dados Matemática Computacional Prof. Ulisses Cotta Cavalca LÓGICA PROPOSICIONAL Belo Horizonte/MG

Leia mais

Fundamentos de Lógica Matemática

Fundamentos de Lógica Matemática Webconferência 3-01/03/2012 Inferência Lógica Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Objetivos Análise

Leia mais

Apresentação Plano de ensino Curso Conceitos básicos de lógica Introdução aos algoritmos - resolução de problemas Conceitos de programação Conceitos

Apresentação Plano de ensino Curso Conceitos básicos de lógica Introdução aos algoritmos - resolução de problemas Conceitos de programação Conceitos Apresentação Plano de ensino Curso Conceitos básicos de lógica Introdução aos algoritmos - resolução de problemas Conceitos de programação Conceitos e Construção de algoritmos: estruturas de controle Introdução

Leia mais

Aula 02 Introdução à Lógica. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes

Aula 02 Introdução à Lógica. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Aula 02 Introdução à Lógica Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Conceitos Iniciais sobre Lógica; Argumento; Inferência; Princípios. Contextualização: Situação

Leia mais

Tópicos de Matemática. Teoria elementar de conjuntos

Tópicos de Matemática. Teoria elementar de conjuntos Tópicos de Matemática Lic. em Ciências da Computação Teoria elementar de conjuntos Carla Mendes Dep. Matemática e Aplicações Universidade do Minho 2010/2011 Tóp. de Matemática - LCC - 2010/2011 Dep. Matemática

Leia mais

Silogismos Categóricos e Hipotéticos

Silogismos Categóricos e Hipotéticos Silogismos Categóricos e Hipotéticos Resumo elaborado por Francisco Cubal Apenas para publicação em Resumos.tk Primeiros objectivos a alcançar: Reconhecer os quatro tipos de proposições categóricas. Enunciar

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Teoria de Conjuntos Um conjunto é uma colecção de objectos/elementos/membros. (Cantor

Leia mais

11/01/2016 LÓGICA MATEMÁTICA. O homem pensa, possui o dom da palavra, é um animal racional, e é isto que o distingue dos outros animais.

11/01/2016 LÓGICA MATEMÁTICA. O homem pensa, possui o dom da palavra, é um animal racional, e é isto que o distingue dos outros animais. LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi fabianotaguchi@gmail.com http://fabianotaguchi.wordpress.com LÓGICA O homem pensa, possui o dom da palavra, é um animal racional, e é isto que o distingue dos

Leia mais

Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO

Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO Inteligência Artificial IA Prof. João Luís Garcia Rosa II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO 2004 Representação do conhecimento Para representar o conhecimento do mundo que um sistema

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 2: Sintaxe da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,

Leia mais

Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo

Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo Lógica Proposicional Prof. Dr. Silvio do Lago Pereira Departamento de Tecnologia da Informação aculdade de Tecnologia de São Paulo Motivação IA IA estuda estuda como como simular simular comportamento

Leia mais

Exercitando o raciocínio lógico-dedutivo!

Exercitando o raciocínio lógico-dedutivo! Exercitando o raciocínio lógico-dedutivo! Exercícios de raciocínio lógico-dedutivo a favor de Deus. Primeiramente devemos entender o conceito da dedução lógica, para então, realizarmos o seu exercício.

Leia mais

Matemática discreta e Lógica Matemática

Matemática discreta e Lógica Matemática AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1. Lógica proposicional: introdução,

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 06 Lógica Proposicional Lógica Proposicional Lógica simples. A sentenças são formadas por conectivos como: e, ou, então.

Leia mais

Lógica Proposicional

Lógica Proposicional Lógica Proposicional Lógica Computacional Carlos Bacelar Almeida Departmento de Informática Universidade do Minho 2007/2008 Carlos Bacelar Almeida, DIUM LÓGICA PROPOSICIONAL- LÓGICA COMPUTACIONAL 1/28

Leia mais

Lógica Dedutiva e Falácias

Lógica Dedutiva e Falácias Lógica Dedutiva e Falácias Aula 3 Prof. André Martins Lógica A Lógica é o ramo do conhecimento humano que estuda as formas pelas quais se pode construir um argumento correto. O que seria um raciocínio

Leia mais

Programação de Computadores I Dados, Operadores e Expressões PROFESSORA CINTIA CAETANO

Programação de Computadores I Dados, Operadores e Expressões PROFESSORA CINTIA CAETANO Programação de Computadores I Dados, Operadores e Expressões PROFESSORA CINTIA CAETANO Dados em Algoritmos Quando escrevemos nossos programas, trabalhamos com: Dados que nós fornecemos ao programa Dados

Leia mais

Fórmulas da lógica proposicional

Fórmulas da lógica proposicional Fórmulas da lógica proposicional As variáveis proposicionais p, q, são fórmulas (V P rop ) é fórmula (falso) α e β são fórmulas, então são fórmulas (α β), (α β), (α β) e ( α) DCC-FCUP -TAI -Sistemas Dedutivos

Leia mais

2 Fluxogramas e Pseudocódigo

2 Fluxogramas e Pseudocódigo 2 Fluxogramas e Pseudocódigo Programação em C/C++ estrutura básica e conceitos fundamentais 1 Algoritmos em linguagem informal e em linguagens formais Voltemos a considerar alguns algoritmos que traduzem

Leia mais

MÉTODO CIENTÍFICO. Patrícia Ruiz Spyere

MÉTODO CIENTÍFICO. Patrícia Ruiz Spyere MÉTODO CIENTÍFICO Introdução Método científico Modelos de método científico INTRODUÇÃO Mitos Explicação da realidade e dos fenômenos naturais de forma simbólica, por meio de deuses, semi-deuses e heróis

Leia mais

Teoria das Linguagens. Linguagens Formais e Autómatos (Linguagens)

Teoria das Linguagens. Linguagens Formais e Autómatos (Linguagens) Teoria das Lic. em Ciências da Computação Formais e Autómatos () Carla Mendes Dep. Matemática e Aplicações Universidade do Minho 2010/2011 Teoria das - LCC - 2010/2011 Dep. Matemática e Aplicações - Univ.

Leia mais

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico.

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico. CENTRO UNVERSITÁRIO UNA NOÇÕES DE RACIOCÍNIO LÓGICO Professor: Rodrigo Eustáquio Borges A disciplina Lógica Matemática tem como objetivo capacitar o aluno a reconhecer e aplicar os conceitos fundamentais

Leia mais

III. RACIONALIDADE ARGUMEN NTATIVA E FILOSOFIA

III. RACIONALIDADE ARGUMEN NTATIVA E FILOSOFIA III. RACIONALIDADE ARGUMEN NTATIVA E FILOSOFIA 1. Argumentação e Lóg gica Formal 1.1. Distinção validade - verdade 1.2. Formas de Inferên ncia Válida. 1.3. Principais Falácias A Lógica: objecto de estudo

Leia mais

Lógica informal. Desidério Murcho King's College London

Lógica informal. Desidério Murcho King's College London Lógica informal Desidério Murcho King's College London A lógica informal é o estudo dos aspectos lógicos da argumentação que não dependem exclusivamente da forma lógica, contrastando assim com a lógica

Leia mais

Lógica Computacional

Lógica Computacional Lógica Computacional Métodos de Demonstração com Quantificadores Generalização e Instanciação Universal e Particulares Introdução e Eliminação de Quantificadores 30 Outubro 2013 Lógica Computacional 1

Leia mais

Nível 1 (equivalência ao 1º ciclo do Ensino Básico)

Nível 1 (equivalência ao 1º ciclo do Ensino Básico) MATEMÁTICA PARA VIDA Nível 1 (equivalência ao 1º ciclo do Ensino Básico) Interpretar, organizar, analisar e comunicar informação utilizando processos e procedimentos matemáticos. MV 1 A Usar a matemática

Leia mais

Uma proposição composta é uma contradição, se for sempre falsa, independentemente do valor lógico das proposições simples que a compõem.

Uma proposição composta é uma contradição, se for sempre falsa, independentemente do valor lógico das proposições simples que a compõem. Tautologia Uma proposição composta é uma tautologia, se for sempre verdadeira, independentemente do valor lógico das proposições simples que a compõem. Exemplos: Contradição Uma proposição composta é uma

Leia mais

Lógica e Matemática Discreta

Lógica e Matemática Discreta Lógica e Matemática Discreta Proposições Prof clezio 26 de Abril de 2017 Curso de Ciência da Computação Inferência Lógica Uma inferência lógica, ou, simplesmente uma inferência, é uma tautologia da forma

Leia mais

MINISTÉRIO DA EDUCAÇÃO

MINISTÉRIO DA EDUCAÇÃO MINISTÉRIO DA EDUCAÇÃO E.S.A.B. ESCOLA SECUNDÁRIA DE AVELAR BROTERO Filosofia 11º Ano Duração: 135m Ano letivo: 2015/2016 Matriz da Prova de Avaliação Sumativa Interna na Modalidade de Frequência não Presencial

Leia mais

Algoritmia e Programação APROG. Algoritmia 1. Lógica Proposicional (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12

Algoritmia e Programação APROG. Algoritmia 1. Lógica Proposicional (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12 APROG Algoritmia e Programação Algoritmia 1 Lógica (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12 Sumário Lógica Qual é o interesse para a algoritmia? O que é? Cálculo (Noções Básicas) Operações

Leia mais

FUNDAMENTOS DE LÓGICA E ALGORITMOS

FUNDAMENTOS DE LÓGICA E ALGORITMOS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE FUNDAMENTOS DE LÓGICA E ALGORITMOS AULA 01 Docente: Éberton da Silva Marinho e-mail: ebertonsm@gmail.com 27/05/2016 SUMÁRIO Introdução

Leia mais

MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP

MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP 1 MATEMÁTICA DISCRETA CÁLCULO PROPOSICIONAL PROFESSOR WALTER PAULETTE FATEC SP 2009 02 2 CÁLCULO PROPOSICIONAL 1. Proposições Uma proposição é uma sentença declarativa que pode ser verdade ou falsa, mas

Leia mais

1 TEORIA DOS CONJUNTOS

1 TEORIA DOS CONJUNTOS 1 TEORIA DOS CONJUNTOS Definição de Conjunto: um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada. Em outras palavras,

Leia mais

LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q :

LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q : LÓGICA - 2 Proposições: 1) Recíproca 2) Contrária 3) Contra positiva 1) Proposição recíproca de p q : q p 2) Proposição contrária de p q : ~ p 3) Proposição contra positiva de p q : ~ p ex. Determinar:

Leia mais

Raciocínio lógico matemático

Raciocínio lógico matemático Raciocínio lógico matemático Unidade 3: Dedução Seção 3.3 - Contrapositiva 1 Lembrando Modus pones p q, p q Se Pedro guarda dinheiro, então ele não fica negativado. Pedro guardou dinheiro. Dessa forma

Leia mais

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios...

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios... Lógica para Ciência da Computação I Lógica Matemática Texto 11 Tautologias Sumário 1 Comportamento de um enunciado 2 1.1 Observações................................ 4 2 Classificação dos enunciados 4 2.1

Leia mais

Matemática Régis Cortes. Lógica matemática

Matemática Régis Cortes. Lógica matemática Lógica matemática 1 INTRODUÇÃO Neste roteiro, o principal objetivo será a investigação da validade de ARGUMENTOS: conjunto de enunciados dos quais um é a CONCLUSÃO e os demais PREMISSAS. Os argumentos

Leia mais

Proposições e argumentos. Proposições tem de ter as seguintes características:

Proposições e argumentos. Proposições tem de ter as seguintes características: Ser uma frase declarativa (afirmativa ou negativa) Ter sentido Proposições e argumentos Proposições tem de ter as seguintes características: Ter um valor de verdade( ser verdadeira ou falsa) possível determinável

Leia mais

As ferramentas da razão 1

As ferramentas da razão 1 As ferramentas da razão 1 A filosofia pode ser uma atividade extremamente técnica e complexa, cujos conceitos e terminologia chegam muitas vezes a intimidar aqueles que iniciam seus estudos filosóficos.

Leia mais

Lógica. Cálculo Proposicional. Introdução

Lógica. Cálculo Proposicional. Introdução Lógica Cálculo Proposicional Introdução Lógica - Definição Formalização de alguma linguagem Sintaxe Especificação precisa das expressões legais Semântica Significado das expressões Dedução Provê regras

Leia mais

Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Inclusão Operações com conjuntos

Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Inclusão Operações com conjuntos Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Є (pertence) ou Є (não pertence) Sempre verificando de elemento para conjunto { } ou Ø = vazio {Ø} = conjunto com elemento vazio

Leia mais

Lógica: Quadrado lógico:

Lógica: Quadrado lógico: Lógica: 1. Silogismo aristotélico: Podemos encara um conceito de dois pontos de vista: Extensão a extensão é um conjunto de objectos que o conceito considerado pode designar ou aos quais ele se pode aplicar

Leia mais

2 Fluxogramas e Pseudocódigo. 18 Programação em C/C++ estrutura básica e conceitos fundamentais

2 Fluxogramas e Pseudocódigo. 18 Programação em C/C++ estrutura básica e conceitos fundamentais 2 Fluxogramas e Pseudocódigo 18 Programação em C/C++ estrutura básica e conceitos fundamentais 1 Algoritmos em linguagem informal e em linguagens formais Voltemos a considerar alguns algoritmos que traduzem

Leia mais

Demonstrações, Recursão e Análise de Algoritmo

Demonstrações, Recursão e Análise de Algoritmo Demonstrações, Recursão e Análise de Algoritmo Objetivos do Capítulo Após estudar este capítulo, você estará apto a: Realizar demonstrações de conjecturas, usando técnicas de demonstração direta, demonstração

Leia mais

Noções básicas de Lógica

Noções básicas de Lógica Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a uma sequências de símbolos. Uma expressão pode ser uma expressão com significado expressão sem significado

Leia mais

ANÁLISE MATEMÁTICA I. Curso: EB

ANÁLISE MATEMÁTICA I. Curso: EB ANÁLISE MATEMÁTICA I (com Laboratórios) Curso: EB Lógica - Resumo Ana Matos DMAT Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a qualquer sequência de símbolos.

Leia mais

LÓGICA APLICADA A COMPUTAÇÃO

LÓGICA APLICADA A COMPUTAÇÃO LÓGICA APLICADA A COMPUTAÇÃO 2009.3 Aquiles Burlamaqui Conteúdo Programático Unidade I Linguagens Formais Linguagens Formais Sigma Álgebras Relação entre Linguagens Formais e Sigma Álgebras Sigma Domínios

Leia mais

IMPLICAÇÃO LÓGICA. Prof.: Rafael Dias Ribeiro,M.Sc.

IMPLICAÇÃO LÓGICA. Prof.: Rafael Dias Ribeiro,M.Sc. IMPLICAÇÃO LÓGICA Prof.: Rafael Dias Ribeiro,M.Sc. Imlicação Lógica O rocesso de inferência automática oderia ser realizado utilizando-se tabelas-verdade, mas esta seria uma estratégia lenta e que ocuaria

Leia mais

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 4

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 4 Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 4 1 Apresentação Olá, pessoal Tudo bem com vocês? Finalmente saiu o edital do TCM/RJ Para quem ainda não me conhece, meu nome

Leia mais

Prof. Jorge Cavalcanti

Prof. Jorge Cavalcanti Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Ciências da Linguagem e da Cognição

Ciências da Linguagem e da Cognição Ciências da Linguagem e da Cognição Raciocínio. Silogismos condicionais e regras de inferência. Desempenho dos humanos. Interpretações. Modelo BDI. As apresentações power-point resultam de contribuições

Leia mais

LÓGICA PARA COMPUTAÇÃO

LÓGICA PARA COMPUTAÇÃO LÓGICA PARA COMPUTAÇÃO Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto Apresentação Conteúdo Programático Referência bibliográfica Avaliações Dados pessoais Rosalvo Ferreira de Oliveira

Leia mais

CURSO: MEDICINA VETERINÁRIA DISCIPLINA: METODOLOGIA DA PESQUISA CIENTÍFICA

CURSO: MEDICINA VETERINÁRIA DISCIPLINA: METODOLOGIA DA PESQUISA CIENTÍFICA CURSO: MEDICINA VETERINÁRIA DISCIPLINA: METODOLOGIA DA PESQUISA CIENTÍFICA Prof. Dra. Renata Cristina da Penha França E-mail: renataagropec@yahoo.com.br -Recife- 2015 MÉTODO Método, palavra que vem do

Leia mais

Programa de Matemática 1.º ano

Programa de Matemática 1.º ano Programa de Matemática 1.º ano Introdução A Matemática é uma das ciências mais antigas e é igualmente das mais antigas disciplinas escolares, tendo sempre ocupado, ao longo dos tempos, um lugar de relevo

Leia mais

Lógica de Programação

Lógica de Programação Lógica de Programação Universidade dos Açores Departamento de Matemática www.uac.pt/~hguerra!! do Gr. logiké, arte de raciocinar!! s. f., ciência que tem por objecto o estudo dos métodos e princípios que

Leia mais

Conceitos Básicos. LEIC 2 o Semestre, Ano Lectivo 2012/13. c Inês Lynce

Conceitos Básicos. LEIC 2 o Semestre, Ano Lectivo 2012/13. c Inês Lynce Capítulo 1 Conceitos Básicos Lógica para Programação LEIC 2 o Semestre, Ano Lectivo 2012/13 c Inês Lynce Bibliografia Martins J.P., Lógica para Programação, Capítulo 1. Ben-Ari M., Mathematical Logic for

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 4: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,

Leia mais

Lógica dos Conectivos: validade de argumentos

Lógica dos Conectivos: validade de argumentos Lógica dos Conectivos: validade de argumentos Renata de Freitas e Petrucio Viana IME, UFF 16 de setembro de 2014 Sumário Razões e opiniões. Argumentos. Argumentos bons e ruins. Validade. Opiniões A maior

Leia mais

LÓGICA APLICADA A COMPUTAÇÃO

LÓGICA APLICADA A COMPUTAÇÃO LÓGICA APLICADA A COMPUTAÇÃO 2009.3 Aquiles Burlamaqui Apresentação da Disciplina Planejamento Conteúdo Programático Metodologia Bibliografia Definição Motivação Planejamento Semestre 2009.3 Local 3B5

Leia mais

PROINTER Projeto Integrado IV

PROINTER Projeto Integrado IV PROINTER Projeto Integrado IV Prof. Me. Érico Pagotto O que é Ciência? Organização de conhecimentos Conjunto de afirmações lógicas e relacionadas Tem um objeto ou campo definido Ex: Biologia, Sociologia,

Leia mais

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula /

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula / 1 www.romulopassos.com.br / www.questoesnasaude.com.br GRATUITO RACIOCÍNIO LÓGICO - EBSERH Professor Paulo Henrique PH Aula 03 R A C I O C Í N I O L Ó G I C O E B S E R H a u l a 0 2 Página 1 2 www.romulopassos.com.br

Leia mais

FILOSOFIA 11º ano O CONHECIMENTO E A RACIONALIDADE CIENTÍFICA E TECNOLÓGICA

FILOSOFIA 11º ano O CONHECIMENTO E A RACIONALIDADE CIENTÍFICA E TECNOLÓGICA FILOSOFIA 11º ano O CONHECIMENTO E A RACIONALIDADE CIENTÍFICA E TECNOLÓGICA Governo da República Portuguesa Descrição e interpretação da atividade cognoscitiva 1.1 Estrutura do ato de conhecer 1.2 Análise

Leia mais

Inteligência Artificial

Inteligência Artificial Universidade Federal de Campina Grande Unidade Acadêmica de Sistemas e Computação Curso de Pós-Graduação em Ciência da Computação Inteligência Artificial Representação do Conhecimento (Parte I) Prof. a

Leia mais

IME, UFF 4 de novembro de 2013

IME, UFF 4 de novembro de 2013 Lógica IME, UFF 4 de novembro de 2013 Sumário e ferramentas Considere o seguinte texto, da aritmética dos números naturais. Teorema: Todo número inteiro positivo maior que 1 tem um fator primo. Prova:

Leia mais

VERDADE E VALIDADE, PROPOSIÇÃO E ARGUMENTO

VERDADE E VALIDADE, PROPOSIÇÃO E ARGUMENTO ENADE 2005 e 2008 1 O que B. Russell afirma da matemática, em Misticismo e Lógica: "uma disciplina na qual não sabemos do que falamos, nem se o que dizemos é verdade", seria particularmente aplicável à

Leia mais

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG Matemática Discreta Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Tautologias Tautologia é uma fórmula proposicional que é verdadeira para todos os possíveis valores-verdade

Leia mais

Algumas sugestões para a gestão curricular do Programa e Metas curriculares de Matemática do 3º ciclo

Algumas sugestões para a gestão curricular do Programa e Metas curriculares de Matemática do 3º ciclo Algumas sugestões para a gestão curricular do Programa e Metas curriculares de Matemática do 3º ciclo No seguimento da análise das Orientações de Gestão Curricular para o Programa e Metas Curriculares

Leia mais

Estruturas Discretas INF 1631

Estruturas Discretas INF 1631 Estruturas Discretas INF 1631 Thibaut Vidal Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-900, Brazil

Leia mais