Exemplos de frases e expressões que não são proposições:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Exemplos de frases e expressões que não são proposições:"

Transcrição

1 Matemática Discreta ESTiG\IPB Lógica: Argumentos pg 1 Lógica: ramo da Filosofia que nos permite distinguir bons de maus argumentos, com o objectivo de produzirmos conclusões verdadeiras a partir de crenças verdadeiras. 1. O que é um argumento? A componente elementar de um argumento designa-se por proposição. Uma proposição é uma afirmação cujo valor lógico é definido (ou é verdadeira ou é falsa). Exemplos de proposições verdadeiras: - O Sol é uma estrela =4. Exemplos de proposições falsas: -Lisboa é a capital de França. - 3 é um número par. Exemplos de frases e expressões que não são proposições: -Corre! -Onde ficam os correios? amarelo é uma cor bonita. Um argumento é uma sequência de proposições supostamente verdadeiras, tal que a verdade da última delas, dita conclusão, pretende ser suportada pela verdade das anteriores, ditas premissas. Seguem-se alguns exemplos de argumentos intermeados com comentários. Legenda: Premissas Conclusões

2 Matemática Discreta ESTiG\IPB Lógica: Argumentos pg 2 1 Se quem não tem deveres também não tem direitos, nem os recémnascidos nem os deficientes mentais têm direitos. Mas é absurdo defender que nem os recém-nascidos nem os deficientes mentais têm direitos. Portanto é falso que quem não tem deveres também não tem direitos. 2 Todos os corvos observados até hoje viveram antes do ano Logo todos os corvos vivem antes do ano A formulação seguinte não é considerada um argumento, uma vez que o valor lógico da conclusão não se relaciona com os valores lógicos das premissas. Em alternativa podemos dizer que a formulação representa um argumento inútil, uma vez que os valores lógicos (ou verdadeira ou falsa) de cada uma das premissas, quaisquer que sejam, não nos ajudam a estabelecer o valor lógico da conclusão. A Joana é rápida a fazer contas. A Joana está em Bragança. Portanto o Papa não é português. Não é um argumento

3 Matemática Discreta ESTiG\IPB Lógica: Argumentos pg 3 2. Argumentos indutivos e dedutivos. 3 Todos os corvos observados até hoje são pretos. Por isso todos os corvos são pretos. ARGUMENTO INDUTIVO Um argumento diz-se indutivo se há uma certa probabilidade de a conclusão ser verdadeira quando as premissas o são. Do valor desta probabilidade depende a qualidade do argumento. Uma boa parte dos argumentos que utilizamos no nosso discurso do dia-a-dia são de natureza indutiva. 4 Todos os humanos são mortais. Einstein é humano. ARGUMENTO DEDUTIVO Logo Einstein é mortal. Um argumento diz-se dedutivo se a conclusão é verdadeira sempre que as premissas são verdadeiras. Dito de outra forma, um argumento é dedutivo se não pode acontecer que as premissas sejam verdadeiras e a conclusão falsa. A lógica que vamos estudar (lógica matemática) lida com argumentos dedutivos. Um argumento que seja apresentado como dedutivo e que de facto verifiquemos que o é, diz-se argumento dedutivamente válido. Um argumento que é apresentado como dedutivo, mas que verifiquemos não o ser (porque as premissas

4 Matemática Discreta ESTiG\IPB Lógica: Argumentos pg 4 são verdadeiras mas a conclusão é falsa) diz-se argumento dedutivamente inválido. Existe também uma noção de validade para argumentos indutivos, mas não vamos estudá-la neste curso. Como só vamos estudar argumentos dedutivos, chamaremos a partir de agora inválido (em vez de dedutivamente inválido) a todo o argumento que tem a conclusão falsa sendo as premissas verdadeiras, e chamaremos válido (em vez de dedutivamente válido) a todo o argumento que tem a conclusão verdadeira se as premissas forem verdadeiras. 5 Se n é um inteiro par, então existe um inteiro k tal que n=2k. Considerando n=2k podemos escrever n+2=2k+2=2(k+1). Então n+2 é também um número par. O argumento 5 é válido. 6 Todos os humanos são mortais. Einstein é mortal. ARGUMENTO INVÁLIDO Logo Einstein é humano. O argumento 6 é inválido. A verdade da segunda premissa não implica que Einstein seja humano.

5 Matemática Discreta ESTiG\IPB Lógica: Argumentos pg 5 7 A Lua é cúbica. Se a Lua é cúbica, então os humanos voam. Se os humanos voam, então o Papa é português. Por isso o Papa é português. O argumento 7 é válido. Exercícios Escrever na forma standard [premissas seguidas de conclusão, tal como apresentado nos exemplos acima] cada um dos seguintes grupos de frases que seja um argumento. 1. Os cães gostam de ossos. Por isso o teu cão vai gostar do osso que eu lhe comprei. 2. O carro parou porque ficou sem gasolina. 3. Se queres fazer uma omelete começa por partir os ovos. 4. Aquela mulher estava sempre a queixar-se, por isso eu fiz as malas e deixei-a. 5. Não importam os obstáculos que encontremos, vamos continuar a lutar no limite das nossas forças. No fim sairemos vencedores. Por vezes, no discurso do dia-a-dia, as premissas ou as conclusões podem estar implícitas no discurso [i.e., podem não aparecer nas frases ditas ou escritas, mas estarem presentes no nosso pensamento quando interpretamos essas frases]. Por exemplo:

6 Matemática Discreta ESTiG\IPB Lógica: Argumentos pg 6 Se fosses minha amiga não falavas nas minhas costas. Esta afirmação representa o seguinte argumento: Se alguém é nosso amigo então essa pessoa não fala nas nossas costas. Tu falas nas minhas costas Tu não és minha amiga. Subentende-se aqui que falar nas costas de alguém significa dizer a terceiros coisas desagradáveis sobre essa pessoa, quando ela não está presente. 3. Argumentos complexos São argumentos contendo conclusões intermédias, que são usadas como premissas de outros argumentos. Todos os números racionais se podem escrever como quocientes de inteiros. O número Pi não se pode escrever como quociente de inteiros. Então Pi não é um número real. No entanto Pi é um número. Então existe pelo menos um número que não é racional.

7 Matemática Discreta ESTiG\IPB Lógica: Argumentos pg 7 Exercícios Escrever na forma standard cada um dos seguintes argumentos complexos. 6. O João disse que ia à festa, o que quer dizer que a Rosa também vai. Por isso ela não vai poder ir ao cinema connosco. 7. Hoje ou é Quarta-feira ou é Quinta-feira. Mas não pode ser Quinta-feira porque o consultório está aberto e nunca abre à Quinta-feira. Então hoje é Quarta-feira. 4. Lógica formal Estudo da validade dos argumentos pela análise da sua forma. A lógica formal permite-nos analisar argumentos por meio de um cálculo [=estrutura com operadores e operandos, que permite efectuar operações de certo tipo]. A lógica informal, por seu lado, presta-se à análise de argumentos expressos numa linguagem natural, como por exemplo o português. A lógica matemática é uma lógica formal, sendo a validade dos argumentos relacionada com a forma dos mesmos, independentemente dos assuntos específicos envolvidos

8 Matemática Discreta ESTiG\IPB Lógica: Argumentos pg 8 Exemplo A Lua é cúbica. Se a Lua é cúbica, então os humanos voam. Por isso os humanos voam. C UM ARGUMENTO COM Se C então H. H ESTA FORMA É SEMPRE VÁLIDO 3 é um número primo maior que 2. Se um número primo é maior que 2, então esse número é ímpar. Por isso 3 é um número ímpar. Exercícios 8. Escrever um argumento concreto para cada esquema de argumentos [um esquema de argumentos representa os infinitos argumentos que podem ser formalizados conforme o esquema].

9 Matemática Discreta ESTiG\IPB Lógica: Argumentos pg 9 C Se C então H Modus Ponens H Se C então H Não se verifica H Modus Tollens Não se verifica C Se C então H Argumento em Cadeia Se H então P. Se C então P Exercícios Escrever o esquema correspondente a cada argumento. Dizer se o argumento é válido. 9. A Rita está a jogar ténis. Se a Rita está a jogar ténis então não está a ler. Se a Rita está em casa então está a ler. A Rita está em casa ou hoje é sábado. Hoje é sábado.

10 Matemática Discreta ESTiG\IPB Lógica: Argumentos pg Eu passei no teste se tu tiveres passado. Tu passaste no teste. Eu passei no teste. 11. Se estás a passear na Lua então estás vivo. Estás vivo. Estás a passear na Lua. Resumo da terminologia utilizada Raciocínio: processo mental que origina opiniões. Argumento: expressão, escrita ou oral, de um certo tipo de raciocínio. Argumento Simples (na Lógica Formal): sequência de proposições [=expressões com valor lógico definido, i.e., das quais podemos dizer que são ou verdadeiras ou falsas, sem ambiguidade], que pretende justificar a verdade da última delas (conclusão) com a verdade das anteriores (premissas). Argumento Complexo (na Lógica Formal): encadeamento de argumentos simples, em que as conclusões intermédias são usadas como premissas de argumentos seguintes.

11 Matemática Discreta ESTiG\IPB Lógica: Argumentos pg 11 Argumento dedutivo: se as premissas são verdadeiras, então a conclusão também é verdadeira. Argumento indutivo: se as premissas são verdadeiras, então a conclusão é verdadeira sob uma certa probabilidade [se a probabilidade for igual a 1 temos um argumento dedutivo]. Objectivo da Lógica: analisar argumentos no sentido de verificar se as conclusões derivam das premissas. Inferência: acto mental de deduzir uma proposição de outra. Lógica informal: estudo dos argumentos nas linguagens naturais (português, castelhano, crioulo, inglês, francês, etc) e dos contextos nos quais esses argumentos ocorrem. Enquanto a lógica formal se apresenta com uma estrutura matemática (cálculo) e dá ênfase às generalizações e às teorias (com importantes aplicações práticas tais como electrónica digital, teoria da computação, linguagens de programação, inteligência artificial), a lógica informal detém-se na análise prática de argumentos, tendo profundo impacto em todos os ramos da Filosofia. A lógica formal e informal não são antagónicas, são complementares sem lógica informal não havia lógica formal. Um argumento é válido se o esquema de argumentos que lhe corresponde é válido para todos os casos.

Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido.

Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido. Matemática Discreta ESTiG\IPB 2011.12 Cap1 Lógica pg 1 I- Lógica Informal Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido. Afirmação

Leia mais

Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido.

Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 1 I- Lógica Informal Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido. Afirmação

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

ÍNDICE. Bibliografia CRES-FIL11 Ideias de Ler

ÍNDICE. Bibliografia CRES-FIL11 Ideias de Ler ÍNDICE 1. Introdução... 5 2. Competências essenciais do aluno... 6 3. Como ler um texto... 7 4. Como ler uma pergunta... 8 5. Como fazer um trabalho... 9 6. Conteúdos/Temas 11.º Ano... 11 III Racionalidade

Leia mais

Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade

Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade Resumo de Filosofia Capítulo I Argumentação e Lógica Formal Validade e Verdade O que é um argumento? Um argumento é um conjunto de proposições em que se pretende justificar ou defender uma delas, a conclusão,

Leia mais

Resumo aula. Conceituação; Origem; Lógica de programação; Argumentos; Lógica simbólica; Dedutivos; Indutivos;

Resumo aula. Conceituação; Origem; Lógica de programação; Argumentos; Lógica simbólica; Dedutivos; Indutivos; Aula 02 - Lógica Disciplina: Algoritmos Prof. Allbert Velleniche de Aquino Almeida E-mail: allbert.almeida@fatec.sp.gov.br Site: http://www.allbert.com.br /allbert.almeida Resumo aula Conceituação; Origem;

Leia mais

Matemática Computacional. Introdução

Matemática Computacional. Introdução Matemática Computacional Introdução 1 Definição A Lógica tem, por objeto de estudo, as leis gerais do pensamento, e as formas de aplicar essas leis corretamente na investigação da verdade. 2 Origem Aristóteles

Leia mais

Lógica Matemática. Definição. Origem. Introdução

Lógica Matemática. Definição. Origem. Introdução Lógica Matemática Introdução 1 Definição A Lógica tem, por objeto de estudo, as leis gerais do pensamento, e as formas de aplicar essas leis corretamente na investigação da verdade. 2 Origem Aristóteles

Leia mais

O que é o conhecimento?

O que é o conhecimento? Disciplina: Filosofia Ano: 11º Ano letivo: 2012/2013 O que é o conhecimento? Texto de Apoio 1. Tipos de Conhecimento No quotidiano falamos de conhecimento, de crenças que estão fortemente apoiadas por

Leia mais

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1 Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados

Leia mais

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados

Leia mais

Lógica Matemática e Computacional. 3.1 Relações lógicas de Euler

Lógica Matemática e Computacional. 3.1 Relações lógicas de Euler Lógica Matemática e Computacional 3.1 Relações lógicas de Euler Lógica Ciência dos argumentos; tem por objeto de estudo os argumentos, procurando elaborar procedimentos que permitam distinguir os argumentos

Leia mais

Afirmações Matemáticas

Afirmações Matemáticas Afirmações Matemáticas Na aula passada, vimos que o objetivo desta disciplina é estudar estruturas matemáticas, afirmações sobre elas e como provar essas afirmações. Já falamos das estruturas principais,

Leia mais

Lógica Proposicional. 1- O que é o Modus Ponens?

Lógica Proposicional. 1- O que é o Modus Ponens? 1- O que é o Modus Ponens? Lógica Proposicional R: é uma forma de inferência válida a partir de duas premissas, na qual se se afirma o antecedente do condicional da 1ª premissa, pode-se concluir o seu

Leia mais

Lógica predicados. Lógica predicados (continuação)

Lógica predicados. Lógica predicados (continuação) Lógica predicados (continuação) Uma formula está na forma normal conjuntiva (FNC) se é uma conjunção de cláusulas. Qualquer fórmula bem formada pode ser convertida para uma FNC, ou seja, normalizada, seguindo

Leia mais

Apresentação Plano de ensino Curso Conceitos básicos de lógica Introdução aos algoritmos - resolução de problemas Conceitos de programação Conceitos

Apresentação Plano de ensino Curso Conceitos básicos de lógica Introdução aos algoritmos - resolução de problemas Conceitos de programação Conceitos Apresentação Plano de ensino Curso Conceitos básicos de lógica Introdução aos algoritmos - resolução de problemas Conceitos de programação Conceitos e Construção de algoritmos: estruturas de controle Introdução

Leia mais

Cálculo proposicional

Cálculo proposicional O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais

Leia mais

MATEMÁTICA PARA A VIDA

MATEMÁTICA PARA A VIDA MATEMÁTICA PARA A VIDA B2 6 Interpretar, organizar, analisar e comunicar informação usando processos e procedimentos matemáticos. Utilizar a moeda única europeia e outra familiar em actividades do dia

Leia mais

Acção de formação. Lógica e Filosofia nos Programas de 10.º e 11.º Anos. Formador. Desidério Murcho ALGUMAS NOÇÕES DE LÓGICA

Acção de formação. Lógica e Filosofia nos Programas de 10.º e 11.º Anos. Formador. Desidério Murcho ALGUMAS NOÇÕES DE LÓGICA CENTRO DE FORMAÇÃO DA ASSOCIAÇÃO DE ESCOLAS BRAGA/SUL Acção de formação Lógica e Filosofia nos Programas de 10.º e 11.º Anos Formador Desidério Murcho ALGUMAS NOÇÕES DE LÓGICA António Aníbal Padrão Braga,

Leia mais

Fundamentos de Lógica Matemática

Fundamentos de Lógica Matemática Webconferência 3-01/03/2012 Inferência Lógica Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Objetivos Análise

Leia mais

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios...

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios... Lógica para Ciência da Computação I Lógica Matemática Texto 11 Tautologias Sumário 1 Comportamento de um enunciado 2 1.1 Observações................................ 4 2 Classificação dos enunciados 4 2.1

Leia mais

Lógica dos Conectivos: validade de argumentos

Lógica dos Conectivos: validade de argumentos Lógica dos Conectivos: validade de argumentos Renata de Freitas e Petrucio Viana IME, UFF 16 de setembro de 2014 Sumário Razões e opiniões. Argumentos. Argumentos bons e ruins. Validade. Opiniões A maior

Leia mais

Dedução Natural e Sistema Axiomático Pa(Capítulo 6)

Dedução Natural e Sistema Axiomático Pa(Capítulo 6) Dedução Natural e Sistema Axiomático Pa(Capítulo 6) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Sistemas axiomático Pa 4. Lista

Leia mais

Raciocínio lógico matemático

Raciocínio lógico matemático Raciocínio lógico matemático Unidade 3: Dedução Seção 3.3 - Contrapositiva 1 Lembrando Modus pones p q, p q Se Pedro guarda dinheiro, então ele não fica negativado. Pedro guardou dinheiro. Dessa forma

Leia mais

Exercitando o raciocínio lógico-dedutivo!

Exercitando o raciocínio lógico-dedutivo! Exercitando o raciocínio lógico-dedutivo! Exercícios de raciocínio lógico-dedutivo a favor de Deus. Primeiramente devemos entender o conceito da dedução lógica, para então, realizarmos o seu exercício.

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

III. RACIONALIDADE ARGUMEN NTATIVA E FILOSOFIA

III. RACIONALIDADE ARGUMEN NTATIVA E FILOSOFIA III. RACIONALIDADE ARGUMEN NTATIVA E FILOSOFIA 1. Argumentação e Lóg gica Formal 1.1. Distinção validade - verdade 1.2. Formas de Inferên ncia Válida. 1.3. Principais Falácias A Lógica: objecto de estudo

Leia mais

Lógica informal. Desidério Murcho King's College London

Lógica informal. Desidério Murcho King's College London Lógica informal Desidério Murcho King's College London A lógica informal é o estudo dos aspectos lógicos da argumentação que não dependem exclusivamente da forma lógica, contrastando assim com a lógica

Leia mais

Aula 02 Introdução à Lógica. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes

Aula 02 Introdução à Lógica. Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Aula 02 Introdução à Lógica Disciplina: Fundamentos de Lógica e Algoritmos Prof. Bruno Gomes Agenda da Aula Conceitos Iniciais sobre Lógica; Argumento; Inferência; Princípios. Contextualização: Situação

Leia mais

Departamento de Engenharia Informática da Universidade de Coimbra

Departamento de Engenharia Informática da Universidade de Coimbra Departamento de Engenharia Informática da Universidade de Coimbra Estruturas Discretas 2013/14 Folha 1 - TP Lógica proposicional 1. Quais das seguintes frases são proposições? (a) Isto é verdade? (b) João

Leia mais

18/01/2016 LÓGICA MATEMÁTICA. Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA

18/01/2016 LÓGICA MATEMÁTICA. Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi fabianotaguchi@gmail.com http://fabianotaguchi.wordpress.com Lógica é usada para guiar nossos pensamentos ou ações na busca da solução. LÓGICA A lógica está

Leia mais

Modus ponens, modus tollens, e respectivas falácias formais

Modus ponens, modus tollens, e respectivas falácias formais Modus ponens, modus tollens, e respectivas falácias formais Jerzy A. Brzozowski 28 de abril de 2011 O objetivo deste texto é apresentar duas formas válidas de argumentos o modus ponens e o modus tollens

Leia mais

LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q :

LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q : LÓGICA - 2 Proposições: 1) Recíproca 2) Contrária 3) Contra positiva 1) Proposição recíproca de p q : q p 2) Proposição contrária de p q : ~ p 3) Proposição contra positiva de p q : ~ p ex. Determinar:

Leia mais

LÓGICA I. André Pontes

LÓGICA I. André Pontes LÓGICA I André Pontes 1. Conceitos fundamentais O que é a Lógica? A LÓGICA ENQUANTO DISCIPLINA Estudo das leis de preservação da verdade. [Frege; O Pensamento] Estudo das formas válidas de argumentos.

Leia mais

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico.

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico. CENTRO UNVERSITÁRIO UNA NOÇÕES DE RACIOCÍNIO LÓGICO Professor: Rodrigo Eustáquio Borges A disciplina Lógica Matemática tem como objetivo capacitar o aluno a reconhecer e aplicar os conceitos fundamentais

Leia mais

Lógica Dedutiva e Falácias

Lógica Dedutiva e Falácias Lógica Dedutiva e Falácias Aula 3 Prof. André Martins Lógica A Lógica é o ramo do conhecimento humano que estuda as formas pelas quais se pode construir um argumento correto. O que seria um raciocínio

Leia mais

Lógica e Metodologia Jurídica

Lógica e Metodologia Jurídica Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão julianomaranhao@gmail.com Quais sentenças abaixo são argumentos? 1. Bruxas são feitas de madeira.

Leia mais

PROINTER Projeto Integrado IV

PROINTER Projeto Integrado IV PROINTER Projeto Integrado IV Prof. Me. Érico Pagotto O que é Ciência? Organização de conhecimentos Conjunto de afirmações lógicas e relacionadas Tem um objeto ou campo definido Ex: Biologia, Sociologia,

Leia mais

MÉTODO CIENTÍFICO. Patrícia Ruiz Spyere

MÉTODO CIENTÍFICO. Patrícia Ruiz Spyere MÉTODO CIENTÍFICO Introdução Método científico Modelos de método científico INTRODUÇÃO Mitos Explicação da realidade e dos fenômenos naturais de forma simbólica, por meio de deuses, semi-deuses e heróis

Leia mais

CURSO: MEDICINA VETERINÁRIA DISCIPLINA: METODOLOGIA DA PESQUISA CIENTÍFICA

CURSO: MEDICINA VETERINÁRIA DISCIPLINA: METODOLOGIA DA PESQUISA CIENTÍFICA CURSO: MEDICINA VETERINÁRIA DISCIPLINA: METODOLOGIA DA PESQUISA CIENTÍFICA Prof. Dra. Renata Cristina da Penha França E-mail: renataagropec@yahoo.com.br -Recife- 2015 MÉTODO Método, palavra que vem do

Leia mais

Lógica e Metodologia Jurídica

Lógica e Metodologia Jurídica Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão julianomaranhao@gmail.com Puzzle 2 pessoas A e B fazem uma oferta um ao outro. O problema é identificar

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 2: Sintaxe da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,

Leia mais

Lógica Proposicional

Lógica Proposicional Lógica Proposicional Lógica Computacional Carlos Bacelar Almeida Departmento de Informática Universidade do Minho 2007/2008 Carlos Bacelar Almeida, DIUM LÓGICA PROPOSICIONAL- LÓGICA COMPUTACIONAL 1/28

Leia mais

Nível 1 (equivalência ao 1º ciclo do Ensino Básico)

Nível 1 (equivalência ao 1º ciclo do Ensino Básico) MATEMÁTICA PARA VIDA Nível 1 (equivalência ao 1º ciclo do Ensino Básico) Interpretar, organizar, analisar e comunicar informação utilizando processos e procedimentos matemáticos. MV 1 A Usar a matemática

Leia mais

11/01/2016 LÓGICA MATEMÁTICA. O homem pensa, possui o dom da palavra, é um animal racional, e é isto que o distingue dos outros animais.

11/01/2016 LÓGICA MATEMÁTICA. O homem pensa, possui o dom da palavra, é um animal racional, e é isto que o distingue dos outros animais. LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi fabianotaguchi@gmail.com http://fabianotaguchi.wordpress.com LÓGICA O homem pensa, possui o dom da palavra, é um animal racional, e é isto que o distingue dos

Leia mais

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior Lógica Formal Matemática Discreta Prof. Vilson Heck Junior vilson.junior@ifsc.edu.br Objetivos Utilizar símbolos da lógica proposicional; Encontrar o valor lógico de uma expressão em lógica proposicional;

Leia mais

Argumentação e lógica formal. O que é e para que serve a lógica

Argumentação e lógica formal. O que é e para que serve a lógica Argumentação e lógica formal O que é e para que serve a lógica Para resolver este exercício tivemos que: Pensar, raciocinar, isto é, a partir de certas evidências concluir outras. Para mostrar aos colegas

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL FACULDADE PITÁGORAS Curso Superior em Tecnologia Redes de Computadores e Banco de dados Matemática Computacional Prof. Ulisses Cotta Cavalca LÓGICA PROPOSICIONAL Belo Horizonte/MG

Leia mais

Exercícios de lógica -sensibilização

Exercícios de lógica -sensibilização Exercícios de lógica -sensibilização 1. Lógica matemática: Qual a lógica da seqüência dos números e quem é x? 2,4,4,6,5,4,4,4,4,x? 2. Charadas: lógica filosófica. Um homem olhava uma foto, e alguém lhe

Leia mais

Demonstrações. Terminologia Métodos

Demonstrações. Terminologia Métodos Demonstrações Terminologia Métodos Técnicas de Demonstração Uma demonstração é um argumento válido que estabelece a verdade de uma sentença matemática. Técnicas de Demonstração Demonstrações servem para:

Leia mais

MINISTÉRIO DA EDUCAÇÃO

MINISTÉRIO DA EDUCAÇÃO MINISTÉRIO DA EDUCAÇÃO E.S.A.B. ESCOLA SECUNDÁRIA DE AVELAR BROTERO Filosofia 11º Ano Duração: 135m Ano letivo: 2015/2016 Matriz da Prova de Avaliação Sumativa Interna na Modalidade de Frequência não Presencial

Leia mais

FRENTE : B PÁGINA : 6 EXERCÍCIO : SALA 2

FRENTE : B PÁGINA : 6 EXERCÍCIO : SALA 2 FRENTE : B PÁGINA : 6 EXERCÍCIO : SALA 1 a) (V) b) ( ) Não é proposição. c) (F) d) ( ) Não é proposição. e) (V) f) ( ) Não é proposição. g) ( ) Não é uma proposição e sim uma sentença aberta, pois depende

Leia mais

Conceitos Básicos. LEIC 2 o Semestre, Ano Lectivo 2012/13. c Inês Lynce

Conceitos Básicos. LEIC 2 o Semestre, Ano Lectivo 2012/13. c Inês Lynce Capítulo 1 Conceitos Básicos Lógica para Programação LEIC 2 o Semestre, Ano Lectivo 2012/13 c Inês Lynce Bibliografia Martins J.P., Lógica para Programação, Capítulo 1. Ben-Ari M., Mathematical Logic for

Leia mais

Lógica e Matemática Discreta

Lógica e Matemática Discreta Lógica e Matemática Discreta Proposições Prof clezio 26 de Abril de 2017 Curso de Ciência da Computação Inferência Lógica Uma inferência lógica, ou, simplesmente uma inferência, é uma tautologia da forma

Leia mais

Epistemologia da argumentação Desidério Murcho 1

Epistemologia da argumentação Desidério Murcho 1 253 Epistemologia da argumentação Desidério Murcho 1 É sabido que nem todos os argumentos válidos (dedutivos ou não) têm conclusões verdadeiras: os argumentos válidos com premissas falsas poderão ter conclusões

Leia mais

Lógica Matemática UNIDADE II. Professora: M. Sc. Juciara do Nascimento César

Lógica Matemática UNIDADE II. Professora: M. Sc. Juciara do Nascimento César Lógica Matemática UNIDADE II Professora: M. Sc. Juciara do Nascimento César 1 1 - Álgebra das Proposições 1.1 Propriedade da Conjunção Sejam p, q e r proposições simples quaisquer e sejam t e c proposições

Leia mais

Lógica de Predicados. Correção dos Exercícios Regras de Inferência

Lógica de Predicados. Correção dos Exercícios Regras de Inferência Lógica de Predicados Correção dos Exercícios Regras de Inferência O que foi visto até agora... Predicado Proposição Quantificadores Conjuntos Quantificadores com restrição Operações Lógicas com predicados

Leia mais

Expressões e enunciados

Expressões e enunciados Lógica para Ciência da Computação I Lógica Matemática Texto 2 Expressões e enunciados Sumário 1 Expressões e enunciados 2 1.1 Observações................................ 2 1.2 Exercício resolvido............................

Leia mais

Fórmulas da lógica proposicional

Fórmulas da lógica proposicional Fórmulas da lógica proposicional As variáveis proposicionais p, q, são fórmulas (V P rop ) é fórmula (falso) α e β são fórmulas, então são fórmulas (α β), (α β), (α β) e ( α) DCC-FCUP -TAI -Sistemas Dedutivos

Leia mais

COLÉGIO SHALOM ENSINO MEDIO 1 ANO - filosofia. Profº: TONHÃO Disciplina: FILOSOFIA Aluno (a):. No.

COLÉGIO SHALOM ENSINO MEDIO 1 ANO - filosofia. Profº: TONHÃO Disciplina: FILOSOFIA Aluno (a):. No. COLÉGIO SHALOM ENSINO MEDIO 1 ANO - filosofia 65 Profº: TONHÃO Disciplina: FILOSOFIA Aluno (a):. No. ROTEIRO DE RECUERAÇÃO ANUAL 2016 Data: / / FILOSOFIA 1º Ano do Ensino Médio 1º. O recuperando deverá

Leia mais

Ciências da Linguagem e da Cognição

Ciências da Linguagem e da Cognição Ciências da Linguagem e da Cognição Raciocínio. Silogismos condicionais e regras de inferência. Desempenho dos humanos. Interpretações. Modelo BDI. As apresentações power-point resultam de contribuições

Leia mais

Curso Científico-Humanístico de Ciências e Tecnologias Filosofia - 11º A

Curso Científico-Humanístico de Ciências e Tecnologias Filosofia - 11º A Curso Científico-Humanístico de Ciências e Tecnologias 2011-2012 Filosofia - 11º A Silogismo 12/10/11 Silogismo categórico Premissa maior Todo o gato é mamífero Premissa menor Os siameses são gatos Conclusão

Leia mais

Lógica de Programação

Lógica de Programação Lógica de Programação Universidade dos Açores Departamento de Matemática www.uac.pt/~hguerra!! do Gr. logiké, arte de raciocinar!! s. f., ciência que tem por objecto o estudo dos métodos e princípios que

Leia mais

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par. Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um

Leia mais

CIÊNCIA, TECNOLOGIA E SOCIEDADE. O que é Ciência?

CIÊNCIA, TECNOLOGIA E SOCIEDADE. O que é Ciência? CIÊNCIA, TECNOLOGIA E SOCIEDADE O que é Ciência? O QUE É CIÊNCIA? 1 Conhecimento sistematizado como campo de estudo. 2 Observação e classificação dos fatos inerentes a um determinado grupo de fenômenos

Leia mais

Argumento, persuasão e explicação

Argumento, persuasão e explicação criticanarede.com ISSN 1749 8457 26 de Agosto de 2003 Lógica e argumentação Argumento, persuasão e explicação Desidério Murcho Este artigo procura esclarecer dois aspectos relacionados e subtis da noção

Leia mais

FILOSOFIA 11º ano O CONHECIMENTO E A RACIONALIDADE CIENTÍFICA E TECNOLÓGICA

FILOSOFIA 11º ano O CONHECIMENTO E A RACIONALIDADE CIENTÍFICA E TECNOLÓGICA FILOSOFIA 11º ano O CONHECIMENTO E A RACIONALIDADE CIENTÍFICA E TECNOLÓGICA Governo da República Portuguesa Descrição e interpretação da atividade cognoscitiva 1.1 Estrutura do ato de conhecer 1.2 Análise

Leia mais

Lógica informal Principais tipos de argumentos informais

Lógica informal Principais tipos de argumentos informais Lógica informal Principais tipos de argumentos informais Quais são os principais argumentos não dedutivos? Existem critérios para estabelecer a sua força? Apontaremos aqui alguns exemplos de argumentos

Leia mais

Lógica: Quadrado lógico:

Lógica: Quadrado lógico: Lógica: 1. Silogismo aristotélico: Podemos encara um conceito de dois pontos de vista: Extensão a extensão é um conjunto de objectos que o conceito considerado pode designar ou aos quais ele se pode aplicar

Leia mais

Programa de Matemática 1.º ano

Programa de Matemática 1.º ano Programa de Matemática 1.º ano Introdução A Matemática é uma das ciências mais antigas e é igualmente das mais antigas disciplinas escolares, tendo sempre ocupado, ao longo dos tempos, um lugar de relevo

Leia mais

Algoritmia e Programação APROG. Algoritmia 1. Lógica Proposicional (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12

Algoritmia e Programação APROG. Algoritmia 1. Lógica Proposicional (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12 APROG Algoritmia e Programação Algoritmia 1 Lógica (Noções Básicas) Nelson Freire (ISEP DEI-APROG 2013/14) 1/12 Sumário Lógica Qual é o interesse para a algoritmia? O que é? Cálculo (Noções Básicas) Operações

Leia mais

Uma proposição composta é uma contradição, se for sempre falsa, independentemente do valor lógico das proposições simples que a compõem.

Uma proposição composta é uma contradição, se for sempre falsa, independentemente do valor lógico das proposições simples que a compõem. Tautologia Uma proposição composta é uma tautologia, se for sempre verdadeira, independentemente do valor lógico das proposições simples que a compõem. Exemplos: Contradição Uma proposição composta é uma

Leia mais

Matemática Discreta - 04

Matemática Discreta - 04 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 04 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo

Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo Lógica Proposicional Prof. Dr. Silvio do Lago Pereira Departamento de Tecnologia da Informação aculdade de Tecnologia de São Paulo Motivação IA IA estuda estuda como como simular simular comportamento

Leia mais

Introdução à Lógica de Predicados

Introdução à Lógica de Predicados Introdução à Lógica de Predicados Matemática Discreta I Rodrigo Ribeiro Departamento de Ciências Exatas e Aplicadas Universidade de Federal de Ouro Preto 10 de dezembro de 2012 Motivação (I) Considere

Leia mais

REVISÃO DE ESTUDO 28/01/2016 LÓGICA MATEMÁTICA REVISÃO. 01 Na lista de frases apresentadas a seguir, há três proposições? Se sim, apresente-as.

REVISÃO DE ESTUDO 28/01/2016 LÓGICA MATEMÁTICA REVISÃO. 01 Na lista de frases apresentadas a seguir, há três proposições? Se sim, apresente-as. LÓGICA MATEMÁTICA Prof. Esp. Fabiano Taguchi fabianotaguchi@gmail.com http://fabianotaguchi.wordpress.com REVISÃO DE ESTUDO REVISÃO 01 Na lista de frases apresentadas a seguir, há três proposições? Se

Leia mais

IBGE- RACIOCÍNIO LÓGICO & MATEMÁTICA. Josimar Padilha

IBGE- RACIOCÍNIO LÓGICO & MATEMÁTICA. Josimar Padilha IBGE- RACIOCÍNIO LÓGICO & MATEMÁTICA Josimar Padilha 01- Ano: 2016 Banca: FGV João olhou as dez bolas que havia em um saco e afirmou: Todas as bolas desse saco são pretas". Sabe-se que a afirmativa de

Leia mais

Método Científico O Positivismo II. Método Científico O Positivismo - I. Método Científico O Positivismo. Raciocínios Indutivo e Dedutivo.

Método Científico O Positivismo II. Método Científico O Positivismo - I. Método Científico O Positivismo. Raciocínios Indutivo e Dedutivo. Método Científico O Positivismo - I A EXPERIÊNCIA É A FONTE DE TODO O CONHECIMENTO NÃO É POSSÍVEL GERAR CONHECIMENTO SINTÉTICO A PRIORI INUTILIDADE DA METAFÍSICA Método Científico O Positivismo II Francis

Leia mais

Método de indução. José Carlos Santos

Método de indução. José Carlos Santos Método de indução José Carlos Santos O termo «indução» tem origem na Filosofia. A entrada do Dicionário de Filosofia de Simon Blackburn que lhe diz respeito começa do seguinte modo: Indução Termo usado

Leia mais

PROVA TESTE ANPAD - RL EDIÇÃO FEVEREIRO O próximo número da seqüência 11, 33, 97, 2715 é A) B) C) D) E) 9230.

PROVA TESTE ANPAD - RL EDIÇÃO FEVEREIRO O próximo número da seqüência 11, 33, 97, 2715 é A) B) C) D) E) 9230. PROVA TESTE ANPAD - RL EDIÇÃO FEVEREIRO 2008 1. O próximo número da seqüência 11, 33, 97, 2715 é A) 5430. B) 7116. C) 7251. D) 8131. E) 9230. 2. Em uma festa estão expostas 4 jarras com cores distintas

Leia mais

n. 18 ALGUNS TERMOS...

n. 18 ALGUNS TERMOS... n. 18 ALGUNS TERMOS... DEFINIÇÃO Uma Definição é um enunciado que descreve o significado de um termo. Por exemplo, a definição de linha, segundo Euclides: Linha é o que tem comprimento e não tem largura.

Leia mais

Prof. Jorge Cavalcanti

Prof. Jorge Cavalcanti Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Atividades 1 - Matemática Discreta /02

Atividades 1 - Matemática Discreta /02 Atividades 1 - Matemática Discreta - 2014/02 1. Descreva cada um dos conjuntos a seguir, listando seus elementos: (a) P = {x R x 2 x 2 = 0}; (b) Q = {x x é uma letra na palavra amor }; (c) R = {x Z x 2

Leia mais

3. CAPÍTULO LÓGICAS DIGITAIS

3. CAPÍTULO LÓGICAS DIGITAIS 3. CAPÍTULO LÓGICAS DIGITAIS 3.1. Introdução A Lógica é um conjunto de regras para raciocínio sobre um determinado assunto, ela é muito utilizada no ramo da Filosofia e da Matemática. 3.2. Portas lógicas

Leia mais

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG

Matemática Discreta. Lógica Proposicional. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG Matemática Discreta Lógica Proposicional Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Tautologias Tautologia é uma fórmula proposicional que é verdadeira para todos os possíveis valores-verdade

Leia mais

AGRUPAMENTO DE ESCOLAS DE RIO DE MOURO EXERCÍCIOS DE LÓGICA - INSTRUÇÕES GERAIS

AGRUPAMENTO DE ESCOLAS DE RIO DE MOURO EXERCÍCIOS DE LÓGICA - INSTRUÇÕES GERAIS EXERCÍCIOS DE LÓGICA - INSTRUÇÕES GERAIS Caro aluno, Vai encontrar aqui um conjunto de exercícios de lógica cujo objetivo é facilitar-lhe o estudo autónomo. Estes exercícios irão estar disponíveis num

Leia mais

CAP4. ELEMENTOS DA TEORIA DE GRAFOS. Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E) , sendo:

CAP4. ELEMENTOS DA TEORIA DE GRAFOS. Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E) , sendo: Matemática Discreta ESTiG\IPB Cap4. Elementos da Teoria de Grafos pg 1 CAP4. ELEMENTOS DA TEORIA DE GRAFOS Grafo [graph]. Estrutura que consiste num par ordenado de conjuntos, G ( V, E), sendo: Exemplos

Leia mais

A METAFÍSICA E A TEORIA DAS QUATRO CAUSAS

A METAFÍSICA E A TEORIA DAS QUATRO CAUSAS A METAFÍSICA E A TEORIA DAS QUATRO CAUSAS O que é a metafísica? É a investigação das causas primeiras de todas as coisas existentes e estuda o ser enquanto ser. É a ciência que serve de fundamento para

Leia mais

Unidade II LÓGICA. Profa. Adriane Paulieli Colossetti

Unidade II LÓGICA. Profa. Adriane Paulieli Colossetti Unidade II LÓGICA Profa. Adriane Paulieli Colossetti Relações de implicação e equivalência Implicação lógica Dadas as proposições compostas p e q, diz-se que ocorre uma implicação lógica entre p e q quando

Leia mais

Lógica e Raciocínio. Introdução. Universidade da Madeira.

Lógica e Raciocínio. Introdução. Universidade da Madeira. Lógica e Raciocínio Universidade da Madeira http://dme.uma.pt/edu/ler/ Introdução 1 Lógica... é a ciência que estuda os princípios e aproximações para estabelecer a validez da inferência e demonstração:

Leia mais

Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO

Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO Inteligência Artificial IA Prof. João Luís Garcia Rosa II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO 2004 Representação do conhecimento Para representar o conhecimento do mundo que um sistema

Leia mais

Silogismos Categóricos e Hipotéticos

Silogismos Categóricos e Hipotéticos Silogismos Categóricos e Hipotéticos Resumo elaborado por Francisco Cubal Apenas para publicação em Resumos.tk Primeiros objectivos a alcançar: Reconhecer os quatro tipos de proposições categóricas. Enunciar

Leia mais

LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014

LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 1) Determinar o valor verdade da proposição (p q) r, sabendo-se que AL (p) =, AL (q) = e AL (r) =. Proposições são afirmações que podem ser julgadas como verdadeira

Leia mais

IME, UFF 4 de novembro de 2013

IME, UFF 4 de novembro de 2013 Lógica IME, UFF 4 de novembro de 2013 Sumário e ferramentas Considere o seguinte texto, da aritmética dos números naturais. Teorema: Todo número inteiro positivo maior que 1 tem um fator primo. Prova:

Leia mais

Inteligência Artificial

Inteligência Artificial Universidade Federal de Campina Grande Unidade Acadêmica de Sistemas e Computação Curso de Pós-Graduação em Ciência da Computação Inteligência Artificial Representação do Conhecimento (Parte I) Prof. a

Leia mais

RL Edição Fevereiro 2014

RL Edição Fevereiro 2014 RL Edição Fevereiro 2014 01. Sejam dados dois conjuntos não vazios, A, B, e sejam A e B seus respectivos conjuntos complementares no conjunto Universo considerado. Se um elemento x é tal que x A B, então

Leia mais

Tópicos de Matemática. Teoria elementar de conjuntos

Tópicos de Matemática. Teoria elementar de conjuntos Tópicos de Matemática Lic. em Ciências da Computação Teoria elementar de conjuntos Carla Mendes Dep. Matemática e Aplicações Universidade do Minho 2010/2011 Tóp. de Matemática - LCC - 2010/2011 Dep. Matemática

Leia mais

1 TEORIA DOS CONJUNTOS

1 TEORIA DOS CONJUNTOS 1 TEORIA DOS CONJUNTOS Definição de Conjunto: um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada. Em outras palavras,

Leia mais

LÓGICA APLICADA A COMPUTAÇÃO

LÓGICA APLICADA A COMPUTAÇÃO LÓGICA APLICADA A COMPUTAÇÃO 2009.3 Aquiles Burlamaqui Conteúdo Programático Unidade I Linguagens Formais Linguagens Formais Sigma Álgebras Relação entre Linguagens Formais e Sigma Álgebras Sigma Domínios

Leia mais

FICHA DE TRABALHO N.º 1 MATEMÁTICA A - 10.º ANO INTRODUÇÃO À LÓGICA BIVALENTE

FICHA DE TRABALHO N.º 1 MATEMÁTICA A - 10.º ANO INTRODUÇÃO À LÓGICA BIVALENTE FICHA DE TRABALHO N.º 1 MATEMÁTICA A - 10.º ANO INTRODUÇÃO À LÓGICA BIVALENTE Conhece a Matemática e dominarás o Mundo. Galileu Galilei GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Sejam p e q duas proposições

Leia mais