O que é o conhecimento?

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "O que é o conhecimento?"

Transcrição

1 Disciplina: Filosofia Ano: 11º Ano letivo: 2012/2013 O que é o conhecimento? Texto de Apoio 1. Tipos de Conhecimento No quotidiano falamos de conhecimento, de crenças que estão fortemente apoiadas por dados, e dizemos que elas têm justificação ou que estão bem fundamentadas. A epistemologia é a parte da filosofia que tenta entender estes conceitos. Os epistemólogos tentam avaliar a ideia, própria do senso comum, de que possuímos realmente conhecimento. Alguns filósofos tentaram apoiar com argumentos esta ideia do senso comum. Outros fizeram o contrário. Os filósofos que defendem que não temos conhecimento, ou que as nossas crenças não têm justificação racional, estão a defender uma versão de ceticismo filosófico. Antes de discutirmos se temos ou não conhecimento, temos de tornar claro o que é o conhecimento. Podemos falar de conhecimento em três sentidos diferentes, mas apenas um nos vai interessar. Considerem-se as seguintes afirmações acerca de um sujeito, ao qual chamarei S: 1. S sabe andar de bicicleta. 2. S conhece o Presidente dos EUA. 3. S sabe que a Serra da Estrela fica em Portugal. Chamo conhecimento proposicional ao tipo de conhecimento apresentado em 3. Note-se que o objeto do verbo em 3 é uma proposição uma coisa que é verdadeira ou falsa. Existe uma proposição a Serra da Estrela fica em Portugal e S sabe que essa proposição é verdadeira. As frases 1 e 2 não têm esta estrutura. O objeto do verbo em 2 não é uma proposição, mas uma pessoa. O mesmo aconteceria se disséssemos que S conhece Lisboa. Uma frase como 2 diz que S está ou esteve na presença de uma pessoa, de um lugar ou de uma coisa. Por isso dizemos que 2 corresponde a um caso de conhecimento por contacto. Existe alguma ligação entre estes dois tipos de conhecimento? Possivelmente, para que S conheça o Presidente dos Estados Unidos, terá de ter conhecimento proposicional acerca dele. Mas qual? Para que S conheça o Presidente terá de saber em que Estado ele nasceu? Isso não parece essencial. E o mesmo parece acontecer relativamente a todos os outros factos acerca dele: não parece haver qualquer proposição específica que seja

2 necessário saber para se possa dizer que se conhece o Presidente. Conhecer uma pessoa implica, isso sim, ter um tipo qualquer de contacto direto com ela. Chamemos ao tipo de conhecimento exemplificado em 1 conhecimento de aptidões. Que significa dizer que se sabe fazer alguma coisa? Penso que isto tem pouco a ver com o conhecimento proposicional. Uma pessoa pode saber andar de bicicleta aos cinco anos, e para isso não precisa de saber qualquer proposição acerca desse facto. O contrário também pode acontecer: uma pessoa pode ter muito conhecimento proposicional acerca de um assunto de pintura, por exemplo, e não ter qualquer conhecimento de aptidões a esse respeito. Vamos aqui abordar apenas o conhecimento proposicional. Queremos saber o que é necessário para que um indivíduo S saiba que p, sendo p uma proposição qualquer como a de que a Serra da Estrela fica em Portugal. Daqui em diante, quando falarmos de conhecimento, estaremos sempre a referir-nos ao conhecimento proposicional. 2. Condições Necessárias e Suficientes Consideremos a definição de solteiro: Para qualquer S, S é solteiro se e somente se: 1) S é um adulto, 2) S é homem, 3) S não é casado. Não digo que esta definição capta com precisão o que «solteiro» significa em português comum. Usamos apenas esta definição como um exemplo de uma proposta de definição. Uma definição é uma generalização. Diz respeito a qualquer indivíduo que queiramos considerar. Nesta definição fazemos duas afirmações: a primeira é a de que SE um indivíduo tem as características 1, 2 e 3, então é solteiro. Por outras palavras, 1, 2 e 3 são, em conjunto, suficientes para que se seja solteiro. A segunda afirmação é a de que SE um indivíduo é solteiro, então tem as três características. Por outras palavras, 1, 2 e 3 são, cada uma delas, condições necessárias para se ser solteiro. Uma boa definição especifica as condições suficientes e necessárias para o conceito que queremos definir. Isto significa que existem dois tipos de erros que podem ocorrer numa definição: as definições podem ser demasiado abrangentes ou demasiado restritivas. 3. Dois Requisitos para o Conhecimento: Crença e Verdade Devemos fazer notar duas ideias que fazem parte do conceito de conhecimento. Primeiro, se S sabe que p (que uma proposição é verdadeira), então tem de acreditar que p. Segundo, se S sabe que p, então p tem de ser verdadeira. O conhecimento requer tanto a crença quanto a verdade. Comecemos pela segunda ideia. As pessoas às vezes dizem que sabem

3 coisas que mais tarde se revelam falsas. Mas isto não é saber coisas que são falsas, é pensar que se sabem coisas que, de facto, são falsas. O conhecimento tem um lado subjetivo e um lado objetivo. Um facto é objetivo se a sua verdade não depende de como é a mente das pessoas. É um facto objetivo que a Serra da Estrela está metros acima do nível do mar. Um facto é subjetivo se não é objetivo. O exemplo mais óbvio de um facto subjetivo é uma descrição do que acontece na mente de alguém. Se uma pessoa acredita ou não que a Serra da Estrela está a metros acima do nível do mar é uma questão subjetiva, mas se a montanha tem realmente essa propriedade é uma questão objetiva. O conhecimento requer tanto um elemento subjetivo como um elemento objetivo. Para que S conheça p, p tem de ser verdadeira e o sujeito, S, tem de acreditar que p é verdadeira. 4. Terceiro Requisito: Justificação Apontei duas condições necessárias para o conhecimento: o conhecimento requer crença e requer verdade. Mas será que isto é suficiente? Será que estas duas condições não são apenas separadamente necessárias, mas também conjuntamente suficientes? É a crença verdadeira suficiente para o conhecimento? Pensemos num indivíduo, Clyde, que acredita na história do Dia do Porco do Campo. Clyde pensa que se o Porco do Campo vir a sua própria sombra, a Primavera virá mais tarde. Suponha-se que Clyde põe este princípio idiota em prática este ano. Ele tem informações que o fazem pensar que a Primavera virá mais tarde. Suponha-se que Clyde acaba por ter razão acerca deste facto. Se não existir nenhuma conexão lógica entre o facto de o porco do campo ter visto a sua própria sombra e o facto de a Primavera vir mais tarde, então Clayde terá uma crença verdadeira (a Primavera virá tarde), mas não terá conhecimento. Que será então necessário, para além da crença verdadeira, para que alguém possua conhecimento? A sugestão mais natural é a de que o conhecimento requer dados de apoio, ou uma justificação racional. Note-se que ter uma justificação não é apenas pensar que se tem uma razão para acreditar em algo. Que significa dizer que um indivíduo tem uma crença «justificada» na proposição p? Uma justificação pode ter a forma de um argumento dedutivo, de um argumento indutivo ou de um argumento abdutivo. Talvez existam outras opções além destas três. Mas, o que quer que seja que entendemos por «justificação», parece plausível dizer que as crenças que são defendidas irracionalmente não são casos de conhecimento (mesmo que elas sejam verdadeiras).

4 5. A Teoria CVJ Suponhamos que o conhecimento requer estas três condições. Será que isto é suficiente? Será que estas condições não são apenas separadamente necessárias, mas também conjuntamente suficientes? Chamarei CVJ à teoria que afirma que assim é. Esta teoria diz que ter conhecimento é a mesma coisa que ter crenças verdadeiras justificadas: (CVJ) Para que qualquer indivíduo S e para qualquer proposição p, S conhece p se e somente se 1) S acredita em p 2) p é verdadeira 3) a crença de S em p está justificada A Teoria CVJ afirma uma generalização. Diz o que é o conhecimento para qualquer pessoa e para qualquer proposição p. Por exemplo, suponhamos que S és tu e que p = «A Lua é feita de queijo verde». A teoria CVJ diz o seguinte: se sabes que a Lua é feita de queijo verde, então os enunciados 1, 2 e 3 devem ser verdadeiros. E se não sabes que a Lua é feita de queijo verde, então pelo menos um dos enunciados de 1 a 3 deve ser falso. Tal como na definição de solteiro discutida antes, a expressão «se, e somente se» diz-nos que são dadas condições necessárias e suficientes para o conceito definido. 6. Três Contraexemplos à Teoria CVJ Em 1963, o filósofo Edmund Gettier publicou dois contraexemplos para a teoria CVJ. O que é um contraexemplo? É um exemplo que contradiz o que diz uma teoria geral. Um contraexemplo contra uma generalização mostra que a generalização é falsa. A teoria CVJ diz que todos os casos de crença verdadeira justificada são casos de conhecimento. Gettier pensa que estes dois exemplos mostram que um indivíduo pode ter uma crença verdadeira justificada mas não ter conhecimento. Se Gettier tiver razão, então as três condições indicadas pela teoria CVJ não são suficientes. Eis um dos exemplos de Gettier. Smith trabalha num escritório. Ele sabe que alguém será promovido em breve. O patrão, que é uma pessoa em quem se pode confiar, diz a Smith que Jones será promovido. Smith acabou de contar as moedas no bolso de Jones, encontrando aí 10 moedas. Smith tem então boas informações para acreditar na seguinte proposição: a) Jones será promovido e Jones tem 10 moedas no bolso. Smith deduz, então, deste enunciado o seguinte: b) O homem que será promovido tem 10 moedas no bolso. Suponha-se agora que Jones não receberá a promoção, embora Smith não o saiba. Em vez disso, será o próprio Smith a ser promovido. E suponha-se que Smith também tem dez moedas dentro do bolso. Smith acredita em b, e b é verdadeira. Gettier afirma também que

5 Smith acredita justificadamente em b, dado que a deduziu de a. Apesar de a ser falsa, Smith tem excelentes razões para pensar que é verdadeira. Gettier conclui que Smith tem uma crença verdadeira justificada em b, mas que Smith não sabe que b é verdadeira. O outro exemplo de Gettier exibe o mesmo padrão. Um sujeito deduz validamente uma proposição verdadeira a partir de uma proposição que está muito bem apoiada por informações, embora esta seja falsa, apesar de o sujeito não o saber. Quero agora descrever um tipo de contraexemplo à teoria CVJ na qual o sujeito raciocina não dedutivamente. O filósofo e matemático britânico Bertrand Russell ( ) refere um relógio muito fiável que está numa praça. Esta manhã olhas para ele para saber que horas são. Como resultado ficas a saber que são Tens justificações para acreditar nisso, baseado na suposição correta de que o relógio tem sido muito fiável no passado. Mas supõe que o relógio parou há exatamente 24 horas, apesar de tu não o saberes. Tens a crença verdadeira justificada de que são 9.55, mas não sabes que esta é a hora correta. 7. Que têm os Contraexemplos em Comum? Em todos estes casos, o sujeito tem dados para acreditar na proposição em causa que são altamente credíveis, mas não infalíveis. O patrão está geralmente certo sobre quem vai ser promovido, o relógio está geralmente certo quanto às horas. Mas é claro que geralmente não é sempre. As fontes da informação que os sujeitos exploraram nestes exemplos são altamente credíveis, mas não são perfeitamente credíveis. Todas as fontes de informação eram susceptíveis de erro, pelo menos até certo ponto. Será que estes exemplos refutam realmente a teoria CVJ? Depende de como entendemos a ideia de justificação. Se dados altamente credíveis são suficientes para justificar uma crença, então estes contraexemplos refutam realmente a teoria CVJ. Mas se a justificação requer dados perfeitamente infalíveis, então estes exemplos não refutam a teoria. A minha opinião é de que os dados que justificam uma crença não precisam de ser infalíveis. Penso que podemos ter crenças racionais bem apoiadas mesmo quando não nos empenhamos em estar absolutamente certos de que o que acreditamos é verdadeiro. Assim, concluo que a crença verdadeira justificada não é suficiente para o conhecimento. Elliott Sober Core Questions in Philosophy, Prentice Hall, 2000 Tradução de Paula Mateus

FILOSOFIA 11º ano O CONHECIMENTO E A RACIONALIDADE CIENTÍFICA E TECNOLÓGICA

FILOSOFIA 11º ano O CONHECIMENTO E A RACIONALIDADE CIENTÍFICA E TECNOLÓGICA FILOSOFIA 11º ano O CONHECIMENTO E A RACIONALIDADE CIENTÍFICA E TECNOLÓGICA Governo da República Portuguesa Descrição e interpretação da atividade cognoscitiva 1.1 Estrutura do ato de conhecer 1.2 Análise

Leia mais

Construindo uma tese científica: pesquisa e argumentação

Construindo uma tese científica: pesquisa e argumentação 1 1. Artigo Tema: Ensino de argumentação filosófica Construindo uma tese científica: pesquisa e argumentação Gabriel Goldmeier Conhecimento: crença verdadeira corretamente justificada A Teoria do Conhecimento

Leia mais

Indução e filosofia da ciência 1

Indução e filosofia da ciência 1 O equilíbrio dos indícios Indução e filosofia da ciência 1 Stephen Law Algumas das questões mais centrais e importantes colocadas por filósofos da ciência dizem respeito ao problema da confirmação. Os

Leia mais

Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido.

Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido. Matemática Discreta ESTiG\IPB 2011.12 Cap1 Lógica pg 1 I- Lógica Informal Afirmação verdadeira: frase, falada ou escrita, que declara um facto que é aceite no momento em que é ouvido ou lido. Afirmação

Leia mais

Exemplos de frases e expressões que não são proposições:

Exemplos de frases e expressões que não são proposições: Matemática Discreta ESTiG\IPB Lógica: Argumentos pg 1 Lógica: ramo da Filosofia que nos permite distinguir bons de maus argumentos, com o objectivo de produzirmos conclusões verdadeiras a partir de crenças

Leia mais

Lógica Proposicional. 1- O que é o Modus Ponens?

Lógica Proposicional. 1- O que é o Modus Ponens? 1- O que é o Modus Ponens? Lógica Proposicional R: é uma forma de inferência válida a partir de duas premissas, na qual se se afirma o antecedente do condicional da 1ª premissa, pode-se concluir o seu

Leia mais

Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade

Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade Resumo de Filosofia Capítulo I Argumentação e Lógica Formal Validade e Verdade O que é um argumento? Um argumento é um conjunto de proposições em que se pretende justificar ou defender uma delas, a conclusão,

Leia mais

INDUÇÃO ULTRAFORTE: EPISTEMOLOGIA DO SUBJETIVO

INDUÇÃO ULTRAFORTE: EPISTEMOLOGIA DO SUBJETIVO INDUÇÃO ULTRAFORTE: EPISTEMOLOGIA DO SUBJETIVO Felipe Sobreira Abrahão Doutorando, HCTE UFRJ E-mail: felipesabrahao@gmail.com 1. INTRODUÇÃO A problemática do raciocínio indutivo é abordada pelos pensadores

Leia mais

Indiscernibilidade de Idênticos. Atitudes Proposicionais e indiscernibilidade de idênticos

Indiscernibilidade de Idênticos. Atitudes Proposicionais e indiscernibilidade de idênticos Indiscernibilidade de Idênticos Atitudes Proposicionais e indiscernibilidade de Consideremos agora o caso das atitudes proposicionais, das construções epistémicas e psicológicas, e perguntemo-nos se é

Leia mais

ÍNDICE. Bibliografia CRES-FIL11 Ideias de Ler

ÍNDICE. Bibliografia CRES-FIL11 Ideias de Ler ÍNDICE 1. Introdução... 5 2. Competências essenciais do aluno... 6 3. Como ler um texto... 7 4. Como ler uma pergunta... 8 5. Como fazer um trabalho... 9 6. Conteúdos/Temas 11.º Ano... 11 III Racionalidade

Leia mais

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO. Duração da Prova: 120 minutos. Tolerância: 30 minutos.

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO. Duração da Prova: 120 minutos. Tolerância: 30 minutos. EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Filosofia 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 714/2.ª Fase 8 Páginas Duração da Prova: 120 minutos. Tolerância:

Leia mais

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO. Duração da Prova: 120 minutos. Tolerância: 30 minutos.

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO. Duração da Prova: 120 minutos. Tolerância: 30 minutos. EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Filosofia 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 714/2.ª Fase 8 Páginas Duração da Prova: 120 minutos. Tolerância:

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos Técnicas de Prova Profa. Sheila Morais de Almeida DAINF-UTFPR-PG julho - 2015 Técnicas de Prova Definição Uma prova é um argumento válido que mostra a veracidade de um enunciado matemático.

Leia mais

Expressões e enunciados

Expressões e enunciados Lógica para Ciência da Computação I Lógica Matemática Texto 2 Expressões e enunciados Sumário 1 Expressões e enunciados 2 1.1 Observações................................ 2 1.2 Exercício resolvido............................

Leia mais

DESCRIÇÃO E INTERPRETAÇÃO DA ACTIVIDADE COGNITIVA

DESCRIÇÃO E INTERPRETAÇÃO DA ACTIVIDADE COGNITIVA 110-136 2008.02.11 2 22:49 Página 110 DESCRIÇÃO E INTERPRETAÇÃO DA ACTIVIDADE COGNITIVA Capítulo 5. Estrutura do acto de conhecer, 111 Capítulo 6. A possibilidade do conhecimento, 137 Van Gogh a Pintar

Leia mais

Parece ter premissas verdadeiras mas não tem. Parece ter premissas mais plausíveis do que a conclusão mas não tem.

Parece ter premissas verdadeiras mas não tem. Parece ter premissas mais plausíveis do que a conclusão mas não tem. Uma falácia é um argumento que parece cogente mas não é. Pode ser falacioso por três razões: Parece válido mas não é. Parece ter premissas verdadeiras mas não tem. Parece ter premissas mais plausíveis

Leia mais

Lógica Proposicional Parte 2

Lógica Proposicional Parte 2 Lógica Proposicional Parte 2 Como vimos na aula passada, podemos usar os operadores lógicos para combinar afirmações criando, assim, novas afirmações. Com o que vimos, já podemos combinar afirmações conhecidas

Leia mais

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO. Duração da Prova: 120 minutos. Tolerância: 30 minutos.

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO. Duração da Prova: 120 minutos. Tolerância: 30 minutos. EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Filosofia 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 714/2.ª Fase 7 Páginas Duração da Prova: 120 minutos. Tolerância:

Leia mais

Versão 1. Utilize apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Versão 1. Utilize apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Filosofia Versão 1 Teste Intermédio Filosofia Versão 1 Duração do Teste: 90 minutos 20.04.2012 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de março Na folha de respostas,

Leia mais

Hume e o empirismo radical

Hume e o empirismo radical Hume e o empirismo radical Premissas empiristas de David Hume (que partilha com os outros empiristas) Não há ideias inatas A mente é uma tábula rasa/folha em branco Todo o conhecimento deriva da experiência

Leia mais

III. RACIONALIDADE ARGUMEN NTATIVA E FILOSOFIA

III. RACIONALIDADE ARGUMEN NTATIVA E FILOSOFIA III. RACIONALIDADE ARGUMEN NTATIVA E FILOSOFIA 1. Argumentação e Lóg gica Formal 1.1. Distinção validade - verdade 1.2. Formas de Inferên ncia Válida. 1.3. Principais Falácias A Lógica: objecto de estudo

Leia mais

Curso Científico-Humanístico de Ciências e Tecnologias Filosofia - 11º A

Curso Científico-Humanístico de Ciências e Tecnologias Filosofia - 11º A Curso Científico-Humanístico de Ciências e Tecnologias 2011-2012 Filosofia - 11º A Silogismo 12/10/11 Silogismo categórico Premissa maior Todo o gato é mamífero Premissa menor Os siameses são gatos Conclusão

Leia mais

A REVOLUÇÃO CARTESIANA. Apresentação baseada principalmente em Friedrick Copleston: History of Philosophy, vol. IV.

A REVOLUÇÃO CARTESIANA. Apresentação baseada principalmente em Friedrick Copleston: History of Philosophy, vol. IV. A REVOLUÇÃO CARTESIANA Apresentação baseada principalmente em Friedrick Copleston: History of Philosophy, vol. IV. Descartes (1596-1650) foi educado por jesuítas. Ele iniciou a filosofia moderna com um

Leia mais

Versão A. Grupo I (10 x 3 = 30 pontos) Assinala a alternativa correta

Versão A. Grupo I (10 x 3 = 30 pontos) Assinala a alternativa correta Versão A Grupo I (10 x 3 = 30 Assinala a alternativa correta 1.A filosofia não é uma ciência: a) Porque a filosofia consiste na procura do conhecimento factual. b) Porque os problemas e métodos da filosofia

Leia mais

A Teoria do Conhecimento

A Teoria do Conhecimento A Teoria do Conhecimento Objeto Conhecimento Objetivo Estudar a origem, natureza, valor e limites do conhecimento e da nossa capacidade de conhecer Problemas As formas do conhecimento A definição de conhecimento

Leia mais

Objetividade e diálogo de culturas. A professora M. Clara Gomes

Objetividade e diálogo de culturas. A professora M. Clara Gomes Objetividade e diálogo de culturas A professora M. Clara Gomes A questão dos critérios valorativos levanta o problema da natureza dos juízos morais. O Subjetivismo moral é teoria que defende que os juízos

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO. Duração da Prova: 120 minutos. Tolerância: 30 minutos.

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO. Duração da Prova: 120 minutos. Tolerância: 30 minutos. EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Filosofia 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 714/2.ª Fase 7 Páginas Duração da Prova: 120 minutos. Tolerância:

Leia mais

Lógica dos Conectivos: validade de argumentos

Lógica dos Conectivos: validade de argumentos Lógica dos Conectivos: validade de argumentos Renata de Freitas e Petrucio Viana IME, UFF 16 de setembro de 2014 Sumário Razões e opiniões. Argumentos. Argumentos bons e ruins. Validade. Opiniões A maior

Leia mais

Identificação. F03 Duração da entrevista 18:12 Data da entrevista Ano de nascimento (Idade) 1974 (36) Local de nascimento/residência

Identificação. F03 Duração da entrevista 18:12 Data da entrevista Ano de nascimento (Idade) 1974 (36) Local de nascimento/residência 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Identificação F03 Duração da entrevista 18:12 Data da entrevista 4-5-2011 Ano de nascimento (Idade) 1974 (36) Local de

Leia mais

Lógica informal. Vivemos numa sociedade na qual a informação e a comunicação têm um lugar central

Lógica informal. Vivemos numa sociedade na qual a informação e a comunicação têm um lugar central Lógica informal Vivemos numa sociedade na qual a informação e a comunicação têm um lugar central O objetivo de muitos dos atos comunicativos é convencer e sermos convencidos pelos outros acerca de determinadas

Leia mais

Capítulo 2. Conjuntos Infinitos

Capítulo 2. Conjuntos Infinitos Capítulo 2 Conjuntos Infinitos Não é raro encontrarmos exemplos equivocados de conjuntos infinitos, como a quantidade de grãos de areia na praia ou a quantidade de estrelas no céu. Acontece que essas quantidades,

Leia mais

Este é o vosso tempo Este é o vosso tempo, Página 1

Este é o vosso tempo Este é o vosso tempo, Página 1 Este é o vosso tempo! Este é o vosso tempo, Página 1 Há uma coisa muito simples de que quero falar. Eu sei que as pessoas vieram para ouvir falar de paz. Já lá irei. Porque isso não é difícil, isso é fácil.

Leia mais

Fundamentos 1. Lógica de Predicados

Fundamentos 1. Lógica de Predicados Fundamentos 1 Lógica de Predicados Predicados e Quantificadores Estudamos até agora a lógica proposicional Predicados e Quantificadores Estudamos até agora a lógica proposicional A lógica proposicional

Leia mais

Acção de formação. Lógica e Filosofia nos Programas de 10.º e 11.º Anos. Formador. Desidério Murcho ALGUMAS NOÇÕES DE LÓGICA

Acção de formação. Lógica e Filosofia nos Programas de 10.º e 11.º Anos. Formador. Desidério Murcho ALGUMAS NOÇÕES DE LÓGICA CENTRO DE FORMAÇÃO DA ASSOCIAÇÃO DE ESCOLAS BRAGA/SUL Acção de formação Lógica e Filosofia nos Programas de 10.º e 11.º Anos Formador Desidério Murcho ALGUMAS NOÇÕES DE LÓGICA António Aníbal Padrão Braga,

Leia mais

AGRUPAMENTO DE ESCOLAS DE RIO DE MOURO EXERCÍCIOS DE LÓGICA - INSTRUÇÕES GERAIS

AGRUPAMENTO DE ESCOLAS DE RIO DE MOURO EXERCÍCIOS DE LÓGICA - INSTRUÇÕES GERAIS EXERCÍCIOS DE LÓGICA - INSTRUÇÕES GERAIS Caro aluno, Vai encontrar aqui um conjunto de exercícios de lógica cujo objetivo é facilitar-lhe o estudo autónomo. Estes exercícios irão estar disponíveis num

Leia mais

VERDADE E VALIDADE, PROPOSIÇÃO E ARGUMENTO

VERDADE E VALIDADE, PROPOSIÇÃO E ARGUMENTO ENADE 2005 e 2008 1 O que B. Russell afirma da matemática, em Misticismo e Lógica: "uma disciplina na qual não sabemos do que falamos, nem se o que dizemos é verdade", seria particularmente aplicável à

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Teoria de Conjuntos Um conjunto é uma colecção de objectos/elementos/membros. (Cantor

Leia mais

Segmento: Pré-vestibular. Coleção: Alfa, Beta e Gama. Disciplina: Matemática. Unidade 1: Série 17. Conjuntos

Segmento: Pré-vestibular. Coleção: Alfa, Beta e Gama. Disciplina: Matemática. Unidade 1: Série 17. Conjuntos Segmento: Pré-vestibular Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: 1 Unidade 1: Série 17 Resoluções Conjuntos 1. A = {1, } O Conjunto A possui dois elementos: 1 e. O total de subconjuntos

Leia mais

Versão 1. Utilize apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Versão 1. Utilize apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Filosofia Versão 1 Teste Intermédio Filosofia Versão 1 Duração do Teste: 90 minutos 17.04.2013 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de março Na folha de respostas,

Leia mais

MA14 - Aritmética Unidade 2 Resumo. Divisão Euclidiana

MA14 - Aritmética Unidade 2 Resumo. Divisão Euclidiana MA14 - Aritmética Unidade 2 Resumo Divisão Euclidiana Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte da disciplina e o seu estudo não garante o domínio do assunto. O material

Leia mais

Lógica e Metodologia Jurídica

Lógica e Metodologia Jurídica Lógica e Metodologia Jurídica Argumentos e Lógica Proposicional Prof. Juliano Souza de Albuquerque Maranhão julianomaranhao@gmail.com Puzzle 2 pessoas A e B fazem uma oferta um ao outro. O problema é identificar

Leia mais

Entrelinha 1,5. Utilize apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Entrelinha 1,5. Utilize apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Filosofia Entrelinha 1,5 Teste Intermédio Filosofia Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 90 minutos 17.04.2013 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004,

Leia mais

Fabio Augusto Camargo

Fabio Augusto Camargo Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática Introdução à Topologia Autor: Fabio Augusto Camargo Orientador: Prof. Dr. Márcio de Jesus Soares

Leia mais

O saber lichia !!!!! O saber, Página 1

O saber lichia !!!!! O saber, Página 1 O saber lichia O saber, Página 1 Estamos aqui, esta noite, para falar de algo muito, muito simples. Algo que tem a ver com vocês, não com o país onde vivem ou com a sociedade a que pertencem; não com a

Leia mais

À procura do inato !!!!!!!!!!!!!!

À procura do inato !!!!!!!!!!!!!! À procura do inato Prem Rawat foi convidado a falar no Teatro Verdi de Pádua, em Itália, sob o patrocínio do Presidente da República Italiana, do Ministério da Justiça, da Região de Veneto e da Província

Leia mais

Método de indução. José Carlos Santos

Método de indução. José Carlos Santos Método de indução José Carlos Santos O termo «indução» tem origem na Filosofia. A entrada do Dicionário de Filosofia de Simon Blackburn que lhe diz respeito começa do seguinte modo: Indução Termo usado

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

Máximos e mínimos em intervalos fechados

Máximos e mínimos em intervalos fechados Universidade de Brasília Departamento de Matemática Cálculo 1 Máximos e mínimos em intervalos fechados No texto em que aprendemos a Regra da Cadeia, fomos confrontados com o seguinte problema: a partir

Leia mais

Aulas 5 e 6 / 28 e 30 de março

Aulas 5 e 6 / 28 e 30 de março Aulas 5 e / 8 e 30 de março 1 Notação de soma e produto Como expressar a seguinte soma de uma maneira mais concisa? 1 + + 3 3 + + 10? Note que as parcelas são semelhantes, e que a única coisa que varia

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

Duração da Prova: 120 minutos. Tolerância: 30 minutos.

Duração da Prova: 120 minutos. Tolerância: 30 minutos. EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 139/2012, de 5 de julho Prova Escrita de Filosofia 11.º Ano de Escolaridade Prova 714/1.ª Fase 8 Páginas Duração da Prova: 120 minutos. Tolerância: 30

Leia mais

Os números inteiros. Capítulo 2

Os números inteiros. Capítulo 2 6 Capítulo 2 Os números inteiros Intuitivamente, o conjunto Z dos números inteiros é composto pelos números naturais e pelos "negativos". Como justificamos de uma forma simples qual a origem dos números

Leia mais

MÉTODOS EM PESQUISA 01/07/ INTRODUÇÃO TÓPICOS A SEREM ABORDADOS 1.1 CONCEITO DE MÉTODO. 1. Introdução. 2. Método Indutivo

MÉTODOS EM PESQUISA 01/07/ INTRODUÇÃO TÓPICOS A SEREM ABORDADOS 1.1 CONCEITO DE MÉTODO. 1. Introdução. 2. Método Indutivo DISCIPLINA: METODOLOGIA CIENTÍFICA CURSO: ENGENHARIA AMBIENTAL PROF. ALEXANDRE PAIVA DA SILVA MÉTODOS EM PESQUISA TÓPICOS A SEREM ABORDADOS 1. Introdução 2. Método Indutivo 3. Leis, regras e fases do método

Leia mais

RESUMO. Filosofia. Psicologia, JB

RESUMO. Filosofia. Psicologia, JB RESUMO Filosofia Psicologia, JB - 2010 Jorge Barbosa, 2010 1 Saber se o mundo exterior é real e qual a consciência e o conhecimento que temos dele é um dos problemas fundamentais acerca do processo de

Leia mais

Construção dos Números Reais

Construção dos Números Reais 1 Universidade de Brasília Departamento de Matemática Construção dos Números Reais Célio W. Manzi Alvarenga Sumário 1 Seqüências de números racionais 1 2 Pares de Cauchy 2 3 Um problema 4 4 Comparação

Leia mais

O mar na gota de água

O mar na gota de água O mar na gota de água! O mar na gota de água, Página 1 Há uma pergunta que tem de ser feita: seja o que for que esteja a acontecer na minha vida, em qualquer altura, em tempos de alegria, em tempos de

Leia mais

A AUTORIDADE DE PRIMEIRA PESSOA, NO TEMPO PRESENTE: A ESCUTA E A INTERPRETAÇÃO DA ESCUTA

A AUTORIDADE DE PRIMEIRA PESSOA, NO TEMPO PRESENTE: A ESCUTA E A INTERPRETAÇÃO DA ESCUTA A AUTORIDADE DE PRIMEIRA PESSOA, NO TEMPO PRESENTE: A ESCUTA E A INTERPRETAÇÃO DA ESCUTA Mariluze Ferreira de Andrade e Silva Laboratório de Lógica e Epistemologia DFIME - UFSJ Resumo: Propomos investigar

Leia mais

A Escolha Racional relações binárias número de relações binárias 2m.p domínio imagem

A Escolha Racional relações binárias número de relações binárias 2m.p domínio imagem A Escolha Racional A racionalidade na teoria dos jogos procura perceber como os jogadores (sejam eles indivíduos, empresas, organizações, países etc.) tomam suas decisões em situações de interação estratégica.

Leia mais

1 Congruências e aritmética modular

1 Congruências e aritmética modular 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

Descartes filósofo e matemático francês Representante do racionalismo moderno. Profs: Ana Vigário e Ângela Leite

Descartes filósofo e matemático francês Representante do racionalismo moderno. Profs: Ana Vigário e Ângela Leite Descartes filósofo e matemático francês 1596-1650 Representante do racionalismo moderno Razão como principal fonte de conhecimento verdadeiro logicamente necessário universalmente válido Inspiração: modelo

Leia mais

Fundamentos de Lógica e Algoritmos. Aula 1.2 Introdução a Lógica Booleana. Prof. Dr. Bruno Moreno

Fundamentos de Lógica e Algoritmos. Aula 1.2 Introdução a Lógica Booleana. Prof. Dr. Bruno Moreno Fundamentos de Lógica e Algoritmos Aula 1.2 Introdução a Lógica Booleana Prof. Dr. Bruno Moreno bruno.moreno@ifrn.edu.br Você está viajando e o pneu do seu carro fura! 2 Quais são os passos para se trocar

Leia mais

Massachusetts Department of Elementary and Secondary Education

Massachusetts Department of Elementary and Secondary Education Massachusetts Department of Elementary and Secondary Education 75 Pleasant Street, Malden, Massachusetts 02148-4906 Telephone: (781) 338-3000 TTY: N.E.T. Relay 1-800-439-2370 Jeff Wulfson Acting Commissioner

Leia mais

Afirmações Matemáticas

Afirmações Matemáticas Afirmações Matemáticas Na aula passada, vimos que o objetivo desta disciplina é estudar estruturas matemáticas, afirmações sobre elas e como provar essas afirmações. Já falamos das estruturas principais,

Leia mais

O melhor amigo O melhor amigo, Página 1

O melhor amigo O melhor amigo, Página 1 O melhor amigo! O melhor amigo, Página 1 Qual é a verdadeira atração na vossa vida? O que é que vos atrai? Nas nossas vidas precisamos de equilíbrio, de nos sentirmos bem. Há certas coisas que funcionam

Leia mais

Prova Escrita de Filosofia

Prova Escrita de Filosofia EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Filosofia 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 714/Época Especial 8 Páginas Duração da Prova: 120 minutos. Tolerância:

Leia mais

A paz já lá está A paz já lá está, Página 1

A paz já lá está A paz já lá está, Página 1 A paz já lá está! A paz já lá está, Página 1 A minha mensagem é muito, muito simples. Muitas pessoas vêm ouvir-me e sentam-se aí, meio tensas: "O que é que eu vou ouvir?" E eu digo-lhes sempre: "Relaxem."

Leia mais

Para provar uma implicação se p, então q, é suficiente fazer o seguinte:

Para provar uma implicação se p, então q, é suficiente fazer o seguinte: Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que

Leia mais

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO. Não é permitido o uso de corretor. Deve riscar aquilo que pretende que não seja classificado.

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO. Não é permitido o uso de corretor. Deve riscar aquilo que pretende que não seja classificado. EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Filosofia 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 714/2.ª Fase 7 Páginas Duração da Prova: 120 minutos. Tolerância:

Leia mais

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO. Não é permitido o uso de corretor. Deve riscar aquilo que pretende que não seja classificado.

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO. Não é permitido o uso de corretor. Deve riscar aquilo que pretende que não seja classificado. EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Filosofia 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 714/2.ª Fase 7 Páginas Duração da Prova: 120 minutos. Tolerância:

Leia mais

Matemática Básica EXERCÍCIOS OBRIGATÓRIOS. Dê um contraexemplo para cada sentença falsa.

Matemática Básica EXERCÍCIOS OBRIGATÓRIOS. Dê um contraexemplo para cada sentença falsa. DR. SIMON G. CHIOSSI @ GMA / UFF MB V 1 0/02/2016 NOME LEGÍVEL: Matemática Básica Prova V 1 turma A1 0 / 02 / 2016 MATRÍCULA: EXERCÍCIOS OBRIGATÓRIOS (1) Sejam P(x) o predicado x 2 = x e Q(x) o predicado

Leia mais

Fração como Probabilidade - União e Interseção de Eventos. Sexto Ano do Ensino Fundamental

Fração como Probabilidade - União e Interseção de Eventos. Sexto Ano do Ensino Fundamental Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE Fração como Probabilidade - União e Interseção de Eventos Sexto Ano do Ensino Fundamental Prof. Francisco Bruno Holanda Prof. Antonio

Leia mais

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas.

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Teoria dos Conjuntos Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Porém, não é nosso objetivo ver uma teoria axiomática dos conjuntos.

Leia mais

Cálculo proposicional

Cálculo proposicional O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais

Leia mais

Departamento de Engenharia Informática da Universidade de Coimbra

Departamento de Engenharia Informática da Universidade de Coimbra Departamento de Engenharia Informática da Universidade de Coimbra Estruturas Discretas 2013/14 Folha 1 - TP Lógica proposicional 1. Quais das seguintes frases são proposições? (a) Isto é verdade? (b) João

Leia mais

MINISTÉRIO DA EDUCAÇÃO

MINISTÉRIO DA EDUCAÇÃO MINISTÉRIO DA EDUCAÇÃO E.S.A.B. ESCOLA SECUNDÁRIA DE AVELAR BROTERO Filosofia 11º Ano Duração: 135m Ano letivo: 2015/2016 Matriz da Prova de Avaliação Sumativa Interna na Modalidade de Frequência não Presencial

Leia mais

Aula 00. Raciocínio Analítico para FUNPRESP. Raciocínio Analítico Professor: Guilherme Neves. Prof.

Aula 00. Raciocínio Analítico para FUNPRESP. Raciocínio Analítico Professor: Guilherme Neves.  Prof. Aula 00 Raciocínio Analítico Professor: Guilherme Neves www.pontodosconcursos.com.br 1 Aula 00 Aula Demonstrativa Raciocínio Analítico para FUNPRESP Apresentação... 3 Modelos de questões resolvidas Raciocínio

Leia mais

Indução Matemática. Matemática Discreta. Indução Matemática. Mayara Midori Omai e Sheila Morais de Almeida UTFPR-PG. Abril

Indução Matemática. Matemática Discreta. Indução Matemática. Mayara Midori Omai e Sheila Morais de Almeida UTFPR-PG. Abril Matemática Discreta Indução Matemática Mayara Midori Omai e Sheila Morais de Almeida UTFPR-PG Abril - 2017 Indução Matemática Se desejamos provar que A(n) B(n) é verdade para números inteiros k maiores

Leia mais

Capítulo O objeto deste livro

Capítulo O objeto deste livro Capítulo 1 Introdução 1.1 O objeto deste livro Podemos dizer que a Geometria, como ciência abstrata, surgiu na Antiguidade a partir das intuições acerca do espaço, principalmente do estudo da Astronomia.

Leia mais

Gabarito e Pauta de Correção ENQ

Gabarito e Pauta de Correção ENQ Gabarito e Pauta de Correção ENQ 015.1 Questão 01 [ 1,00 ::: (a=0,50; (b=0,50 ] (a Mostre que se x e y são números irracionais tais que x y seja racional não nulo, então x + y e x y são ambos irracionais.

Leia mais

A prova é realizada de acordo com a grafia prevista no novo Acordo Ortográfico da Língua Portuguesa.

A prova é realizada de acordo com a grafia prevista no novo Acordo Ortográfico da Língua Portuguesa. INSTITUTO POLITÉCNICO DE LISBOA ESCOLA SUPERIOR DE EDUCAÇÃO 2017 PROVA DE LÍNGUA PORTUGUESA (Acesso aos cursos de mestrado profissionalizante 1.ª chamada) DURAÇÃO DA PROVA 150 minutos (mais 30 minutos

Leia mais

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO. Duração da Prova: 120 minutos. Tolerância: 30 minutos.

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO. Duração da Prova: 120 minutos. Tolerância: 30 minutos. EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Filosofia 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 714/1.ª Fase 8 Páginas Duração da Prova: 120 minutos. Tolerância:

Leia mais

Elementos de Lógica Matemática p. 1/2

Elementos de Lógica Matemática p. 1/2 Elementos de Lógica Matemática Uma Breve Iniciação Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Elementos de Lógica Matemática p. 1/2 Vamos aprender a falar aramaico? ǫ > 0 ( δ

Leia mais

Enunciados Quantificados Equivalentes

Enunciados Quantificados Equivalentes Lógica para Ciência da Computação I Lógica Matemática Texto 15 Enunciados Quantificados Equivalentes Sumário 1 Equivalência de enunciados quantificados 2 1.1 Observações................................

Leia mais

1. Métodos de prova: Construção; Contradição.

1. Métodos de prova: Construção; Contradição. Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Bacharelado em Ciência da Computação Fundamentos Matemáticos para Computação 1. Métodos de prova: Construção; Contradição.

Leia mais

Racionalidade argumentativa e Filosofia

Racionalidade argumentativa e Filosofia Racionalidade argumentativa e Filosofia Conteúdos Competências a desenvolver / objetivos a concretizar Estratégias Recursos Avaliação Tempos 1. Argumentação e lógica formal 1.1 Distinção validade/verdade

Leia mais

Testes Verify Relatório para o Candidato. Nome: Sr. Exemplo

Testes Verify Relatório para o Candidato. Nome: Sr. Exemplo Testes Verify Relatório para o Candidato Nome: Sr. Exemplo Data: 16 Julho 2012 Introdução Este relatório fornece-lhe algum feedback sobre o testes de aptidões que concluiu recentemente. Os testes a que

Leia mais

Demonstrações, Recursão e Análise de Algoritmo

Demonstrações, Recursão e Análise de Algoritmo Demonstrações, Recursão e Análise de Algoritmo Objetivos do Capítulo Após estudar este capítulo, você estará apto a: Realizar demonstrações de conjecturas, usando técnicas de demonstração direta, demonstração

Leia mais

Se o número máximo de laranjas estragadas é 4, então temos, no mínimo, 140 laranjas não estragadas.

Se o número máximo de laranjas estragadas é 4, então temos, no mínimo, 140 laranjas não estragadas. 26. (IBGE 2016/FGV) Em uma caixa há doze dúzias de laranjas, sobre as quais sabe-se que: I - há pelo menos duas laranjas estragadas; II - dadas seis quaisquer dessas laranjas, há pelo menos duas não estragadas.

Leia mais

Autor: Francisco Cubal Disponibilizado apenas para Resumos.tk

Autor: Francisco Cubal Disponibilizado apenas para Resumos.tk Conceito e Finalidade da Lógica Existem variados conceitos do que é a Lógica. Conceitos: A lógica é o estudo das inferências ou argumentos válidos. A lógica é o estudo do que conta como uma boa razão para

Leia mais

Prova Escrita de Filosofia VERSÃO º Ano de Escolaridade. Prova 714/1.ª Fase. Entrelinha 1,5, sem figuras nem imagens, texto alinhado à esquerda

Prova Escrita de Filosofia VERSÃO º Ano de Escolaridade. Prova 714/1.ª Fase. Entrelinha 1,5, sem figuras nem imagens, texto alinhado à esquerda EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 139/2012, de 5 de julho Prova Escrita de Filosofia 11.º Ano de Escolaridade Prova 714/1.ª Fase 14 Páginas Entrelinha 1,5, sem figuras nem imagens, texto

Leia mais

Racionalismo. René Descartes Prof. Deivid

Racionalismo. René Descartes Prof. Deivid Racionalismo René Descartes Prof. Deivid Índice O que é o racionalismo? René Descartes Racionalismo de Descartes Nada satisfaz Descartes? Descartes e o saber tradicional Objetivo de Descartes A importância

Leia mais

O conhecimento e a incerteza do ponto de vista do ceticismo

O conhecimento e a incerteza do ponto de vista do ceticismo O conhecimento e a incerteza do ponto de vista do ceticismo IF UFRJ Mariano G. David Mônica F. Corrêa 1 O conhecimento e a incerteza do ponto de vista do ceticismo Aula 1: O conhecimento é possível? O

Leia mais

µsíntese manhosa de PC

µsíntese manhosa de PC µsíntese manhosa de PC Diogo Sousa (aka orium) 29 de Dezembro de 2009 1 Disclaimer Se algo estiver errado avisem, mas se chumbarem no exame porque o que aqui está não está correcto, i couldn t care less.

Leia mais

Prova Escrita de Filosofia

Prova Escrita de Filosofia EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Filosofia 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 714/Época Especial 8 Páginas Duração da Prova: 120 minutos. Tolerância:

Leia mais

Lógica: Quadrado lógico:

Lógica: Quadrado lógico: Lógica: 1. Silogismo aristotélico: Podemos encara um conceito de dois pontos de vista: Extensão a extensão é um conjunto de objectos que o conceito considerado pode designar ou aos quais ele se pode aplicar

Leia mais

Identidade Estrita. Princípios constitutivos

Identidade Estrita. Princípios constitutivos Identidade Estrita Princípios constitutivos O conceito de é um conceito tão básico que não é susceptível de ser definido Podemos caracterizar o conceito dizendo que a é aquela relação que cada objecto

Leia mais

Duração da Prova: 120 minutos. Tolerância: 30 minutos. Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

Duração da Prova: 120 minutos. Tolerância: 30 minutos. Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado. Exame Final Nacional de Filosofia Prova 714 Época Especial Ensino Secundário 2017 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Duração da Prova: 120 minutos. Tolerância: 30 minutos.

Leia mais

Notas introdutórias ao problema de Gettier: a bifurcação epistêmica 1

Notas introdutórias ao problema de Gettier: a bifurcação epistêmica 1 ISSN:1984-4247 e-issn:1984-4255 A Revista de Filosofia Notas introdutórias ao problema de Gettier: a bifurcação epistêmica - Rogério da Costa Rogério da Costa * Notas introdutórias ao problema de Gettier:

Leia mais