Torre de Hanoi:jogando com a Matemática

Tamanho: px
Começar a partir da página:

Download "Torre de Hanoi:jogando com a Matemática"

Transcrição

1 Torre de Hanoi:jogando com a Matemática Rufino, Elzimar de O. 18 de maio de 2011 Resumo As idéias principais deste artigo foram escritas em abril de Nosso objetivo aqui é mostrar como o jogo Torre de Hanoi pode ser utilizado como ferramenta valiosa em algumas situações do Ensino da Matemática, como por exemplo no estudo de exponenciais, funções exponenciais, logarítimos, progressão geométrica, função maior inteiro, indução matemática, etc. 1 Um pouco de história O jogo tem origem em um mito indiano segundo o qual o centro do mundo encontra-se sob a cúpula de um templo situado em Benares, na Índia. Neste centro haveria uma placa de latão onde estariam fixados três pinos de diamente. Ao criar o mundo o deus Brahma teria colocado em um desses pinos sessenta e quatro discos de ouro, apoiados um sobre o outro de diâmetros decrescentes, estando o maior junto à placa e o menor no topo da pilha. Esta seria a Torre do Brahma. Segundo as leis imutáveis criadas por ele, os sacerdotes teriam sido incubidos de transferir a pilha de discos para um dos outros pinos, trabalhando desde então, dia e noite sem sessar. Segundo o mito a vida decorrerá durante a realização de tal tarefa de transferência e, antes que os sacerdotes consigam levar a cabo a missão que receberam, o templo transformar-se-á em pó e o mundo desaparecerá, com um estrondo de trovão. No mundo ocidental o jogo foi inventado, a partir do mito pelo Matemático francês Edouard Lucas (4 de abril de de outubro de 1891). A figura abaixo mostra uma Torre de Hanoi confeccionada em madeira. Professor do Departamento de Matemática da Universidade Federal de Roraima. Licenciado em Matemática-UFRR, Especialista em Matemática-UFRR e Mestre em Matemática-UFAM. 1

2 Figura 1: Torre de Hanoi 2 O objetivo e as regras O objetivo principal do jogo é transladar a Torre de um pino para um dos outros dois. As regras são simples: deve-se movimentar um disco de cada vez, sendo que um disco qualquer nunca pode sobrepor outro de diâmetro menor. Deve-se fazer a translação com um número mínimo de movimentos. 3 Algumas idéias sugestivas O professor dispondo de várias Torres apresenta o jogo aos seus alunos instigando-os a jogar começando com poucos discos e fazer anotações do número de movimentos em uma tabela. Após jogarem bastante, provavelmente determinarão a tabela abaixo: número de discos número de movimentos Tabela 1: Número de discos e número de movimentos. A partir daí muitas idéias podem surgir dependendo da criatividade e curiosidade dos participantes. Por exemplo, olhando a segunda coluna da tabela acima como uma sequência pode-se perceber certa propriedade ou uma lei de formação. Surgem então as seguintes perguntas: 1- Que característica pode-se perceber na sequência (de cima para baixo) formada pelos elementos da segunda coluna na tabela 1? 2

3 Uma resposta esperada : cada elemento é o dobro do anterior mais uma unidade. 2- Como podemos representar essa propriedade matematicamente? 3- Que propriedade ou relação existe entre o número de discos e o respectivo número de movimentos? 4- Dada uma quantidade de discos, como garantir que o número de movimentos dado na tabela 1 é o número mínimo de movimentos? Vamos dar atenção agora à pergunta 2. Como expressar matemáticamente a frase:cada elemento da sequência é o dobro do anterior mais uma unidade. Surge a necessidade de se utilizar uma notação matemática para cada termo, ou seja, para o primeiro, segundo, e assim por diante. Depois de verificadas as idéias dos alunos e os prós e contras, o professor pode sugerir a notação utilizada na tabela abaixo. termo notação primeiro a 1 segundo a 2 = 2a terceiro a 3 = 2a quarto a 4 = 2a quinto a 5 = 2a De um modo geral, dado um número natural n temos a n = 2a n É claro que esta propriedade está apenas sendo conjecturada e a rigor teria de ser demonstrada. 4 O número mínimo de movimentos Manipulando os dados da primeira tabela, pode-se fazê-los perceber uma função que determina o número mínimo de movimentos ao se jogar com uma Torre com n discos. Vamos enunciar esse resultado e demonstrá-lo formalmente. Porém, antes vamos ver dois lemas. Lema 1-Para qualquer n, o jogo tem solução. Prova: (Indução Matemática) Para n=1, obviamente o jogo tem solução. Suponha que o jogo tenha solução para n = k discos, vamos mostrar que possui solução para n = (k + 1) discos. Em uma Torre com n = (k + 1) discos, a hipótese de indução nos diz que podemos transladar os k primeiros discos para um dos dois pinos livres. Após feito isso, o (k + 1) ésimo 3

4 disco pode ser então transladado para o pino que ainda está livre. Usando novamente a hipótese de indução podemos transladar os primeiros k discos para cima do (k + 1) ésimo disco e então o jogo estará solucionado. Lema 2-Acrescentando um disco ao jogo com uma Torre de n discos o número de movimentos duplica mais uma unidade. Prova: É uma consequência do procedimento descrito na prova do Lema 1. Teorema- O número mínimo de movimentos ao se jogar com uma Torre de n discos é dada pela função f : N N tal que f(n) = 2 n 1 Prova: Seja f : N N a função que determina a solução mínima para um jogo com n discos garantida pelos Lemas 1 e 2. Pelo Lema 2, devemos ter f(n + 1) = 2f(n) + 1 (1) ou ainda f(n) = 2f(n 1) + 1 (2) Na equação (2) substituindo-se, n por n 1, n 2, n 3,..., 1, obtemos f(n 1) = 2f(n 2) + 1, f(n 2) = 2f(n 3) + 1,,..., f(1) = 1. Consequentemente, por sucessivas substituições (recorrência), resulta que f(n) = 2[2f(n 2) + 1] + 1 = 2 2 f(n 2) = 2 2 [2f(n 3) + 1] = 2 3 f(n 3) = 2 n 1 f(1) n 2 = 2 n n = 2 n

5 Note que utilizamos a fórmula S n = a 1q n 1 q 1 da soma dos n termos de uma Progressão Geométrica. Vamos obter a expressão f(n) = 2 n 1 do número mínimo de movimentos utiliando um outro olhar. Começaremos com uma Proposição- O número mínimo de movimentos realizados pelo disco menor d 1 em um jogo com n discos é dado pela expressão g n (1) = 2 n 1. (3) Prova: (Indução matemática) Para n = 1 a proposição é válida visto que, g n (1) = 1 = Suponhamos que a proposição seja válida para n = k, e vamos mostrar que continua válida para n = k + 1. Devemos mostrar então a seguinte implicação: g k (1) = 2 k 1 g k+1 (1) = 2 (k+1) 1 = 2 k. Veja que podemos transferir a Torre com k + 1 discos em três etapas básicas: Etapa 1- Transferimos a Torre com k discos. Etapa 2- Transferimos a o disco d k+1 para o pino livre. Etapa 3- Transferimos a Torre com k discos para onde está o disco d k+1. Assim, pela hipótese de indução, na etapa 1, o número mínimo de movimentos do disco d 1 é g k (1) = 2 k 1. Usando novamente a hipótese de indução,o disco d 1 se movimentará novamente na etapa 3, no mínimo, 2 k 1 vezes. Portanto, ao transferirmos a Torre com k + 1 discos teremos movimentado o disco d 1 não menos que 2 2 k 1 vezes, ou seja, g k+1 = 2 2 k 1 = 2 k como queríamos mostrar. Corolário- O número mínimo de movimentos realizados pelo disco d i em uma Torre com n discos é dado pela fórmula g n (i) = 2 n i. Prova- Observe que em um jogo com n discos, ao se transferir os i 1 primeiros discos não se movimenta o disco d i. Só apartir daí o disco d i irá se movimentar e imediatamente após cada um de seus movimentos os i 1 primeiros discos irão sobrepô-lo (consequência da regra do jogo). Sendo assim, para efeito de contagem, o disco d i pode ser considerado o disco d 1 em uma Torre com n (i 1) movimentos. Então devemos ter g n (i) = g n (i 1) (1) = 2 n (i 1) 1 = 2 i 1. 5

6 Por exemplo, jogando com uma Torre com 7 discos, a quantidade mínima de movimentos realizados pelo d 3 será O interessante é que g 7 (3) = = 2 4 = 16. (g n (n), g n (n 1),..., g n (2), g n (1)) é uma progressão geométrica de razão q = 2. Isso significa que um disco de certo diâmetro movimenta-se o dobro de vezes que um disco de diâmetro imediatamente maior. De acordo com o que vimos acima podemos obter a expresão f(n) que determina o número mínimo de movimentos em um jogo com n discos somando-se o número mínimo de movimentos de cada disco.então n i=1 g n (i) = 1 (2n 1) 2 1 = 2 n 1 = f(n). Corolário( do Corolário anterior)-acrescentando um disco jogo, a quantidade mínima de movimentos do disco d i duplica. Prova: g n+1 (i) = 2 n+1 i = 2 2 n i = 2g n (i). 5 Explorando o tempo Uma idéia interessante é fazer uma estimativa do tempo gasto para o término do jogo. Suponha que um jogador gaste um segundo para cada movimento. O tempo gasto obviamente será f(n) segundos. Na mesma situação acima suponha que um jogador dispunha de 50 minutos. Ele poderá transferir uma Torre com no máximo quantos discos? Se os alunos observarem que 50 minutos equivalem a 3000 segundos, tentarão (creio eu!) encontrar o maior valor de n tal que 2 n 1 = 3000 ou 2 n 1 esteja o mai próximo pssível de Verificarão, por exaustão, que n = 11 e o tempo gasto será 2047 segundos. Para uso posterior vamos ver a definição da função maior inteiro. Definição- O maior inteiro de um número real x, denotado por x, é o maior inteiro que é menor ou igual a x. Exemplos: 11, 56 = 11, 11, 56 = 12. A título de curiosidade apresentamos um gráfico desta função.veja a figura 2. 6

7 Figura 2: Gráfico da função maior inteiro com x [ 3, 3] O seguinte resultado nos dá uma estimativa do número de discos que se pode movimentar dispondo-se de um um tempo pré-determinado. Teorema- Suponha que um jogador demore um segundo para movimentar cada disco e que este dispõe de x segundos para jogar. Então, ele poderá movimentar no máximo uma Torre com n = log (x+1) 2 discos. Prova: Como o número mínimo de movimentos é f(n) = 2 n 1 e leva-se um segundo para movimentar cada disco, procuramos um n tal que 2 n 1 = x, ou esteja o mais próximo possível de x pela esquerda. Seja r R tal que 2 r = x + 1, ou seja, r = log (x+1) 2. Basta tomar n = r. Os alunos logo perceberão que a tarefa de jogar com muitos discos é ilusória. Jogando com 12 discos nas condições do teorema, o tempo gasto seria mais de uma hora e imaginem que para um jogo com 64 discos seriam necessários segundos, o que equivale a um tempinho de cerca de 6 bilhões de séculos. Como se vê, acreditando ou não no mito, ainda terímos a existência de nosso mundinho por muito tempo. 6 Idéias para vencer o jogo Aqui usaremos a notação (i, j) para representar a transferência do disco d i para o pino j e T n para uma Torre com n discos. Podemos considerar os pinos 1, 2 e 3 da esquerda para a direita. Abaixo temos a sequência de jogadas para um jogo com três discos, onde a Torre é transferida para o pino 2. (1, 2) (2, 3) (1, 3) (3, 2) (1, 1) (2, 2) (1, 2). 7

8 Note que para transferir a Torre com 3 discos para o pino j devemos começar movimentando o disco d 1 para o pino j. Considere agora uma Torre com n discos. Ao transferir T 3 estará liberado um pino para a transferência de d 4. Transfira d 4 e translade T 3 para onde está d 4, resultando aí T 4. Estará liberado um pino para a transferência de d 5. Transfira d 5 e transfira T 4 para onde está d 5 observando o processo anterior. Continuando, sempre estará liberado um pino para a transferência de d i. Transfira d i e em seguida T i 1 para onde está d i. O jogo estará terminado quando i = n. Para realizar o procedimento descrito anteriormente é necessário estar atento para a paridade de i: Se i for par e deseja-se transferir T i para o pino j, o procedimento inicial deverá ser (1, k) onde k j. Se i for ímpar, o procedimento inicial deverá ser (1, j). Para considerações mais rigorosas a respeito de um algorítimo vencedor sugerimos ao leitor consultar [1]. Com um pouco de esforço muitas outras situações matemáticas podem ser exploradas com o auxílio do jogo Torre de Hanoi. Referências [1] Silva,Gentil Lopes. Novas Sequências Aritméticas e Geométricas.THESAURUS-DF, [2] MACHADO, Nilson José. Matemática e Educação: Alegorias e Temas Afins. Cortez, São Paulo,2001. [3] HEFEZ, Abramo. Elementos de Aritmática. Sociedade Brasileira de Matemática, Rio de Janeiro,

Deve-se mover um disco por vez; Nunca se deve colocar um disco sobre o outro menor do que ele.

Deve-se mover um disco por vez; Nunca se deve colocar um disco sobre o outro menor do que ele. Princípio da Indução Matemática A torre de Brahma A Torre de Brahma tem origem em um mito indiano, segundo o qual o centro do mundo encontrar-se-ia sob a cúpula de um templo situado em Benares, na Índia.

Leia mais

Oficina cognição e lógica

Oficina cognição e lógica DESAFIO SEQUÊNCIA LÓGICA JOGO: Torre de Hanói A torre de Hanói foi criada pelo matemático francês Édouard Lucas, incluída no terceiro volume de sua obra Récréations Mathématiques, publicada em 1893. A

Leia mais

MA14 - Aritmética Unidade 2 - Parte 2

MA14 - Aritmética Unidade 2 - Parte 2 MA14 - Aritmética Unidade 2 - Parte 2 Aplicação da Indução (Aplicações Lúdicas) Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: Torre de Hanói AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR: Dr.

Leia mais

Torre de Hanói e a função exponencial

Torre de Hanói e a função exponencial Torre de Hanói e a função exponencial Lidiane Pereira de Carvalho lidiane.p.carvalho@gmail.com Maria Aparecida Alves da Silva cidalves20@hotmail.com Risoneide Maria de Mélo reisoneide.melo@hotmail.com

Leia mais

MA12 - Unidade 3. Paulo Cezar Pinto Carvalho PROFMAT - SBM

MA12 - Unidade 3. Paulo Cezar Pinto Carvalho PROFMAT - SBM MA12 - Unidade 3 O Método da Indução Paulo Cezar Pinto Carvalho PROFMAT - SBM Definições por indução ou recorrência Como definir, apropriadamente, n! = 1 2... n? i) Definimos 1! = 1 ii) A seguir, supondo

Leia mais

MA12 - Unidade 3. Paulo Cezar Pinto Carvalho. 31 de Janeiro de 2014 PROFMAT - SBM

MA12 - Unidade 3. Paulo Cezar Pinto Carvalho. 31 de Janeiro de 2014 PROFMAT - SBM MA12 - Unidade 3 O Método da Indução Paulo Cezar Pinto Carvalho PROFMAT - SBM 31 de Janeiro de 2014 Definições por indução ou recorrência Como definir, apropriadamente, n! = 1 2... n? i) Definimos 1! =

Leia mais

Números Naturais. MA12 - Unidade 1. Os Axiomas de Peano. O Axioma da Indução. Exemplo: uma demonstração por indução

Números Naturais. MA12 - Unidade 1. Os Axiomas de Peano. O Axioma da Indução. Exemplo: uma demonstração por indução Os Números Naturais MA1 - Unidade 1 Números Naturais Paulo Cezar Pinto Carvalho PROFMAT - SBM January 7, 014 Números Naturais: modelo abstrato para contagem. N = {1,,3,...} Uma descrição precisa e concisa

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS - TEXTO: Torre de Hanói e Triângulo de Sierpinski AUTOR: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR: Prof.

Leia mais

Notas sobre Definições Recursivas

Notas sobre Definições Recursivas Notas sobre Definições Recursivas Anjolina Grisi de Oliveira Centro de Informática Universidade Federal de Pernambuco CIn-UFPE Introdução A torre de Hanói Jogo antigo inventado pelo matemético francês

Leia mais

Aplicações do Princípio de Indução Matemática

Aplicações do Princípio de Indução Matemática 4 Aplicações do Princípio de Indução Matemática Sumário 4.1 Exercícios Recomendados............... 9 4. Exercícios Suplementares............... 9 4.3 Textos Complementares................ 11 1 Unidade

Leia mais

POSSIBILIDADES PARA O PRINCÍPIO DA INDUÇÃO MATEMÁTICA NO CONTEXTO ESCOLAR

POSSIBILIDADES PARA O PRINCÍPIO DA INDUÇÃO MATEMÁTICA NO CONTEXTO ESCOLAR na Contemporaneidade: desafios e possibilidades POSSIBILIDADES PARA O PRINCÍPIO DA INDUÇÃO MATEMÁTICA NO CONTEXTO ESCOLAR Clícia Valladares Peixoto Friedmann Universidade do Estado do Rio de Janeiro cliciavbp@gmail.com

Leia mais

A Torre de Hanói: Uma sequência didática no Ensino Superior

A Torre de Hanói: Uma sequência didática no Ensino Superior A Torre de Hanói: Uma sequência didática no Ensino Superior Leonardo Lira de Brito Universidade Federal de Campina Grande (UFCG)- Leonardoliradebrito@gmail.com Resumo: Este artigo tem como objetivo descrever

Leia mais

Luciana Santos da Silva Martino

Luciana Santos da Silva Martino Sumário APLICAÇÕES DA INDUÇÃO Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 11 de agosto de 2017 Sumário 1 Definição por Recorrência 2 Binômio

Leia mais

TORRE DE HANÓI: UM RECURSO PEDAGÓGICO PARA A EDUCAÇÃO BÁSICA

TORRE DE HANÓI: UM RECURSO PEDAGÓGICO PARA A EDUCAÇÃO BÁSICA Sociedade Brasileira de Matemática Matemática na Contemporaneidade: desafios e possibilidades TORRE DE HANÓI: UM RECURSO PEDAGÓGICO PARA A EDUCAÇÃO BÁSICA Autor: Lucas Batista Paixão Ferreira Instituição:

Leia mais

Material Teórico - Módulo Progressões Aritméticas. Definição e Lei de Formação de uma PA. Primeiro Ano

Material Teórico - Módulo Progressões Aritméticas. Definição e Lei de Formação de uma PA. Primeiro Ano Material Teórico - Módulo Progressões Aritméticas Definição e Lei de Formação de uma PA Primeiro Ano Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto 1 Sequências elementares e

Leia mais

Projeto de Monitoria: Torre de Hanoi

Projeto de Monitoria: Torre de Hanoi Projeto de Monitoria: Torre de Hanoi PURO UFF Matematica Discreta 2010 Professor Orientador: Eduardo Ochs Aluno: Frederico Castelões Nery de Sá 1 A torre de Hanói 1.1 Breve descrição. A torre de Hanói

Leia mais

OFICINA COGNIÇÃO E LÓGICA

OFICINA COGNIÇÃO E LÓGICA OFICINA COGNIÇÃO E LÓGICA A metodologia desenvolvida para aplicação destes módulos obedece a uma estratégia de uso progressivo dos jogos lógicos, graduando os estímulos sensoriais e o grau de dificuldade

Leia mais

OBMEP - Novas Soluções para os Bancos de Questões

OBMEP - Novas Soluções para os Bancos de Questões OBMEP - Novas Soluções para os Bancos de Questões 4 CONTEÚDO Banco 011 7 Banco 01 9 Banco 014 11 Banco 015 13 Banco 017 15 BANCO 011 1 Produto 000 (Problema 68 do Banco) Quantos números naturais de cinco

Leia mais

Os números primos de Fermat complementam os nossos números primos, vejamos: Fórmula Geral P = 2 = 5 = 13 = 17 = 29 = 37 = 41 = Fórmula Geral

Os números primos de Fermat complementam os nossos números primos, vejamos: Fórmula Geral P = 2 = 5 = 13 = 17 = 29 = 37 = 41 = Fórmula Geral Os números primos de Fermat complementam os nossos números primos, vejamos: Fórmula Geral P = 2 = 5 = 13 = 17 = 29 = 37 = 41 = Fórmula Geral 4 4 13 + 1 = 53 Em que temos a fórmula geral: Exatamente um

Leia mais

A CONSTRUÇÃO DO LABORATÓRIO DE ENSINO DE MATEMÁTICA E SUAS CONTRIBUIÇÕES NO PROCESSO DE APRENDIZAGEM

A CONSTRUÇÃO DO LABORATÓRIO DE ENSINO DE MATEMÁTICA E SUAS CONTRIBUIÇÕES NO PROCESSO DE APRENDIZAGEM Revista F@pciência, Apucarana-PR, ISSN 1984-2333, v.3, n. 6, p. 65 71, 2009. A CONSTRUÇÃO DO LABORATÓRIO DE ENSINO DE MATEMÁTICA E SUAS CONTRIBUIÇÕES NO PROCESSO DE APRENDIZAGEM Loreni Aparecida Ferreira

Leia mais

Modelagem com relações de recorrência. Exemplo: Determinada população dobra a cada ano; população inicial = 5 a n = população depois de n anos

Modelagem com relações de recorrência. Exemplo: Determinada população dobra a cada ano; população inicial = 5 a n = população depois de n anos Relações de recorrência 8. RELAÇÕES DE RECORRÊNCIA Introdução a relações de recorrência Modelagem com relações de recorrência Solução de relações de recorrência Exemplos e aplicações Relações de recorrência

Leia mais

Seminário Semanal de Álgebra. Técnicas de Demonstração

Seminário Semanal de Álgebra. Técnicas de Demonstração UNIVERSIDADE FEDERAL DE GOIÁS CÂMPUS CATALÃO Seminário Semanal de Álgebra Técnicas de Demonstração Catalão, 26/11/2013. Universidade Federal de Goiás Campus Catalão Seminário Semanal de Álgebra Orientador:

Leia mais

A UTILIZAÇÃO E APLICAÇÃO DO JOGO TORRE DE HANÓI PARA O ENSINO DE CONCEITOS MATEMÁTICOS MAIS ATRAENTE E EFICAZ

A UTILIZAÇÃO E APLICAÇÃO DO JOGO TORRE DE HANÓI PARA O ENSINO DE CONCEITOS MATEMÁTICOS MAIS ATRAENTE E EFICAZ na Contemporaneidade: desafios e possibilidades A UTILIZAÇÃO E APLICAÇÃO DO JOGO TORRE DE HANÓI PARA O ENSINO DE CONCEITOS MATEMÁTICOS MAIS ATRAENTE E EFICAZ Sergiano Guerra de Oliveira Universidade Cruzeiro

Leia mais

NÚMEROS DE FERMAT. (Pedro H. O. Pantoja, Universidade de Lisboa, Portugal)

NÚMEROS DE FERMAT. (Pedro H. O. Pantoja, Universidade de Lisboa, Portugal) NÚMEROS DE FERMAT (Pedro H. O. Pantoja, Universidade de Lisboa, Portugal) Intrudução: O matemático francês Pierre de fermat (1601-1665) é famoso pelo seu extensivo trabalho em teoria dos números. Suas

Leia mais

TORRE DE HANÓI, UMA PROPOSTA DE ATIVIDADE PARA O ENSINO MÉDIO

TORRE DE HANÓI, UMA PROPOSTA DE ATIVIDADE PARA O ENSINO MÉDIO TORRE DE HANÓI, UMA PROPOSTA DE ATIVIDADE PARA O ENSINO MÉDIO Alexandre da Costa 1 RESUMO Torre de Hanói se caracteriza por ser um jogo que possui aplicações que podem ser basicamente usadas em escolas

Leia mais

Programação Estruturada

Programação Estruturada Programação Estruturada Recursão Professores Emílio Francesquini e Carla Negri Lintzmayer 2018.Q3 Centro de Matemática, Computação e Cognição Universidade Federal do ABC Recursão Recursão 1 Recursão 2

Leia mais

OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE LISTA SEMANAL N o 01 - Data 00/02/2017

OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE LISTA SEMANAL N o 01 - Data 00/02/2017 OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE LISTA SEMANAL N o 01 - Data 00/02/2017 PROBLEMA PARA O NÍVEL I Uma folha de papel quadrada é dobrada na metade e, em seguida, dobrada novamente

Leia mais

Sequências. 1. (Uem 2013) Seja r um número inteiro positivo fixado. Considere a sequência numérica definida por 1 r

Sequências. 1. (Uem 2013) Seja r um número inteiro positivo fixado. Considere a sequência numérica definida por 1 r Sequências. (Uem 03) Seja r um número inteiro positivo fixado. Considere a sequência numérica a definida por r e assinale o que for correto. an an a 0) A soma dos 50 primeiros termos da sequência (a, a,

Leia mais

Veja exemplos de sequências finitas e infinitas: Sequência finita: (5, 7, 9, 11, 13, 15, 17, 19) Sequência infinita (3, 5, 7, 11, 13, 17,...

Veja exemplos de sequências finitas e infinitas: Sequência finita: (5, 7, 9, 11, 13, 15, 17, 19) Sequência infinita (3, 5, 7, 11, 13, 17,... SEQUÊNCIAS NUMÉRICAS Sequência numérica é uma sequência ou sucessão que tem como contradomínio (conjunto de chegada) o conjunto dos números reais. As sequências numéricas podem ser finitas, quando é possível

Leia mais

Torre de Hanói e Sequência de Fibonacci via Transformada Z

Torre de Hanói e Sequência de Fibonacci via Transformada Z Proceeding Series of the Brailian Society of Computational and Applied Mathematics Torre de Hanói e Sequência de Fibonacci via Transformada Z Roy Wilhelm Probst Simone Venturi Universidade Tecnológica

Leia mais

Referências e materiais complementares desse tópico

Referências e materiais complementares desse tópico Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer Conceitos matemáticos e técnicas de prova (Última atualização:

Leia mais

Relações de Recorrência

Relações de Recorrência Relações de Recorrência Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Relações de Recorrência junho - 2018 1 / 102 Este material é preparado usando como referências

Leia mais

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0

Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0 Capítulo 3 Módulo e Função Módular A função modular é uma função que apresenta o módulo na sua lei de formação. No entanto, antes de falarmos sobre funções modulares devemos definir o conceito de módulo,

Leia mais

Módulo Tópicos Adicionais. Recorrências

Módulo Tópicos Adicionais. Recorrências Módulo Tópicos Adicionais Recorrências Módulo Tópico Adicionais Recorrências 1 Exercícios Introdutórios Exercício 1 Considere a sequência definida por x 1 d e x n r + x n 1, para n > 1 Trata-se de uma

Leia mais

Lista de Exercícios 6: Soluções Funções

Lista de Exercícios 6: Soluções Funções UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios 6: Soluções Funções Ciências Exatas & Engenharias o Semestre de 06 Conceitos. Determine e justifique se a seguinte afirmação é verdadeira ou não

Leia mais

Matéria: Raciocínio Lógico-Matemático Concurso: Policial Rodoviário Federal - PRF 2019 Professor: Alex Lira

Matéria: Raciocínio Lógico-Matemático Concurso: Policial Rodoviário Federal - PRF 2019 Professor: Alex Lira Concurso: Policial Rodoviário Federal - PRF 2019 Professor: Alex Lira Prova comentada: Policial Rodoviário Federal PRF 2019 Raciocínio Lógico-Matemático SUMÁRIO CONTEÚDO PROGRAMÁTICO PREVISTO NO EDITAL...

Leia mais

1. n < 100 é uma sentença verdadeira para n = 1, n = 2, n = 3 e outros, mas torna-se falsa para qualquer número natural maior do que 99.

1. n < 100 é uma sentença verdadeira para n = 1, n = 2, n = 3 e outros, mas torna-se falsa para qualquer número natural maior do que 99. Vale para 1, p Renate Watanabe Universidade Mackenzie Neste artigo vamos fazer, inicialmente, algumas afirmações sobre números naturais que são verdadeiras para os números 1, 2, 3 e muitos outros e vamos

Leia mais

Aulas 5 e 6 / 28 e 30 de março

Aulas 5 e 6 / 28 e 30 de março Aulas 5 e / 8 e 30 de março 1 Notação de soma e produto Como expressar a seguinte soma de uma maneira mais concisa? 1 + + 3 3 + + 10? Note que as parcelas são semelhantes, e que a única coisa que varia

Leia mais

Torre de hanoi jogo. Torre de hanoi jogo.zip

Torre de hanoi jogo. Torre de hanoi jogo.zip Torre de hanoi jogo Torre de hanoi jogo.zip Desenho da Torre de Hanói. Como o nome indica, este é um jogo de origem oriental. O material é composto por uma base, onde estão afixados três pequenos bastões

Leia mais

JOGOS Bruno Holanda, Fortaleza CE

JOGOS Bruno Holanda, Fortaleza CE JOGOS Bruno Holanda, Fortaleza CE Nível Iniciante Problemas sobre jogos estão entre os mais atrativos para a maioria dos alunos que estão iniciando o seu gosto pela matemática e, por isso, vêm ganhando

Leia mais

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados.

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados. 11 Sequências e Séries Infinitas Copyright Cengage Learning. Todos os direitos reservados. 11.3 O Teste da Integral e Estimativas de Somas Copyright Cengage Learning. Todos os direitos reservados. O Teste

Leia mais

Meu nome: Minha Instituição:

Meu nome: Minha Instituição: Meu nome: Minha Instituição: . O Teorema Fundamental da Aritmética enuncia que todo número natural maior que ou é primo ou pode ser escrito de forma única, a menos da ordem dos fatores, como produto de

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/20 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

MA14 - Aritmética Unidade 2 Resumo. Divisão Euclidiana

MA14 - Aritmética Unidade 2 Resumo. Divisão Euclidiana MA14 - Aritmética Unidade 2 Resumo Divisão Euclidiana Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte da disciplina e o seu estudo não garante o domínio do assunto. O material

Leia mais

1.1. O jogo Neste jogo parte-se de um tabuleiro com um número ímpar de discos (no caso da figura abaixo são 9), dispostos em linha,

1.1. O jogo Neste jogo parte-se de um tabuleiro com um número ímpar de discos (no caso da figura abaixo são 9), dispostos em linha, 1. Jogo dos saltos 1.1. O jogo Neste jogo parte-se de um tabuleiro com um número ímpar de discos (no caso da figura abaixo são 9), dispostos em linha, e por um conjunto de fichas de 2 cores diferentes

Leia mais

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de :

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de : Sequências Uma sequência é uma função f de em, ou seja. Para todo número natural i associamos um número real por meio de uma determinada regra de formação. A sequencia pode ser denotada por: Ou, por meio

Leia mais

A ATIVIDADE DE MONITORIA NO LABORATÓRIO DE ENSINO DE MATEMÁTICA: A TORRE DE HANÓI

A ATIVIDADE DE MONITORIA NO LABORATÓRIO DE ENSINO DE MATEMÁTICA: A TORRE DE HANÓI A ATIVIDADE DE MONITORIA NO LABORATÓRIO DE ENSINO DE MATEMÁTICA: A TORRE DE HANÓI Ayze Jammylle Batista Ferreira IFPB ayzeifpb@gmail.com Resumo: Este pôster é resultado do trabalho de monitoria no Laboratório

Leia mais

Jogos e Brincadeiras II

Jogos e Brincadeiras II Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. runo Holanda ula 2 Jogos e rincadeiras II Neste artigo continuaremos o assunto iniciado no material anterior. O primeiro exercício,

Leia mais

MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04

MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04 MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04 Para efetuar cálculos, a forma mais eciente de representar os números reais é por meio de expressões decimais. Vamos falar um pouco

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA12 Matemática Discreta Avaliação - GABARITO AV 3 - MA 12 13 de julho de 2013 1. (2,0) Seja (a n ) uma progressão

Leia mais

Afirmações Matemáticas

Afirmações Matemáticas Afirmações Matemáticas Na aula passada, vimos que o objetivo desta disciplina é estudar estruturas matemáticas, afirmações sobre elas e como provar essas afirmações. Já falamos das estruturas principais,

Leia mais

Caderno de Acompanhamento Progressão Aritmética e Função Afim Escola Estadual Judith Vianna. Estudante: Turma:

Caderno de Acompanhamento Progressão Aritmética e Função Afim Escola Estadual Judith Vianna. Estudante: Turma: Estudante: Turma: Sequências A natureza apresenta padrões e regularidades. Dessa forma, muitas teorias matemáticas são desenvolvidas a partir do estudo desses padrões e regularidades. Por exemplo, o estudo

Leia mais

Representação decimal dos números racionais

Representação decimal dos números racionais Representação decimal dos números racionais Alexandre Kirilov Elen Messias Linck 21 de março de 2018 1 Introdução Um número é racional se puder ser escrito na forma a/b, com a e b inteiros e b 0; esta

Leia mais

EQUAÇÕES RELACIONAIS FUZZY E COMO RESOLVÊ-LAS

EQUAÇÕES RELACIONAIS FUZZY E COMO RESOLVÊ-LAS EQUAÇÕES RELACIONAIS FUZZY E COMO RESOLVÊ-LAS PEDRO ALADAR TONELLI 1. Introdução Nosso objetivo é apresentar de uma forma simples o procedimento para achar soluções de uma equação relacional fuzzy para

Leia mais

RESOLUÇÃO DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA Considere a soma. S n = n 2 n 1

RESOLUÇÃO DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA Considere a soma. S n = n 2 n 1 DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA 1 1. Considere a soma S n = 1 2 0 + 2 2 1 + 3 2 2 + + n 2 n 1. Mostre, por indução finita, que S n = (n 1)2 n + 1. Indique claramente a base da indução, a

Leia mais

Aula 4 Aula 5 Aula 6. Ana Carolina Boero. Página:

Aula 4 Aula 5 Aula 6. Ana Carolina Boero.   Página: E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Números naturais Como somos apresentados aos números? Num primeiro momento, aprendemos

Leia mais

EQUAÇÕES FUNCIONAIS PARA OS MAIS JOVENS Ricardo César da Silva Gomes, IFCE, Jaguaribe CE

EQUAÇÕES FUNCIONAIS PARA OS MAIS JOVENS Ricardo César da Silva Gomes, IFCE, Jaguaribe CE EQUAÇÕES FUNCIONAIS PARA OS MAIS JOVENS Ricardo César da Silva Gomes, IFCE, Jaguaribe CE Nível Intermediário Um dos temas mais desafiadores para um olímpico são os problemas sobre equações funcionais.

Leia mais

MA14 - Aritmética Unidade 15 - Parte 2 Resumo

MA14 - Aritmética Unidade 15 - Parte 2 Resumo MA14 - Aritmética Unidade 15 - Parte 2 Resumo Aplicações de Congruências Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante

Leia mais

Comunidade de Prática Virtual Inclusiva Formação de Professores

Comunidade de Prática Virtual Inclusiva Formação de Professores O Mate erial Dourado Montessor ri O material Dourado ou Montessori é constituído por cubinhos, cubão, que representam: barras, placas e Observe que o cubo é formado por 10 placas, que a placa é formada

Leia mais

Capítulo 2. Conjuntos Infinitos

Capítulo 2. Conjuntos Infinitos Capítulo 2 Conjuntos Infinitos Não é raro encontrarmos exemplos equivocados de conjuntos infinitos, como a quantidade de grãos de areia na praia ou a quantidade de estrelas no céu. Acontece que essas quantidades,

Leia mais

Aula 5 Aula 6 Aula 7. Ana Carolina Boero. Página:

Aula 5 Aula 6 Aula 7. Ana Carolina Boero.   Página: E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Números naturais Como somos apresentados aos números? Num primeiro momento, aprendemos

Leia mais

Indução Matemática. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG

Indução Matemática. Profa. Sheila Morais de Almeida. junho DAINF-UTFPR-PG Indução Matemática Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Indução Matemática junho - 2018 1 / 38 Este material é preparado usando como referências os

Leia mais

PEGUE 10. Quantidade: 08 unidades

PEGUE 10. Quantidade: 08 unidades 1 PEGUE 10 Materiais Um tabuleiro e 66 cartas redondas com os numerais de 1 a 7 nas seguintes quantidades: 1 22 cartas; 6-2 cartas; 2-16 cartas; 7-2 cartas; 3-12 cartas; Coringa 1 carta. 4-7 cartas; 5-4

Leia mais

Apresentação do curso

Apresentação do curso Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Apresentação do curso Parte 1 Parte 1 Matemática Básica 1 Parte 1 Matemática Básica

Leia mais

11º ano - Indução matemática

11º ano - Indução matemática 1 O conjunto dos números racionais Q é enumerável, ou seja, é possível atribuir (associar) a cada número racional um número natural Abaixo, os números racionais positivos estão representados na forma de

Leia mais

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE ANA PAULA CHAVES AND THIAGO PORTO 1. Introdução Os temas centrais deste texto - bases numéricas e critérios de divisibilidade

Leia mais

VERMELHOS E AZUIS TRABALHANDO COM NÚMEROS INTEIROS E EXPRESSÕES LINEARES. TÂNIA SCHMITT UNIVERSIDADE DE BRASÍLIA

VERMELHOS E AZUIS TRABALHANDO COM NÚMEROS INTEIROS E EXPRESSÕES LINEARES. TÂNIA SCHMITT UNIVERSIDADE DE BRASÍLIA VERMELHOS E AZUIS TRABALHANDO COM NÚMEROS INTEIROS E EXPRESSÕES LINEARES TÂNIA SCHMITT UNIVERSIDADE DE BRASÍLIA tânia@mat.unb.br CAPÍTULO 1 JOGOS E ATIVIDADES PARA INTRODUÇÃO DE NÚMEROS NEGATIVOS A idéia

Leia mais

Universidade Tecnológica Federal do Paraná UTFPR Câmpus Apucarana. Projeto Novos Talentos Edital CAPES 55/12. Professor Responsável Ivan José Coser.

Universidade Tecnológica Federal do Paraná UTFPR Câmpus Apucarana. Projeto Novos Talentos Edital CAPES 55/12. Professor Responsável Ivan José Coser. 1 Universidade Tecnológica Federal do Paraná UTFPR Câmpus Apucarana Projeto Novos Talentos Edital CAPES 55/12 Professor Responsável Ivan José Coser. Atividades de Matemática Julho 2014 2 1. TANGRAM O TANGRAM

Leia mais

ALGORITMO DE EUCLIDES

ALGORITMO DE EUCLIDES Sumário ALGORITMO DE EUCLIDES Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 25 de agosto de 2017 Sumário 1 Máximo Divisor Comum 2 Algoritmo

Leia mais

MA14 - Unidade 2 Divisão Euclidiana Semana de 08/08 a 14/08

MA14 - Unidade 2 Divisão Euclidiana Semana de 08/08 a 14/08 MA14 - Unidade 2 Divisão Euclidiana Semana de 08/08 a 14/08 Divisão Euclidiana Mesmo quando um número natural a não divide o número natural b, Euclides 1, nos seus Elementos, utiliza, sem enunciá-lo explicitamente,

Leia mais

MATEMÁTICA Sequência & Progressões 1. Professor Marcelo Gonsalez Badin

MATEMÁTICA Sequência & Progressões 1. Professor Marcelo Gonsalez Badin MATEMÁTICA Sequência & Progressões 1 Professor Marcelo Gonsalez Badin Seqüência Série Sucessão {2, 3, 5, 10} = {3, 10, 2, 5} Num conjunto não importa a ordem na qual os elementos são apresentados Conjunto

Leia mais

Bases Matemáticas. Como o Conhecimento Matemático é Construído. Aula 2 Métodos de Demonstração. Rodrigo Hausen. Definições Axiomas.

Bases Matemáticas. Como o Conhecimento Matemático é Construído. Aula 2 Métodos de Demonstração. Rodrigo Hausen. Definições Axiomas. 1 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2012-9-21 1/15 Como o Conhecimento Matemático é Construído 2 Definições Axiomas Demonstrações Teoremas Demonstração: prova de que um

Leia mais

PROGRESSÃO ARITMÉTICA

PROGRESSÃO ARITMÉTICA Hewlett-Packard PROGRESSÃO ARITMÉTICA Aulas 01 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 018 Sumário Progressão Aritmética... 1 PRELIMINAR 1... 1 Definição de progressão aritmética

Leia mais

Aritmética. Somas de Quadrados

Aritmética. Somas de Quadrados Aritmética Somas de Quadrados Carlos Humberto Soares Júnior PROFMAT - SBM Objetivo Determinar quais números naturais são soma de dois quadrados. PROFMAT - SBM Aritmética, Somas de Quadrados slide 2/14

Leia mais

Lista de Exercícios da Primeira Semana Análise Real

Lista de Exercícios da Primeira Semana Análise Real Lista de Exercícios da Primeira Semana Análise Real Nesta lista, a n, b n, c n serão sempre sequências de números reais.. Mostre que todo conjunto ordenado com a propriedade do supremo possui a propriedade

Leia mais

José Paulo Carneiro (0; 0) (0; 1) (0; 2) (0; 3) (1; 0) (1; 1) (1; 2) (1; 3) (2; 0) (2; 1) (2; 2) (2; 3) (3; 0) (3; 1) (3; 2) (3; 3)

José Paulo Carneiro (0; 0) (0; 1) (0; 2) (0; 3) (1; 0) (1; 1) (1; 2) (1; 3) (2; 0) (2; 1) (2; 2) (2; 3) (3; 0) (3; 1) (3; 2) (3; 3) A ENUMERABILIDADE DE E O CHÃO TRIANGULAR José Paulo Carneiro Nível Intermediário < < é < < e

Leia mais

Escalas em Gráficos. Pré-Cálculo. Cuidado! Cuidado! Humberto José Bortolossi. Parte 4. Um círculo é desenhado como uma elipse.

Escalas em Gráficos. Pré-Cálculo. Cuidado! Cuidado! Humberto José Bortolossi. Parte 4. Um círculo é desenhado como uma elipse. Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Escalas em Gráficos Parte 4 Parte 4 Pré-Cálculo 1 Parte 4 Pré-Cálculo 2 Cuidado! Cuidado! Um círculo

Leia mais

MA14 - Aritmética Unidade 3. Divisão nos Inteiros (Divisibilidade)

MA14 - Aritmética Unidade 3. Divisão nos Inteiros (Divisibilidade) MA14 - Aritmética Unidade 3 Divisão nos Inteiros (Divisibilidade) Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio

Leia mais

MATEMÁTICA A - 11.o Ano. Propostas de resolução

MATEMÁTICA A - 11.o Ano. Propostas de resolução MATEMÁTICA A -.o Ano Sucessões Propostas de resolução Exercícios de exames e testes intermédios. Designado por a o maior dos dois termos considerados da progressão geométrica, e por b 0 menor, como a razão

Leia mais

Matemática Discreta - 05

Matemática Discreta - 05 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 05 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

28. Prove ou apresente um contra-exemplo: O produto de quaisquer três inteiros consecutivos é par.

28. Prove ou apresente um contra-exemplo: O produto de quaisquer três inteiros consecutivos é par. 56 Demonstrações, Recursão e Análise de Algoritmo 24. Suponha que você usou os passos do Exemplo 9 para tentar mostrar que não é um número racional. Em qual passo a prova não seria válida? 25. Prove que

Leia mais

Bases Matemáticas. Relembrando: representação geométrica para os reais 2. Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos

Bases Matemáticas. Relembrando: representação geométrica para os reais 2. Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos 1 Bases Matemáticas Aula 8 Números Reais: módulo ou valor absoluto, raízes, intervalos Rodrigo Hausen 10 de outubro de 2012 v. 2012-10-15 1/34 Relembrando: representação geométrica para os reais 2 Uma

Leia mais

PROFMAT Exame de Qualificação Gabarito

PROFMAT Exame de Qualificação Gabarito PROFMAT Exame de Qualificação 2012-1 Gabarito 1. (10pts) Um corpo está contido num ambiente de temperatura constante. Decorrido o tempo (em minutos), seja a diferença entre a temperatura do corpo e do

Leia mais

MA21: Resolução de Problemas - gabarito da primeira prova

MA21: Resolução de Problemas - gabarito da primeira prova MA21: Resolução de Problemas - gabarito da primeira prova Problema 1 (2 pontos) Prove que a maior área dentre todos os retângulos de perímetro 1 é atingida por um quadrado. Dificuldade: MUITO FÁCIL Sejam

Leia mais

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 Neste curso, consideraremos o conjunto dos números naturais como sendo o conjunto N = {0, 1, 2, 3,... }, denotando por N o conjunto N \ {0}. Como

Leia mais

SOFTWARES EDUCATIVOS

SOFTWARES EDUCATIVOS UNIVERSIDADE FEDERAL DO RIO DE JANEIRO NÚCLEO DE COMPUTAÇÃO ELETRÔNICA - NCE PROGRAMA DE PÓS-GRADUAÇÃO EM TECNOLOGIAS DA INFORMAÇÃO APLICADAS À EDUCAÇÃO - PGTIAE SOFTWARES EDUCATIVOS Anne Caroline de Oliveira

Leia mais

Jogos e invariantes. 6 de Janeiro de 2015

Jogos e invariantes. 6 de Janeiro de 2015 Jogos e invariantes 6 de Janeiro de 2015 Resumo Objetivos principais da aula de hoje: continuar com a ideia de explorar problemas. Apresentar a ideia de invariantes. 1 O jogo de apagar - introdução Quem

Leia mais

Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito

Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito Capítulo 2 Conjuntos Infinitos Um exemplo de conjunto infinito é o conjunto dos números naturais: mesmo tomando-se um número natural n muito grande, sempre existe outro maior, por exemplo, seu sucessor

Leia mais

MA14 - Aritmética Unidade 6 - Parte 3 Resumo

MA14 - Aritmética Unidade 6 - Parte 3 Resumo MA14 - Aritmética Unidade 6 - Parte 3 Resumo A Equação Pitagórica Abramo Hefez PROFMAT - SBM Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio

Leia mais

Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II

Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II 1 Introdução à Teoria dos Números - Notas 4 Tópicos Adicionais II 1 O Anel dos Inteiros Módulo n Consideremos um número natural n 2 fixado Para cada número inteiro a definimos a = {x Z; x a mod n} Como

Leia mais

Interpolação polinomial: Diferenças divididas de Newton

Interpolação polinomial: Diferenças divididas de Newton Interpolação polinomial: Diferenças divididas de Newton Marina Andretta ICMC-USP 16 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500

Leia mais

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível

Leia mais

MA14 - Aritmética Unidade 1 Resumo. Divisibilidade

MA14 - Aritmética Unidade 1 Resumo. Divisibilidade MA14 - Aritmética Unidade 1 Resumo Divisibilidade Abramo Hefez PROFMAT - SBM Julho 2013 Aviso Este material é apenas um resumo de parte do conteúdo da disciplina e o seu estudo não garante o domínio do

Leia mais

Centro Estadual de Educação de Jovens e Adultos de Votorantim

Centro Estadual de Educação de Jovens e Adultos de Votorantim Centro Estadual de Educação de Jovens e Adultos de Votorantim PROGRESSÕES PROGRESSÃO NUMÉRICA - é uma seqüência ou sucessão de números que obedecem a um raciocínio lógico. Sequências: Considere um campeonato

Leia mais

(b) O limite o produto é o produto dos limites se o limite de cada fator do produto existe, ou seja, (c) O limite do quociente é o quociente dos limit

(b) O limite o produto é o produto dos limites se o limite de cada fator do produto existe, ou seja, (c) O limite do quociente é o quociente dos limit MATEMÁTICA I AULA 03: LIMITES DE FUNÇÃO, CÁLCULO DE LIMITES E CONTINUIDADES TÓPICO 02: CÁLCULO DE LIMITES Neste tópico serão estudadas as técnicas de cálculo de limites de funções algébricas, usando alguns

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2015.2 21 de

Leia mais

Semana Olímpica 2019

Semana Olímpica 2019 Semana Olímpica 2019 Prof a Ana Paula Chaves apchaves.math@gmail.com Nível U Formas Lineares em Logaritmos à la Baker 1. Algébricos x Transcendentes Um número algébrico é qualquer raiz, real ou complexa,

Leia mais

4.1 O exercício de Fibonacci

4.1 O exercício de Fibonacci Capítulo 4 Números de Fibonacci 4.1 O exercício de Fibonacci No século XIII, o matemático italiano Leonardo Fibonacci estudou a seguinte questão (não tão realística): Leonardo Fibonacci Um fazendeiro cria

Leia mais

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço Universidade Federal de Alagoas Instituto de Ciências e Biológicas e da Saúde BIOB-003 Biomatemática Prof. Marcos Vinícius Carneiro Vital - Por si só, boa parte do conteúdo desta aula pode parecer mais

Leia mais