(b) O limite o produto é o produto dos limites se o limite de cada fator do produto existe, ou seja, (c) O limite do quociente é o quociente dos limit

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "(b) O limite o produto é o produto dos limites se o limite de cada fator do produto existe, ou seja, (c) O limite do quociente é o quociente dos limit"

Transcrição

1 MATEMÁTICA I AULA 03: LIMITES DE FUNÇÃO, CÁLCULO DE LIMITES E CONTINUIDADES TÓPICO 02: CÁLCULO DE LIMITES Neste tópico serão estudadas as técnicas de cálculo de limites de funções algébricas, usando alguns teoremas que serão demonstrados ou sugeridos para demonstração no texto complementar sugerido para leitura no final deste tópico. O tópico é finalizado, tratando do cálculo de limites de funções envolvendo seno e co-seno. O estudo inicial do cálculo de limites, pode ser considerado em três fases, além de uma abordagem para calcular limites de funções envolvendo seno e co-seno, de acordo como segue. Inicialmente, serão vistos os limites unilaterais e bilaterais finitos (conforme classificação estabelecida no tópico 1 desta aula - clique para abrir), isto é, os limites representados pelo símbolo: CLASSIFICAÇÃO ESTABELECIDA NO TÓPICO 1 DESTA AULA - CLIQUE PARA ABRIR onde x c pode ser substituído por x c - ou x c +. Os teoremas 1 e 2 a seguir, são utilizados no cálculo de limites finitos, suas demonstrações serão feitas no texto complementar deste tópico e que está indicado no final do tópico. TEOREMA 1 Se a e b são números reais fixos, então TEOREMA 2 Se então: (a) O limite da soma ou diferença é a soma ou diferença dos limites se o limite de cada parcela da soma existe, isto é,

2 (b) O limite o produto é o produto dos limites se o limite de cada fator do produto existe, ou seja, (c) O limite do quociente é o quociente dos limites se o limite da função do numerador existe e o limite da função do denominador existe e é diferente de zero, isto é, (d) O limite da raiz n-ésima de uma função está bem definido, o seu valor é a raiz n-ésima do limite da função, desde que exista a raiz n-ésima do limite da função, ou seja, Do teorema (1), obtém-se: I) se a = 0 e II) se a = 1 e b = 0. Em (i) significa que o limite da função constante (É a função cujo domínio é o conjunto dos reais e a imagem de todo valor do domínio é um único número real. (conforme definida no tópico 2 da aula 02)) é igual à própria constante. E (ii) significa que o limite da função identidade (É a função cujo domínio é o conjunto dos reais e a imagem de todo número real é o próprio número, assim definida pela equação y = f(x) = x (conforme definida no tópico 2 da aula 02)) quando x c é igual a c. Os itens (a) e (b) do teorema 2, podem ser estendidos para um número finito de funções. Mais precisamente, se então: (iii) (iv) Se, decorrente de (iv), tem-se (v) Nos teoremas 1 e 2, x c pode ser substituído por x c - ou x c + O exemplo seguinte ilustra a aplicação dos teoremas 1 e 2 no cálculo de limites. EXEMPLO RESOLVIDO 1: Calcular os limites indicados: a)

3 b) SOLUÇÃO (a) Dos resultados (i) e (ii), tem-se: Pelo resultado (v), Logo, pelo teorema 2(b), Portanto, pelo resultado (iii), EXEMPLO PROPOSTO 1: Calcular os limites dados para concluir os valores indicados: Se f é uma função definida por duas ou mais equações, então para determinar o limite bilateral de f, em certos casos, deve-se considerar o critério de existência do limite bilateral (O <img src=imagens/02/02_22.gif align=absmiddle> existe e é igual a L se, e somente se, os <img src=imagens/02/02_23.gif align=absmiddle> e <img src=imagens/02/02_24.gif align=absmiddle> existem e são iguais a L. ) estabelecido no tópico 1 desta aula. O exemplo seguinte ilustra o procedimento.

4 EXEMPLO RESOLVIDO 2: Dada a função, verificar se o limite indicado existe e caso exista, dar o seu valor: SOLUÇÃO (a) Para calcular o limite de f(x) quando x tende a 2 pela esquerda, deve-se considerar f(x) = -x 2 + 2x + 3, pois quando x 2 - tem-se x 2. Assim Por motivos análogos, Como os limites unilaterais de f quando x tende a 2, existem e são iguais a 3, obtém-se (b) Tem-se Como os limites unilaterais de g quando x tende a -1 têm valores diferentes, o não existe. valor: EXEMPLO PROPOSTO 2: Dada a função, verificar se o limite indicado existe, caso exista, dar o seu Se e diz-se que o tem a FORMA INDETERMINADA 0/0,onde x c pode ser substituído por x c - ou x c + Existem ainda outras formas indeterminadas, que serão estudadas na aula 08. O exemplo seguinte, ilustra o procedimento para calcular alguns limites que têm a forma indeterminada 0/0.

5 EXEMPLO RESOLVIDO 3: Calcular os limites indicados: SOLUÇÃO Uma verificação simples mostra que os quatro limites têm a forma indeterminada do tipo 0/0. (a) Usando a fatoração a 2 - b 2 = (a - b)(a + b) com a = x e b = 2 obtém-se x 2-4 = x = (x - 2)(x + 2). De outra forma é como a seguir: como x = 2 é uma raiz da equação x 2-4 = 0, a expressão x 2-4 pode ser fatorada com um fator igual a x - 2, assim a divisão de x 2-4 por x - 2 é exata, isto é, logo x 2-4 = (x - 2)(x + 2). Portanto, tem-se onde foi possível a simplificação porque x o valor de x está apenas próximo de 2. 0, pois quando x (b) Usando a fatoração a 3 + b 3 = (a + b)(a 2 - ab + b 2 ), com a = x e b = 1, tem-se x = (x + 1)(x 2 - x + 1). De outra forma é como a seguir: como x = -1 é uma raiz da equação x = 0, a expressão x pode ser fatorada com um fator igual a x - (-1) = x + 1, assim a divisão de x por x + 1 é exata, ou seja,

6 logo x = (x + 1)(x 2 - x + 1). Usando um dos procedimentos, tem-se ainda que x 2-1 = (x - 1)(x + 1). Portanto, obtém-se (c) Inicialmente é necessário racionalizar o numerador do quociente usando a fatoração a 2 - b 2 = (a - b)(a + b), onde se multiplica o numerador e denominador do quociente por a + b com e b = 2 (isto é, o conjugado de ), ou ainda usando a fórmula com e b = 2 para achar assim (optando pela primeira alternativa) logo O limite pode ser efetuado ainda, fazendo o que se chama uma mudança de variável, como a seguir. Seja, então x=z 2 e x 4 - z 2 -, logo MUDANÇA DE VARIÁVEL O limite é classificado de acordo com a variação de x ou de y, mais precisamente, em limite: Assim, pode-se ter, por exemplo: (d) Inicialmente é necessário racionalizar o numerador do quociente, usando a fatoração a 3 - b 3 = (a - b)(a 2 + ab + b 2 ), onde se multiplica o numerador e denominador do quociente por a 2 + ab + b 2 com e ou então se utiliza a fórmula

7 com assim (optando pela segunda alternativa) logo Não é sugestivo usar a última sistemática do ítem anterior (isto é, mudança de variável) para calcular limites com dois ou mais radicais de expressões diferentes. EXEMPLO PROPOSTO 3: Calcular os limites dados para concluir os valores indicados: Considere agora os limites finitos no infinito (conforme classificação estabelecida no tópico 1 desta aula), isto é, os limites representados pelos símbolos CLASSIFICAÇÃO ESTABELECIDA NO TÓPICO 1 DESTA AULA O limite é classificado de acordo com a variação de x ou de y, mais precisamente, em limite: Assim, pode-se ter, por exemplo:

8 e No teorema 1 com a = 0 (isto é, se a função é constante) e no teorema 2, x c pode ser substituído por ou. O teorema seguinte, mais precisamente o seu corolário, poderá ser útil para calcular limites no infinito, a demonstração do teorema 3(a) será feita no texto complementar deste tópico e que está indicado no final deste tópico. TEOREMA 3 Se n é um número inteiro positivo fixo, então: Combinando os teoremas 1, 2(c) e 3, segue-se o seguinte resultado. COROLÁRIO. Se r um número real e n é um número inteiro positivo fixos, então: O exemplo seguinte ilustra o cálculo de limites finitos no infinito. EXEMPLO RESOLVIDO 4: Calcular os limites indicados: SOLUÇÃO (a) Dividindo por x o numerador e o denominador do quociente, tem-se Pelo corolário, Pelo teorema 1,

9 Pelo teorema 2(a), Logo, pelo teorema 2(c), (b) Dividindo o numerador e o denominador do quociente por x 4 tem-se (c) Dividindo o numerador e o denominador do quociente por x e no numerador pondo (pois os valores que x está assumindo são positivos, veja propriedade (a) do valor absoluto, temse PROPRIEDADE (A) DO VALOR ABSOLUTO Dado um número real a, o valor absoluto de a é indicado por e definido por Por exemplo: O valor absoluto tem as seguintes propriedades:

10 (d) Dividindo o numerador e o denominador do quociente por x e no numerador pondo (pois os valores que x está assumindo são negativos), obtém-se EXEMPLO PROPOSTO 4: Calcular os limites indicados para concluir os valores dados: Finalmente, sejam os limites infinitos (conforme classificação estabelecida no tópico 1 desta aula), ou seja, os limites representados pelos símbolos CLASSIFICAÇÃO ESTABELECIDA NO TÓPICO 1 DESTA AULA e onde x c pode ser substituído por x c -, x c +, x - ou x +. Observe que nesta etapa estão incluídos os limites infinitos no infinito, ou seja, os limites representados pelos símbolos. Os teoremas 1 e 2 não podem ser usados para calcular limites infinitos, pois os limites infinitos não existem. O seguinte teorema poderá ser útil para calcular limites infinitos, a demonstração da parte (a) será feita no texto complementar deste tópico e que está indicado no final deste tópico.

11 TEOREMA 4 Sejam e, então: OBSERVAÇÃO O teorema continua válido se x c for substituído por x c -, x c +, x - ou x +. O teorema 4 não se aplica quando forma indeterminada 0/0 para, neste caso tem-se a que já foi abordada. O limite bilateral infinito só pode ser determinado a partir dos limites unilaterais, devido a utilização do símbolo, conforme foi definido no tópico 1 desta aula item (b5) da alternativa do esquema (Tal item define que: se para x tendendo a c de um lado, y = f(x) <img src=02_seta.gif align=absmiddle> -<img src=02_99a.gif align=absmiddle> (ou y <img src=02_seta_0000.gif align=absmiddle> +<img src=02_99a_0000.gif align=absmiddle>) e do outro lado y <img src=02_seta_0001.gif align=absmiddle> +<img src=02_99a_0001.gif align=absmiddle> (ou y <img src=02_seta_0002.gif align=absmiddle> -<img src=02_99a_0002.gif align=absmiddle>), diz-se que x <img src=02_seta_0003.gif align=middle> c implica que y = f(x) <img src=02_seta_0004.gif align=middle> <img src=02_99a_0003.gif align=middle> (infinito sem os símbolos - ou +), isto é x <img src=02_seta_0005.gif align=middle> c <img src=02_seta2.gif align=middle> y = f(x) <img src=02_seta_0006.gif><img src=02_99a_0004.gif align=middle>, ou ainda, <img src=02_ff.gif align=absmiddle). O exemplo seguinte ilustra o cálculo de limites infinitos. EXEMPLO RESOLVIDO 5: Calcular os limites indicados: SOLUÇÃO (a) Tem-se

12 então de acordo com o teorema 4, o é infinito e conforme foi mencionado é necessário calcular os limites unilaterais. Se x < 2 então x - 2 < 0 e x - 3 < 0, daí x 2-5x + 6 = (x - 2)(x - 3) > 0 se x < 2. Assim, se x 2 - então x 2-5x A conclusão que x 2-5x pode ser obtida também da seguinte forma, embora com ausência de rigor: como x 2-5x + 6 = 0 se x = 2 ou x = 3, então em outros valores x 2-5x + 6 é < 0 ou > 0 daí nos intervalos (-, 2), (2, 3) e (3, + ), a expressão x 2-5x + 6 assume somente valores negativos ou positivos, assim atribuindo um valor a x em cada intervalo se obtém o sinal desta expressão no intervalo, de acordo com a figura a seguir. Logo, se x < 2 então x 2-5x + 6 > 0 e daí x 2-5x se x 2 -. Assim, e x 2-5x se x 2 -, pelo teorema 4(a), Se x > 2 então x - 2 > 0 e se x < 3 então x - 3 < 0, daí x 2-5x + 6 = (x - 2)(x - 3) < 0 se 2 < x < 3. Assim, se x 2 + então x 2-5x Também, observando a figura anterior, tem-se x 2-5x + 6 < 0 se 2 < x < 3, então x 2-5x se x 2 +. Logo e se x 2-5x se x 2 +, pelo teorema 4(b), Portanto, por (I) e (II), (b) Dividindo o numerador e o denominador do quociente por x 2 tem-se Como e se x - implica que pois se x < -3, pelo teorema 4(b),

13 EXEMPLO PROPOSTO 5: Calcular os limites dados para concluir os valores indicados: O restante deste tópico será dedicado aos limites do grupo de funções envolvendo as funções seno e co-seno que têm a forma indeterminada 0/0. É sugestivo que o aluno leia novamente o texto AngMedTrigonometria.doc ou clique aqui para abrir (Visite a aula online para realizar download deste arquivo.) indicado no final do tópico 2 da aula 02. Tais limites não podem ser calculados através do uso dos métodos já abordados, o limite seguinte, conhecido como limite fundamental, pode ser útil no cálculo de tais limites: Para mostrar este último limite é necessário o seguinte teorema, sua demonstração será feita no texto complementar indicado no final deste tópico. TEOREMA 5 Sejam f, g e h funções definidas num intervalo aberto I contendo c, exceto talvez em c, onde f(x) g(x) h(x) para todo x em I com x c. Se e, então. O teorema continua válido se x c for substituído por x c -, x c +, x - ou x +. DEMONSTRAÇÃO DO LIMITE FUNDAMENTAL Para mostrar que, será usado o critério de existência do limite bileteral estabelecido no tópico 1 desta aula, isto é, será provado que Inicialmente, considere e a figura seguinte.

14 Comparando as áreas do triângulo OBP, do setor circular OBP e do triângulo OBQ, tem-se OBQ),> (área do OBP) < (área do setor circular OBP) < (área do ou seja, mas, logo fazendo as substituições nas desigualdades, obtém-se como é positivo (pois ), multiplicando por cada membro da última desigualdade, encontra-se, ou seja, Como, desta última desigualdade e do teorema 5, tem-se tem-se Seja agora, então. Logo, do resultado obtido, mas sen(-t) = - sen t e t 0 - quando -t 0 +, assim O exemplo seguinte ilustra a aplicação do limite demonstrado. EXEMPLO RESOLVIDO 6: Mostrar que: SOLUÇÃO (a) Tem-se

15 mas e logo (pelo teorema 2(b) deste tópico) Portanto, (b) Para mostrar esse limite, será usada a identidade. Do teorema 2(b) deste tópico e item (a) deste exemplo, tem-se, assim (ainda pelo teorema 2(b)) assim (pelo teorema 2(a) deste tópico) fazendo x = 2t, tem-se t 0 x 0, logo EXEMPLO PROPOSTO 6: Provar que: EXEMPLO RESOLVIDO 7: Calcular os limites indicados: SOLUÇÃO Como (a) Observe que o limite dado tem a forma indeterminada 0/0. e além disso

16 tem-se (b) O limite dado tem a forma indeterminada 0/0. Como se t = 2x e x 0 equivale a t 0, tem-se EXEMPLO PROPOSTO 7: Calcular os limites dados para concluir os valores indicados: Outros resultados importantes sobre limites que serão tratados no texto complementar indicado no final deste tópico são os seguintes: (clique aqui para abrir). EXEMPLO RESOLVIDO 8: É possível mostrar que não existe (veja o exercício 66(a) do exercitando deste tópico), entretanto mostrar que SOLUÇÃO Tem-se e para qualquer valor de x 0 (isto é, é limitada para todo x 0), portanto do resultado (ii), segue-se que EXEMPLO PROPOSTO 8:

17 Mostrar que. Sugestão: fazer LEITURA COMPLEMENTAR O texto Limites com e trata da segund a etapa do estudo dos limites, fazendo uma abordagem rigorosa do tema. Não exigiremos nenhum conhecimento deste assunto neste módulo, mas alguns resultados além de já terem sido usados neste tópico, continuarão sendo indispensáveis e serão aplicados. É recomendável, pelo menos uma leitura atenciosa. Para isso, vá para a seção Material de Apoio do ambiente SOLAR e baixe o arquivo "LimitesComEpsilonEDelta.doc" ou clique aqui (Visite a aula online para realizar download deste arquivo.). ATIVIDADE DE PORTFÓLIO Vá à seção Material de Apoio do ambiente SOLAR e baixe o arquivo exercitando(aula03_top2).doc ou clique aqui para abrir (Visite a aula online para realizar download deste arquivo.). Resolva a quantidade máxima de exercícios que puder, individualmente ou em grupo. A quinta questão do trabalho será indicada no tópico seguinte desta aula. É exigido que o trabalho desta aula seja postado no Portfólio, no período indicado na Agenda do ambiente Solar, num único documento de texto (doc ou docx) ou manuscrito e escaneado. FONTES DAS IMAGENS Responsável:Prof. José Othon Dantas Lopes Universidade Federal do Ceará - Instituto UFC Virtual

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo CÁLCULO DIFERENCIAL INTEGRAL AULA 09: INTEGRAL INDEFINIDA E APLICAÇÕES TÓPICO 01: INTEGRAL INDEFINIDA E FÓRMULAS DE INTEGRAÇÃO Como foi visto no tópico 2 da aula 4 a derivada de uma função f representa

Leia mais

MATEMÁTICA I AULA 03: LIMITES DE FUNÇÃO, CÁLCULO DE LIMITES E CONTINUIDADES TÓPICO 03: CONTINUIDADES Este tópico trata dos conceitos de continuidade de funções num valor e num intervalo, a compreensão

Leia mais

MATEMÁTICA I AULA 07: TESTES PARA EXTREMOS LOCAIS, CONVEXIDADE, CONCAVIDADE E GRÁFICO TÓPICO 02: CONVEXIDADE, CONCAVIDADE E GRÁFICO Este tópico tem o objetivo de mostrar como a derivada pode ser usada

Leia mais

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A MATEMÁTICA PARA ADMINISTRADORES AULA 03: ÁLGEBRA LINEAR E SISTEMAS DE EQUAÇÕES LINEARES TÓPICO 02: SISTEMA DE EQUAÇÕES LINEARES Considere o sistema linear de m equações e n incógnitas: O sistema S pode

Leia mais

Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites. José Natanael Reis

Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites. José Natanael Reis Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites Este trabalho tem como foco, uma abordagem sobre a teoria dos limites. Cujo objetivo é o método para avaliação da disciplina

Leia mais

que o aluno consiga construir uma base sólida de conhecimento, o que o ajudará de forma decisiva no decorrer do seu curso e de toda sua vida acadêmica

que o aluno consiga construir uma base sólida de conhecimento, o que o ajudará de forma decisiva no decorrer do seu curso e de toda sua vida acadêmica MATEMÁTICA I AULA 01: FUNÇÃO E OPERAÇÕES COM FUNÇÕES TÓPICO 01: CONCEITO DE FUNÇÃO MULTIMÍDIA Ligue o som do seu computador! OBS.: Alguns recursos de multimídia utilizados em nossas aulas, como vídeos

Leia mais

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 bras.png Cálculo I Logonewton.png Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 Objetivos da Aula: Definir limite de uma função Definir limites laterias Apresentar as propriedades operatórias

Leia mais

LIMITES E CONTINUIDADE

LIMITES E CONTINUIDADE LIMITES E CONTINUIDADE Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 NOÇÃO INTUITIVA DE LIMITE

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

Consideremos uma função definida em um intervalo ] [ e seja ] [. Seja um acréscimo arbitrário dado a, de forma tal que ] [.

Consideremos uma função definida em um intervalo ] [ e seja ] [. Seja um acréscimo arbitrário dado a, de forma tal que ] [. 6 Embora o conceito de diferencial tenha sua importância intrínseca devido ao fato de poder ser estendido a situações mais gerais, introduziremos agora esse conceito com o objetivo maior de dar um caráter

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Tópicos de Matemática Elementar 2 a série de exercícios 2004/05. A seguinte prova por indução parece correcta, mas para n = 6 o lado esquerdo é igual a 2 + 6 + 2 + 20 + 30 = 5 6, enquanto o direito é igual

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

Cálculo Diferencial e Integral I CDI I

Cálculo Diferencial e Integral I CDI I Cálculo Diferencial e Integral I CDI I Limites laterais e ites envolvendo o infinito Luiza Amalia Pinto Cantão luiza@sorocaba.unesp.br Limites 1 Limites Laterais a à diretia b à esquerda c Definição precisa

Leia mais

Aula 1. e o conjunto dos inteiros é :

Aula 1. e o conjunto dos inteiros é : Aula 1 1. Números reais O conjunto dos números reais, R, pode ser visto como o conjunto dos pontos da linha real, que serão em geral denotados por letras minúsculas: x, y, s, t, u, etc. R é munido de quatro

Leia mais

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010 Notas de Aula Disciplina Matemática Tópico 0 Licenciatura em Matemática Osasco -010 Equações Polinomiais do primeiro grau Significado do termo Equação : As equações do primeiro grau são aquelas que podem

Leia mais

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de

Leia mais

Volume de um gás em um pistão

Volume de um gás em um pistão Universidade de Brasília Departamento de Matemática Cálculo Volume de um gás em um pistão Suponha que um gás é mantido a uma temperatura constante em um pistão. À medida que o pistão é comprimido, o volume

Leia mais

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados. Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade

Leia mais

REVISÃO DE ALGUMAS MATÉRIAS

REVISÃO DE ALGUMAS MATÉRIAS Análise Matemática MIEC /4 REVISÃO DE ALGUMAS MATÉRIAS INEQUAÇÕES Uma das propriedades das inequações mais vezes ignorada é a que decorre da multiplicação de ambos os membros por um valor negativo. No

Leia mais

CÁLCULO I. 1 Derivada de Funções Elementares

CÁLCULO I. 1 Derivada de Funções Elementares CÁLCULO I Prof. Marcos Diniz Prof. Edilson Neri Prof. André Almeida Aula n o : Derivada das Funções Elementares. Regras de Derivação. Objetivos da Aula Apresentar a derivada das funções elementares; Apresentar

Leia mais

Cálculo Diferencial e Integral Química Notas de Aula

Cálculo Diferencial e Integral Química Notas de Aula Cálculo Diferencial e Integral Química Notas de Aula João Roberto Gerônimo 1 1 Professor Associado do Departamento de Matemática da UEM. E-mail: jrgeronimo@uem.br. ÍNDICE 1. INTRODUÇÃO Esta notas de aula

Leia mais

1). Tipos de equações. 3). Etapas na resolução algébrica de equações numéricas. 4). Os dois grandes cuidados na resolução de equações

1). Tipos de equações. 3). Etapas na resolução algébrica de equações numéricas. 4). Os dois grandes cuidados na resolução de equações 1). Tipos de equações LIÇÃO 7 Introdução à resolução das equações numéricas Na Matemática, nas Ciências e em olimpíadas, encontramos equações onde a incógnita pode ser número, função, matriz ou outros

Leia mais

Material Teórico - Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas. Produtos Notáveis. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas. Produtos Notáveis. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Produtos Notáveis e Fatoração de Epressões Algébricas Produtos Notáveis Oitavo Ano Prof. Ulisses Lima Parente Uma identidade algébrica é uma equação em que os dois membros

Leia mais

3 Limites. Exemplo 3.1

3 Limites. Exemplo 3.1 3 Ao expor o método dos incrementos fizemos uso da expressão limite. Muito mais que uma notação a noção de limite alcança um horizonte bem mais amplo dentro do contexto matemático, na realidade muito pouco

Leia mais

Material Teórico - Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas. Produtos Notáveis. Oitavo Ano

Material Teórico - Módulo de Produtos Notáveis e Fatoração de Expressões Algébricas. Produtos Notáveis. Oitavo Ano Material Teórico - Módulo de Produtos Notáveis e Fatoração de Epressões Algébricas Produtos Notáveis Oitavo Ano Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto Uma identidade algébrica

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

Conjunto dos Números Complexos

Conjunto dos Números Complexos Conjunto dos Unidade Imaginária Seja a equação: x + 0 Como sabemos, no domínio dos números reais, esta equação não possui solução, criou-se então um número cujo quadrado é. Esse número, representado pela

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental Material Teórico - Módulo Equações do Segundo Grau Equações de Segundo Grau: outros resultados importantes Nono Ano do Ensino Funcamental Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio

Leia mais

Limite e continuidade

Limite e continuidade Limite e continuidade Noção intuitiva de ite Considere a função f qualquer que seja o número real o Eemplo Se f ( ) Esta função está definida para todo R, isto é, f está bem definido, o valor ( ) o então

Leia mais

4.1 Cálculo do mdc: algoritmo de Euclides parte 1

4.1 Cálculo do mdc: algoritmo de Euclides parte 1 page 92 92 ENCONTRO 4 4.1 Cálculo do mdc: algoritmo de Euclides parte 1 OAlgoritmodeEuclidesparaocálculodomdcbaseia-senaseguintepropriedade dos números naturais. Observamos que essa propriedade está muito

Leia mais

Técnicas de. Integração

Técnicas de. Integração Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO 7.4 Integração de Funções Racionais por Frações Parciais Nessa seção, vamos aprender como integrar funções racionais reduzindo-as a uma soma de

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Aula 05 - Erivaldo MATEMÁTICA BÁSICA

Aula 05 - Erivaldo MATEMÁTICA BÁSICA Aula 05 - Erivaldo MATEMÁTICA BÁSICA Principais produtos notáveis I- (a + b).(a b) = a 2 a.b + b.a b 2 I- (a + b).(a b) = a 2 b 2 O Produto de uma soma por uma diferença resulta no quadrado do primeiro

Leia mais

Simulado 1 Matemática IME Soluções Propostas

Simulado 1 Matemática IME Soluções Propostas Simulado 1 Matemática IME 2012 Soluções Propostas 1 Para 0, temos: para cada um dos elementos de, valores possíveis em (não precisam ser distintos entre si, apenas precisam ser pertencentes a, pois não

Leia mais

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA

Leia mais

O limite de uma função

O limite de uma função Universidade de Brasília Departamento de Matemática Cálculo 1 O ite de uma função Se s(t) denota a posição de um carro no instante t > 0, então a velocidade instantânea v(t) pode ser obtida calculando-se

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Texto de apoio às aulas. Amélia Bastos, António Bravo Dezembro 2010 Capítulo 1 Números reais As propriedades do conjunto dos números reais têm por base um conjunto restrito

Leia mais

Roteiro da aula. MA091 Matemática básica. Simplificação por divisões sucessivas. Divisores. Aula 4 Divisores e múltiplos. MDC. Operações com frações

Roteiro da aula. MA091 Matemática básica. Simplificação por divisões sucessivas. Divisores. Aula 4 Divisores e múltiplos. MDC. Operações com frações Roteiro da aula MA091 Matemática básica Aula Divisores e múltiplos. MDC. Operações com frações 1 Francisco A. M. Gomes UNICAMP - IMECC Março de 016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática

Leia mais

Limites e Continuidade

Limites e Continuidade MAT111 p. 1/2 Limites e Continuidade Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Revisão MAT111 p. 2/2 MAT111 p. 3/2 Limite de uma Função num Ponto DEFINIÇÃO Sejam f : A R R,

Leia mais

Erros META OBJETIVOS. 2.1 Erros

Erros META OBJETIVOS. 2.1 Erros Erros META Conceituar o erro, as fontes e formas de expressar estes erros, propagação dos erros em operações aritméticas fórmula geral e problema inverso. OBJETIVOS Resolver problemas práticos de erros

Leia mais

carga do fio: Q. r = r p r q figura 1

carga do fio: Q. r = r p r q figura 1 Uma carga Q está distribuída uniformemente ao longo de um fio reto de comprimento infinito. Determinar o vetor campo elétrico nos pontos situados sobre uma reta perpendicular ao fio. Dados do problema

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA DÉCIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos o Teorema do Valor Médio e algumas de suas conseqüências como: determinar os intervalos de

Leia mais

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 REVISÃO

Leia mais

Módulo: aritmética dos restos. Divisibilidade e Resto. Tópicos Adicionais

Módulo: aritmética dos restos. Divisibilidade e Resto. Tópicos Adicionais Módulo: aritmética dos restos Divisibilidade e Resto Tópicos Adicionais Módulo: aritmética dos restos Divisibilidade e resto 1 Exercícios Introdutórios Exercício 1. Encontre os inteiros que, na divisão

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Professor conteudista: Renato Zanini Sumário Matemática Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7 4 RESOLVENDO

Leia mais

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios

Leia mais

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS

26 CAPÍTULO 4. LIMITES E ASSÍNTOTAS Capítulo 4 Limites e assíntotas 4.1 Limite no ponto Considere a função f(x) = x 1 x 1. Observe que esta função não é denida em x = 1. Contudo, fazendo x sucientemente próximo de 1 (mais não igual a1),

Leia mais

Identidades algébricas

Identidades algébricas LIÇÃO 5 Identidades algébricas Dos três tipos básicos de transformações algébricas: decomposições, reduções e fatorações, os dois primeiros já foram estudados na lição anterior. Antes de passarmos ao terceiro

Leia mais

Exercícios - Propriedades Adicionais do Limite Aula 10

Exercícios - Propriedades Adicionais do Limite Aula 10 Exercícios - Propriedades Adicionais do Limite Aula 10 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 05 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 7º Ano

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 7º Ano PLANO CURRICULAR DISCIPLINAR MATEMÁTICA 7º Ano OBJETIVOS ESPECÍFICOS TÓPICOS SUBTÓPICOS METAS DE APRENDIZAGEM 1º Período - Multiplicar e dividir números inteiros. - Calcular o valor de potências em que

Leia mais

1.3 CÁLCULO DOS VALORES APROXIMADOS

1.3 CÁLCULO DOS VALORES APROXIMADOS 1.3 CÁLCULO DOS VALORES APROXIMADOS 302 Página em branco 1.3 CÁLCULO DOS VALORES APROXIMADOS 1. - Consideremos uma recta orientada, sobre a qual se escreveu um ponto para origem e um comprimento para unidade.

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o

Leia mais

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17 UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 010-16 Sumário III Números reais - módulo e raízes 17 3.1 Módulo valor absoluto...................................... 17 3.1.1 Definição

Leia mais

DISCIPLINA: MATEMÁTICA ANO: 8º ANO LETIVO 2012/2013 ATIVIDADES ESTRATÉGIAS. Atividades de diagnóstico. Atividades de revisão e recuperação.

DISCIPLINA: MATEMÁTICA ANO: 8º ANO LETIVO 2012/2013 ATIVIDADES ESTRATÉGIAS. Atividades de diagnóstico. Atividades de revisão e recuperação. Escola Secundária Dr. Solano de Abreu Abrantes ENSINO BÁSICO DISCIPLINA: MATEMÁTICA ANO: 8º ANO LETIVO 2012/2013 CONTEÚDOS PROGRAMÁTICOS METAS DE APRENDIZAGEM ATIVIDADES ESTRATÉGIAS INSTRUMENTOS DE AVALIAÇÃO

Leia mais

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. casos de ângulos retos e obtusos. Resolução de triângulos

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. casos de ângulos retos e obtusos. Resolução de triângulos AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática A 11º ano Ano Letivo

Leia mais

Notas de Aula Disciplina Matemática Tópico 06 Licenciatura em Matemática Osasco ou x > 3

Notas de Aula Disciplina Matemática Tópico 06 Licenciatura em Matemática Osasco ou x > 3 1. Inequações Uma inequação é uma expressão algébrica dada por uma desigualdade. Por exemplo: 3x 5 < 1 ou 2x+1 2 > 5x 7 3 ou x 1 2 + 2 > 3 Resolver a inequação significa encontrar os intervalos de números

Leia mais

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos:

EXEMPLOS Resolva as equações em : 1) Temos uma equação completa onde a =3, b = -4 e c = 1. Se utilizarmos a fórmula famosa, teremos: EQUAÇÃO DE SEGUNDO GRAU INTRODUÇÃO Equação é uma igualdade onde há algum elemento desconhecido Como exemplo, podemos escrever Esta igualdade é uma equação já conhecida por você, pois é de primeiro grau

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma

Leia mais

Limites e Continuidade

Limites e Continuidade Limites e Continuidade Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Elementos de Lógica Matemática p. 1/1 Revisão Elementos de Lógica Matemática p. 2/1 Limite de uma Função num

Leia mais

Capítulo 5. séries de potências

Capítulo 5. séries de potências Capítulo 5 Séries numéricas e séries de potências Inicia-se o capítulo com a definição de série numérica e com oção de convergência de séries numéricas, indicando-se exemplos, em particular o exemplo da

Leia mais

Cálculo Diferencial e Integral I Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Diferencial e Integral I Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Diferencial e Integral I Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling Parte 1 - Limites Limites envolvendo o infinito, Continuidade, Retas tangentes. 1) Introdução

Leia mais

Aula 3 Propriedades de limites. Limites laterais.

Aula 3 Propriedades de limites. Limites laterais. Propriedades de ites. Limites laterais. MÓDULO - AULA 3 Aula 3 Propriedades de ites. Limites laterais. Objetivos Estudar propriedades elementares de ites, tais como: soma, produto, quociente e confronto.

Leia mais

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6 1 MÓDULO II Nesse Módulo vamos aprofundar as operações em Z. Para introdução do assunto, vamos percorrer a História da Matemática, lendo os textos dispostos nos links a seguir: http://www.vestibular1.com.br/revisao/historia_da_matematica.doc

Leia mais

Sequencias e Series. Exemplo 1: Seja tal que. Veja que os dez primeiros termos estão dados por: ,,,,...,, ou seja que temos a

Sequencias e Series. Exemplo 1: Seja tal que. Veja que os dez primeiros termos estão dados por: ,,,,...,, ou seja que temos a Sequencias e Series Autor: Dr. Cristian Novoa MAF- PUC- Go cristiancalculoii@gmail.com Este texto tem como objetivo principal, introduzir alguns conceitos de Sequencias e Series,para os cursos de Engenharia,

Leia mais

MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04

MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04 MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04 Para efetuar cálculos, a forma mais eciente de representar os números reais é por meio de expressões decimais. Vamos falar um pouco

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 2 GABARITO 22 de junho de 201 1. Em cada um dos itens abaixo, dê, se possível,

Leia mais

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite. Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a

Leia mais

5.1 CUSTO DO CAPITAL DE TERCEIROS

5.1 CUSTO DO CAPITAL DE TERCEIROS ADMINISTRAÇÃO FINANCEIRA E ORÇAMENTÁRIA AULA 06: DECISÕES DE FINANCIAMENTO DE LONGO PRAZO TÓPICO 05: ALAVANCAGEM Do que foi exposto até aqui, fica evidente que algumas (ou todas) as empresas devem em princípio

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 9º Ano

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 9º Ano PLANO CURRICULAR DISCIPLINAR MATEMÁTICA 9º Ano OBJETIVOS ESPECÍFICOS TÓPICOS SUBTÓPICOS METAS DE APRENDIZAGEM 1º Período - Identificar e dar exemplos de fenómenos aleatórios e deterministas, usando o vocabulário

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA TERCEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula introduziremos o conceito de derivada e a definição de uma reta tangente ao gráfico de uma função. Também apresentaremos

Leia mais

Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda

Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda Daniel De modo intuitivo, uma função f : A B, com A,B R é dita contínua se variações suficientemente pequenas em x resultam em variações pequenas de f(x), ou equivalentemente, se para x suficientemente

Leia mais

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada 1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em

Leia mais

TÓPICOS DE MATEMÁTICA II. O Curso está dividido em três unidades, temos que concluir todas.

TÓPICOS DE MATEMÁTICA II. O Curso está dividido em três unidades, temos que concluir todas. TÓPICOS DE MATEMÁTICA II Roosevelt Imperiano da Silva Palavras iniciais Caros alunos, vamos iniciar o curso da disciplina Tópicos de Matemática II. Neste curso estudaremos os conjuntos numéricos e suas

Leia mais

Definimos a soma de seqüências fazendo as operações coordenada-a-coordenada:

Definimos a soma de seqüências fazendo as operações coordenada-a-coordenada: Aula 8 polinômios (Anterior: chinês. ) 8.1 séries formais Fixemos um anel A. Denotaremos por A N o conjunto de todas as funções de N = {, 1, 2,... } a valores em A. Em termos mais concretos, cada elemento

Leia mais

Exercícios de Aprofundamento 2015 Mat - Polinômios

Exercícios de Aprofundamento 2015 Mat - Polinômios Exercícios de Aprofundamento 05 Mat - Polinômios. (Espcex (Aman) 05) O polinômio (x) x x deixa resto r(x). Sabendo disso, o valor numérico de r( ) é a) 0. b) 4. c) 0. d) 4. e) 0. 5 f(x) x x x, uando dividido

Leia mais

Aula 5 Limites infinitos. Assíntotas verticais.

Aula 5 Limites infinitos. Assíntotas verticais. MÓDULO - AULA 5 Aula 5 Limites infinitos. Assíntotas verticais. Objetivo lim Compreender o significado dos limites infinitos lim f(x) = ±, f(x) = ± e lim f(x) = ± + Referências: Aulas 34 e 40, de Pré-Cálculo,

Leia mais

1.1 Propriedades Básicas

1.1 Propriedades Básicas 1.1 Propriedades Básicas 1. Classi que as a rmações em verdadeiras ou falsas, justi cando cada resposta. (a) Se x < 2, então x 2 < 4: (b) Se x 2 < 4, então x < 2: (c) Se 0 x 2, então x 2 4: (d) Se x

Leia mais

Cálculo com expressões que envolvem radicais

Cálculo com expressões que envolvem radicais Escola Secundária de Aljustrel Material de apoio para o 11. o Ano Ano Lectivo 00/003 Cálculo com expressões que envolvem radicais José Paulo Coelho Abril de 003 ... Índice... 1 Radicais: definição e propriedades.

Leia mais

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se

Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

Afirmações Matemáticas

Afirmações Matemáticas Afirmações Matemáticas Na aula passada, vimos que o objetivo desta disciplina é estudar estruturas matemáticas, afirmações sobre elas e como provar essas afirmações. Já falamos das estruturas principais,

Leia mais

As funções do 1º grau estão presentes em

As funções do 1º grau estão presentes em Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos

Leia mais

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra

MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra Salesianos de Mogofores - 2016/2017 MATEMÁTICA - 8.º Ano Ana Soares (ana.soares@mogofores.salesianos.pt ) Catarina Coimbra (catarina.coimbra@mogofores.salesianos.pt ) Rota de aprendizage m por Projetos

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA VIGÉSIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, consideraremos mais uma técnica de integração, que é conhecida como substituição trigonométrica. Esta técnica pode

Leia mais

Se a função de consumo é dada por y = f(x), onde y é o consumo nacional total e x é a renda nacional total, então a tendência marginal ao consumo é ig

Se a função de consumo é dada por y = f(x), onde y é o consumo nacional total e x é a renda nacional total, então a tendência marginal ao consumo é ig ELEMENTOS DE EQUAÇÕES DIFERENCIAIS AULA 01: INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS TÓPICO 02: REVENDO TÉCNICAS DE INTEGRAÇÃO VERSÃO TEXTUAL Este tópico objetiva reapresentar as principais técnicas de integração.

Leia mais

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a

Leia mais

b) Determine o conjunto de todos os valores de z para os quais (z + i)/(1 + iz) é um número real.

b) Determine o conjunto de todos os valores de z para os quais (z + i)/(1 + iz) é um número real. 1 Projeto Jovem Nota 10 Números Complexos Lista 2 Professor Marco Costa 1. (Fuvest 2003) Nos itens abaixo, z denota um número complexo e i a unidade imaginária (i = -1). Suponha z i. a) Para quais valores

Leia mais

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 03 ATIVIDADE 01 (a) Sejam u = (a b)/(a + b), v = (b c)/(b + c) e w = (c a)/(c

Leia mais

A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3).

A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3). Universidade de Brasília Departamento de Matemática Cálculo 1 A Regra da Cadeia Suponha que, a partir de uma lona de plástico com 6 metros de comprimento e 3 de largura, desejamos construir uma barraca

Leia mais

Curso de Matemática Aplicada.

Curso de Matemática Aplicada. Aula 1 p.1/25 Curso de Matemática Aplicada. Margarete Oliveira Domingues PGMET/INPE Sistema de números reais e complexos Aula 1 p.2/25 Aula 1 p.3/25 Conjuntos Conjunto, classe e coleção de objetos possuindo

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática A 12.º Ano de Escolaridade Prova 635/2.ª Fase 10 Páginas Duração da Prova: 150 minutos. Tolerância:

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

Exercícios. setor Aula 39 DETERMINANTES (DE ORDENS 1, 2 E 3) = Resposta: 6. = sen 2 x + cos 2 x Resposta: 1

Exercícios. setor Aula 39 DETERMINANTES (DE ORDENS 1, 2 E 3) = Resposta: 6. = sen 2 x + cos 2 x Resposta: 1 setor 0 00508 Aula 39 ETERMINANTES (E ORENS, E 3) A toda matriz quadrada A de ordem n é associado um único número, chamado de determinante de A e denotado, indiferentemente, por det(a) ou por A. ETERMINANTES

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 06: Continuidade de Funções Objetivos da Aula Definir função contínua; Reconhecer uma função contínua através do seu gráfico; Utilizar as

Leia mais