Movimento de um projétil

Tamanho: px
Começar a partir da página:

Download "Movimento de um projétil"

Transcrição

1 Movimento de um projétil A equação de movimento para um projétil é muito simples quando desprezamos a resistência do ar ventos efeitos da pressão atmosférica com a altitude forma do projétil etc. Usando a seunda lei de Newton asta iualarmos a força peso do projétil de massa m à variação de momentum assim: dp = mẑ onde estou supondo proximidade com o solo considerado plano onde a aceleração da ravidade pode ser aproximada pela constante > e estou escolhendo o sistema de coordenadas com o eixo z apontando para cima. Supondo que o projétil não perde massa ao lono de sua trajetória podemos escrever isto é m d r = mẑ d r = ẑ. Tomando como conhecida a velocidade inicial v podemos interar amos os memros dessa equação e oter dr = v tẑ. Conhecendo a posição inicial r podemos interar amos os memros dessa equação tamém e oter a equação de movimento para o vetor posição do projétil: r = r + v t 1 t ẑ. Fácil não é mesmo? Bico! :wink: Como um exemplo vamos lançar o projétil da oriem de modo que r = e vamos impor uma velocidade inicial dada no plano xz : v = ˆxv x + ẑv z onde v x > e v z >. Com essas condições iniciais podemos escrever o vetor posição do projétil como r = ˆxv x t + ẑ v z t 1 t. 1

2 Em coordenadas cartesianas as componentes do vetor posição do projétil ficam x = v x t e y = z = v z t 1 t. Loo o movimento neste caso particular dar-se-á no plano xz e a equação da trajetória pode ser otida sustituindo t = x v x na equação para a coordenada z. Assim otemos x z = v z 1 x v x v x isto é z = v z v x x v x x que é a equação de uma paráola com concavidade voltada para aixo já que v x > por hipótese. O projétil sai de z = e volta a z = quando isto é v z v x x v x x = x = v zv x que é o alcance do projétil. A altura máxima é atinida quando isto é para o valor de x tal que v z v x dz dx = v x x =

3 ou seja x = v zv x que é o ponto exatamente a meio alcance. A altura máxima é otida sustituindo esse valor de x na ressão de z : isto é z máx = v z v x vz v x v x vz v x ou seja z máx = v z v z Resistência do ar z máx = v z. O que acontece se houver resistência do ar? Uma maneira simples de incluir fenomenoloicamente um termo de resistência do ar na equação de movimento é supor a existência de uma força que só apareça se o projétil estiver com velocidade relativa ao ar não nula. Uma força desse tipo em simples é dada por F res = dr onde > é uma constante e o sinal neativo implica que a força se opõe ao movimento do projétil já que é uma resistência. Pela seunda lei de Newton a força resultante é iual à variação do momentum do projétil e nesse caso a resultante de forças é a soma do peso do projétil com a resistência do ar. Loo a equação de movimento escreve-se isto é dp = mẑ dr d r = ẑ dr m. Como é que resolvemos essa equação? Não é difícil. Quer ver? Veja que tamém podemos escrever a equação acima assim: d r + dr m = ẑ 3

4 e portanto como /m não depende de t d dr + m r = ẑ. Se interarmos amos os memros dessa equação desde t = até um valor posterior qualquer t > otemos ds d dr s + ds ds m r s = dsẑ onde mudei a variável de interação para s para não confundi-la com o limite superior que estou denotando por t. Assim como a interal da derivada é fácil de fazer essa equação dá ou seja dr t dr s + t ds m r s + m r t dr s ds = tẑ r = tẑ. s= m Mas como a velocidade é dada por seue que drs ds v t = dr t nada mais é do que a velocidade inicial do projétil: s= v = Para simplificar a notação vou definir: e dr s ds r = r v = v.. s= Sendo assim a equação diferencial que ainda falta resolver fica dr t + m r t dr s = tẑ + ds + s= m r isto é dr + m r = tẑ + v + m r 4

5 onde como sempre escrevemos r = r t para simplificar a notação. Olhe aora para o que há entre parênteses no primeiro memro da equação diferencial acima: dr + m r. Viu? Tem a derivada de r e tem /m que é uma constante multiplicando r. Isso não lhe lemra de uma onencial sendo derivada? Por exemplo quanto dá a derivada do produto m t? Vamos calcular? Então lá vai: ] d dr m t = m t + r d ] m t não é mesmo? Mas como seue que d ] d m t ] m t = m m t dr = m t + r m m t ou seja colocando a onencial em evidência otemos ] d dr m t = m t + m r. Então dividindo amos os memros dessa equação pela onencial ficamos com dr + m r = ] d m t m t. Você se lemra que a equação que queremos resolver é assim: dr + m r = tẑ + v + m r não é mesmo? Então aora podemos escrevê-la deste outro jeito: ] d m t m t = tẑ + v + m r. 5

6 É ou não é? Tudo o que temos a fazer aora é mais uma interação simples. Quer ver? Multiplicando tudo pela onencial m t dá ] d m t = ẑt m t + v + m r m t. Fazendo a interal de amos os memros dessa equação desde t = até um tempo posterior qualquer t > otemos ] m t m t t= = ẑ Aora a interal da onencial é fácil: m s ds = m m t m. Resta fazermos a interal s m s ds s m s ds + v + m r m s ds. que parece ser mais complicada. Tem outro truque que dá para usarmos aqui e que vai ser muitíssimo útil na sua vida acadêmica futura. Considere a seuinte interal: αs ds = 1 α αt 1 α onde α é um parâmetro real. Faça a derivada parcial de amos os memros dessa equação com relação a α e veja o que dá: e α αs ds = 1 α α αt 1 ] α αs ds = α = ] 1 αt α α α s αs ds 1. α Então 1 α α αt 1 ] α = 1 α αt + 1 α t αt + 1 α. Iualando esses dois memros vem s αs ds = 1 α αt + 1 α t αt + 1 α. 6

7 Duvida? Derive o seundo memro com relação a t e veja o que é que dá: d 1α αt + 1α t αt + 1α ] = 1 d α αt] + 1 d t αt] α isto é d 1α αt + 1α t αt + 1α ] = 1 α α αt + 1 α αt + 1 tα αt α ou seja d 1α αt + 1α t αt + 1α ] = t αt que tem a mesma forma funcional do interando do primeiro memro. Juntando isso tudo na nossa solução acima isto é ] m t m t t= finalmente otemos m t r = ẑ onde já tomei + = ẑ m v + m r m t m α = m. s m s ds + v + m r m s ds + m ] m t t + m m t m ] Veja que tamém podemos reescrever essa solução assim: m t = r ẑ m m t + m ] m t t + m + v + m m r m t m ] Dividindo tudo po m t vem r = r m t ẑ m + m t + m m ] t + v + m m r m m ] t isto é r = r + ẑ m + m v 1 m ] t ẑ m t. 7

8 Como um exemplo vamos lançar o projétil da oriem de modo que r = e vamos impor uma velocidade inicial dada no plano xz : v = ˆxv x + ẑv z onde v x > e v z > exatamente como fizemos acima no caso sem resistência do ar. Com essas condições iniciais podemos escrever o vetor posição do projétil como r = ẑ m + ˆxm v x + ẑ m v z 1 m ] t ẑ m t isto é r = ˆx m v x 1 m ] { m t + ẑ + m v z 1 m ] t m } t. Em coordenadas cartesianas as componentes do vetor posição do projétil ficam x = m v x 1 m ] t e z = m + m v z y = 1 m ] t m t. Aqui tamém o movimento se dá no plano xz mas a equação da trajetória é mais complicada. Primeiro fazemos a sustituição de 1 m ] t x = mv x na ressão de z otendo m z = + m x v z m mv x t isto é z = Depois disso utilizamos 1 m ] t m + v z x m v x v x t. 8 = x mv x

9 para isolar t assim: m t = 1 x mv x isto é ln m ] t = ln 1 x mv x ou seja ou ainda Então a equação t = m ln 1 x mv x t = m ln mvx x. mv x t = m ln mvx mv x x sustituída na ressão para z dá m z = + v z x m mvx v x v x ln mv x x que não é uma paráola! Podemos recuperar o resultado anterior fazendo o limite em que vai a zero? Sim não só podemos como devemos! Tomemos a solução eral: r = r + ẑ m + m v 1 m t ] ẑ m t. Note que se fizermos = nessa ressão encontraremos diverências porque aparece nos denominadores. Temos que tomar cuidado para ver o caso em que não temos resistência do ar nessa equação. Portanto vamos com calma! Quando é muito pequeno podemos andir a onencial em série de potências e oter Loo r r + m t ẑ m + m v m t + m t 9 3 6m 3 t3 m t m t + 3 6m 3 t3 ẑ m t

10 isto é r r + ẑ m + m v m t 1 m t + 6m t ẑ m t ou seja r r + ẑ m t + v t 1 m t + 6m t ẑ m t ou ainda r r + ẑ m t + v t + ẑ m t + v t m t + 6m t ẑ m t. Assim r r + v t + ẑ m t + v t m t + 6m t que pode ser simplificado ainda mais: isto é r r + v t m t ẑ m t + v t + 6m t ẑ m t + v t r r + v t ẑ 1 t v m t + ẑ 6m t3 + v 6m t3. No limite em que vai a zero essa equação torna-se r r + v t 1 t ẑ que é a mesma solução do caso sem resistência do ar! 1

Cap. 3 - Cinemática Tridimensional

Cap. 3 - Cinemática Tridimensional Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 3 - Cinemática Tridimensional Prof. Elvis Soares 1 Cinemática Vetorial Para determinar a posição de uma partícula no

Leia mais

Distância alcançada pela granada de um obuseiro 155 mm Jonathan Tejeda Quartuccio Instituto de Pesquisas Científicas

Distância alcançada pela granada de um obuseiro 155 mm Jonathan Tejeda Quartuccio Instituto de Pesquisas Científicas Páina1 Distância alcançada pela ranada de um ouseiro 155 mm Jonathan T. Quartuccio Distância alcançada pela ranada de um ouseiro 155 mm Jonathan Tejeda Quartuccio Instituto de Pesquisas Científicas Introdução

Leia mais

O movimento de projéteis

O movimento de projéteis respectivamente, o movimento de projéteis, o movimento circular e o movimento cicloidal Como de costume, encontra-se no final da aula uma lista de problemas propostos Nela, você terá de fazer tanto demonstrações

Leia mais

f x x x f x x x f x x x f x x x

f x x x f x x x f x x x f x x x Página 1 de 7 I. FUNÇÃO DO º GRAU (ou QUADRÁTICA) 1. Definição Chama-se função do º grau (ou função quadrática) a toda função do tipo onde a, e c são números reais e a 0. São exemplos: f ( x) ax x c =

Leia mais

PRODUTOS NOTÁVEIS. Duas vezes o produto do 1º pelo 2º. Quadrado do 1º termo

PRODUTOS NOTÁVEIS. Duas vezes o produto do 1º pelo 2º. Quadrado do 1º termo PRODUTOS NOTÁVEIS QUADRADO DA SOMA DE DOIS TERMOS ( + y) = + y + y Quadrado da soma de dois termos Duas vezes o produto do 1º pelo º Eemplo 1: a) ( + 3y) = +..(3y) + (3y) = + 6y + 9y. ) (7 + 1) = c) (a

Leia mais

Mecânica Fundamental Lançamento de Projéteis. Prof. Dr. Walter F. de Azevedo Jr. azevedolab.net

Mecânica Fundamental Lançamento de Projéteis. Prof. Dr. Walter F. de Azevedo Jr. azevedolab.net Mecânica Fundamental Prof. Dr. Walter F. de Azeedo Jr. azeedolab.net 1 Introdução Vamos calcular o alcance (R de um projétil lançado na superfície da Terra, com ânulo de inclinação (, posição (x, e elocidade

Leia mais

Exemplos de aplicação das leis de Newton e Conservação da Energia

Exemplos de aplicação das leis de Newton e Conservação da Energia Exemplos de aplicação das leis de Newton e Conservação da Energia O Plano inclinado m N Vimos que a força resultante sobre o bloco é dada por. F r = mg sin α i Portanto, a aceleração experimentada pelo

Leia mais

(1) O vetor posição de uma partícula que se move no plano XY é dado por:

(1) O vetor posição de uma partícula que se move no plano XY é dado por: 4320195-Física Geral e Exp. para a Engenharia I - 1 a Prova - 12/04/2012 Nome: N o USP: Professor: Turma: A duração da prova é de 2 horas. Material: lápis, caneta, borracha, régua. O uso de calculadora

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

Gabarito da Prova P1 - Física 1

Gabarito da Prova P1 - Física 1 Gabarito da Prova P1 - Física 1 1. Duas partículas (1 e 2) se movem ao longo do eixo x e y, respectivamente, com velocidades constantes v 1 = 2ˆx cm/s e v 2 = 3ŷ cm/s. Em t = 0 s elas estão nas posições:

Leia mais

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Campo Escalar e Gradiente Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Prof. Alex G. Dias (alex.dias@ufabc.edu.br) Prof. Alysson F. Ferrari (alysson.ferrari@ufabc.edu.br) Um campo escalar

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g.

massa do corpo: m; constante elástica da mola: k; adotemos a aceleração da gravidade igual a g. Um corpo, de massa m, está suspenso pela extremidade de uma mola, de constante elástica, a outra extremidade da mola está presa ao teto. Afasta-se o corpo da posição de equilíbrio e libera-se o corpo.

Leia mais

Frações. Veja um exemplo: A fração 8 é igual a 8 :2. Neste caso, 8 é o numerador e 2 é o denominador. Efetuando a divisão de 8 por 2, obtemos 2

Frações. Veja um exemplo: A fração 8 é igual a 8 :2. Neste caso, 8 é o numerador e 2 é o denominador. Efetuando a divisão de 8 por 2, obtemos 2 Frações O símolo a significa a:, sendo a e números naturais e diferente de zero Chamamos: a a de fração; de numerador: Frações de denominador: Se a é múltiplo de, então a é um número natural ( números

Leia mais

Esquema do problema (I) (II) figura 1. figura 2

Esquema do problema (I) (II) figura 1. figura 2 Um projétil é disparado com elocidade inicial iual a e formando um ânulo θ com a horizontal, sabendo-se que os pontos de disparo e o alo estão sobre o mesmo plano horizontal e desprezando-se a resistência

Leia mais

1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2

1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2 1. Limite Definição: o limite de uma função f(x) quando seu argumento x tende a x0 é o valor L para o qual a função se aproxima quando x se aproxima de x0 (note que a função não precisa estar definida

Leia mais

SOLUÇÃO PRATIQUE EM CASA

SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PC1. Analisando a malha quadriculada concluímos que: c = 5h e a = 15h São 7 homens e cavalos. Aplicando o Princípio Fundamental da Dinâmica à situação, temos: F 7 h c a

Leia mais

As variáveis de rotação

As variáveis de rotação Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento

Leia mais

Cap. 7 - Momento Linear e Impulso

Cap. 7 - Momento Linear e Impulso Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 7 - Momento Linear e Impulso Prof. Elvis Soares Consideremos o seguinte problema: ao atirar um projétil de um canhão

Leia mais

4 Obs.: A indeterminação no limite do termo be 2b foi resolvida pela regra de L'Hôpital. x dx. x 2 dx. 19 b3 b3

4 Obs.: A indeterminação no limite do termo be 2b foi resolvida pela regra de L'Hôpital. x dx. x 2 dx. 19 b3 b3 UFRGS - PAG Cálculo - MAT15-1/1 Lista 11 - /6/1 - Soluções 1.a xe x dx = x ex 1 ( e x dx = x ex ex + C = ex x 1 ) + C 1. 1 xe x dx = [ e x ( x 1 )] 1 = e + e e 1.c 1 xe x dx = ( ) e lim + e e = e + = e

Leia mais

Teorema da Máxima Transferência de Potência em Corrente Alternada (AC)

Teorema da Máxima Transferência de Potência em Corrente Alternada (AC) Teorema da Máxima Transferência de Potência em Corrente Alternada (AC) by www.eletricatotal.net 1 Introdução No capítulo 7 estudamos este teorema quando tínhamos somente resistências no circuito. Agora

Leia mais

Antiderivadas e Integrais Indefinidas

Antiderivadas e Integrais Indefinidas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Antiderivadas e Integrais

Leia mais

Mecânica Fundamental Lançamento de Projéteis (Lista de Exercícios) Prof. Dr. Walter F. de Azevedo Jr. azevedolab.net

Mecânica Fundamental Lançamento de Projéteis (Lista de Exercícios) Prof. Dr. Walter F. de Azevedo Jr. azevedolab.net Mecânica Fundamental Lançamento de Projéteis (Lista de Exercícios) Prof. Dr. Walter F. de Azevedo Jr. azevedolab.net 1 1) Considere que um joador de baseball rebateu uma bola com velocidade inicial de

Leia mais

PROFMAT AV3 MA 11 2011. (1,0) (a) Prove isto: Se um número natural não é o quadrado de um outro número natural, sua raiz quadrada é irracional.

PROFMAT AV3 MA 11 2011. (1,0) (a) Prove isto: Se um número natural não é o quadrado de um outro número natural, sua raiz quadrada é irracional. Questão 1. (1,0) (a) Prove isto: Se um número natural não é o quadrado de um outro número natural, sua raiz quadrada é irracional. (1,0) (b) Mostre que 2 + 5 é irracional. (a) Seja n N. Se p q Q é tal

Leia mais

Integração por frações parciais - Parte 1

Integração por frações parciais - Parte 1 Universidade de Brasília Departamento de Matemática Cálculo Integração por frações parciais - Parte Neste pequeno texto vamos desenvolver algumas ideias para integrar funções racionais, isto é, funções

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-5)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-5) Física I para a Escola Politécnica (4323101) - P1 (10/04/2015) [16A7]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-5) ando necessário, use g=10 m/s 2 (1) [1,0 pt] A figura abaixo representa dois blocos 1 e 2,

Leia mais

Instituto de Física Universidade Federal do Rio de Janeiro. Cap. 1 - Vetores. Prof. Elvis Soares - Física I

Instituto de Física Universidade Federal do Rio de Janeiro. Cap. 1 - Vetores. Prof. Elvis Soares - Física I Instituto de Física Universidade Federal do Rio de Janeiro Cap. 1 - Vetores Prof. Elvis Soares - Física I 2014.1 Vetores são descrições matemáticas de quantidades que possuem intensidade, direção e sentido.

Leia mais

Considere-se a trajectória descrita por um projéctil que foi lançado do ponto O no plano xoy. y v v O

Considere-se a trajectória descrita por um projéctil que foi lançado do ponto O no plano xoy. y v v O Moimento de um projéctil Considere-se a trajectória descrita por um projéctil que foi lançado do ponto no plano. Após o lançamento e considerando a resistência do ar desprezáel, a resultante das forças

Leia mais

LANÇAMENTO OBLÍQUO - INTERMEDIÁRIO EXERCÍCIOS RESOLVIDOS

LANÇAMENTO OBLÍQUO - INTERMEDIÁRIO EXERCÍCIOS RESOLVIDOS LANÇAMENTO OBLÍQUO - INTERMEDIÁRIO EXERCÍCIOS RESOLVIDOS A Equipe SEI, pensando em você, preparou este artio com exercícios resolvidos sobre lançamento oblíquo. Bons estudos!. (AFA 9) Uma bola de basquete

Leia mais

Física I para Engenharia IFUSP P1-25/04/2014

Física I para Engenharia IFUSP P1-25/04/2014 Física I para Enenharia IFUSP - 43195 P1-5/04/014 A prova tem duração de 10 minutos. Resolva questão na folha correspondente. Use o verso se necessário. Escreva de forma leível, a lápis ou tinta. Seja

Leia mais

Cinemática em 2D e 3D

Cinemática em 2D e 3D Cinemática em 2D e 3D o vetores posição, velocidade e aceleração o movimento com aceleração constante, movimento de projéteis o Cinemática rotacional, movimento circular uniforme Movimento 2D e 3D Localizar

Leia mais

Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes

Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Muitos problemas de física envolvem diversas equações diferenciais. Na seção 14, por exemplo, vimos que o sistema

Leia mais

Tópicos de Física Clássica I Aula 2 As equações de Euler-Lagrange

Tópicos de Física Clássica I Aula 2 As equações de Euler-Lagrange Tópicos de Física Clássica I Aula 2 As equações de Euler-Lagrange a c tort O princípio da ação mínima O que é o princípio da ação mínima? Como se usa a formulação lagrangiana da mecânica em um problema?

Leia mais

massa do corpo: m; constante elástica da mola: k.

massa do corpo: m; constante elástica da mola: k. Um corpo, de massa m, está preso a extremidade de uma mola, de constante elástica k, e apoiado sobre uma superfície horizontal sem atrito. A outra extremidade da mola se encontra presa em ponto fixo. Afasta-se

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais

MOVIMENTO EM UMA LINHA RETA

MOVIMENTO EM UMA LINHA RETA MOVIMENTO EM UMA LINHA RETA MOVIMENTO EM UMA LINHA RETA Objetivos de aprendizagem: Descrever o movimento em uma linha reta em termos de velocidade média, velocidade instantânea, aceleração média e aceleração

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 6//26 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:. Prova

Leia mais

Área e Teorema Fundamental do Cálculo

Área e Teorema Fundamental do Cálculo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área e Teorema Fundamental

Leia mais

Guia de Atividades usando o método de Euler para encontrar a solução de uma Equação Diferencial Ordinária

Guia de Atividades usando o método de Euler para encontrar a solução de uma Equação Diferencial Ordinária Guia de Atividades usando o método de Euler para encontrar a solução de uma Equação Diferencial Ordinária Para algumas situações-problema, cuja formulação matemática envolve equações diferenciais, é possível

Leia mais

EQUAÇÕES DE RETAS E PLANOS

EQUAÇÕES DE RETAS E PLANOS UNIVERSIDADE FEDERAL DO RIO GRANDE - FURG INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E FÍSICA - IMEF FABÍOLA AIUB SPEROTTO DAIANE SILVA DE FREITAS EQUAÇÕES DE RETAS E PLANOS NO ESPAÇO 1 Edição Rio Grande 2018

Leia mais

FEP Física Geral e Experimental para Engenharia I

FEP Física Geral e Experimental para Engenharia I FEP2195 - Física Geral e Experimental para Engenharia I Prova P1-10/04/2008 - Gabarito 1. A luz amarela de um sinal de transito em um cruzamento fica ligada durante 3 segundos. A largura do cruzamento

Leia mais

Revisão EsPCEx 2018 Cinemática Prof. Douglão. Gabarito:

Revisão EsPCEx 2018 Cinemática Prof. Douglão. Gabarito: Revisão EsPCEx 018 Cinemática Prof. Doulão Gabarito: Resposta da questão 1: Orientando a trajetória no sentido do joador para a parede, na ida o movimento é proressivo, portanto a velocidade escalar é

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática a Lista MAT 146 - Cálculo I 018/I DERIVADAS Para este tópico considera-se uma função f : D R R, definida num domínio

Leia mais

F 520/MS550 - Métodos Matemáticos da Física I/Métodos de Matemática Aplicada I UNICAMP

F 520/MS550 - Métodos Matemáticos da Física I/Métodos de Matemática Aplicada I UNICAMP F 5/MS55 - Métodos Matemáticos da Física I/Métodos de Matemática Aplicada I UNICAMP Nome: GABARITO a Prova (//). Nesta questão, foi dada a superfície z = a x y, para z, e pedia-se para calcular a integral

Leia mais

1 Transformada de Legendre

1 Transformada de Legendre 1 Transformada de Legendre No caso da parede porosa a pressão constante a quantidade se conserva. Além disso H = U + P V dh = du + P dv + V dp du = dq + dw = dq dh = dq + V dp P dv escrevendo H = H (P;

Leia mais

parciais primeira parte

parciais primeira parte MÓDULO - AULA 3 Aula 3 Técnicas de integração frações parciais primeira parte Objetivo Aprender a técnica de integração conhecida como frações parciais. Introdução A técnica que você aprenderá agora lhe

Leia mais

Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I.

Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I. Capítulo 5 Integral 1. Integral Indefinida Em estudos anteriores resolvemos o problema: Dada uma função, determinar a função derivada. Desejamos agora estudar o problema inverso: Dada uma função, determinar

Leia mais

Equações diferenciais e o princípio do momento 1

Equações diferenciais e o princípio do momento 1 Equações diferenciais e o princípio do momento 1 Física I (4302111) IFUSP 2016 1 O Princípio do Momento na forma diferencial As formas nas quais usamos o princípio do momento até agora, p = F res t e p

Leia mais

Tensores (Parte 1) 15 de abril de Primeira aula sobre tensores para a disciplina de CVT 2019Q1

Tensores (Parte 1) 15 de abril de Primeira aula sobre tensores para a disciplina de CVT 2019Q1 Tensores (Parte 1) 15 de abril de 2019 Primeira aula sobre tensores para a disciplina de CVT 2019Q1 Introdução Procuramos generalizar a ideia de escalares e vetores introduzindo esse novo conceito que

Leia mais

AULA 04 ENERGIA POTENCIAL E POTENCIAL ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas

AULA 04 ENERGIA POTENCIAL E POTENCIAL ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO AULA 04 ENERGIA POTENCIAL E POTENCIAL ELÉTRICO Se um carga elétrica se move de um ponto à outro, qual é o trabalho realizado sobre essa carga? A noção de mudança de posição nos remete

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL 1 RELATIVIDADE ESPECIAL AULA N O 4 ( Tensor Eletromagnético Equação de Onda ) Vamos buscar entender o conceito de força, não eatamente sobre a sua origem, mas sim sobre um mais profundo conceito de força.

Leia mais

1 CENTRO DE MASSA. da garrafa se concentra ali e que a força P que a garrafa sofre está concentrada sobre esse ponto.

1 CENTRO DE MASSA. da garrafa se concentra ali e que a força P que a garrafa sofre está concentrada sobre esse ponto. ENGENHARIA 1 CENTRO DE MASSA Quando estudamos partículas, tratamos de objetos bem simples, como por exemplo uma bola. No futebol, quando o goleiro chuta a bola em direção ao centro do campo, podemos enxergar

Leia mais

Alexandre N. Carvalho

Alexandre N. Carvalho Cálculo - Introdução lexandre N. Carvalo Marc 1, 2013 2 Capter 1 Introdução 1.1 Porque Estudar Cálculo No que seue apresentamos aluns exemplos que pretendem demosntrar que a matemática desenvolvida até

Leia mais

22/Fev/2018 Aula Queda livre 2.2 Movimento 2 e 3-D Vetor deslocamento Vetor velocidade Vetor aceleração

22/Fev/2018 Aula Queda livre 2.2 Movimento 2 e 3-D Vetor deslocamento Vetor velocidade Vetor aceleração 22/Fev/2018 Aula2 2.1 Queda livre 2.2 Movimento 2 e 3-D 2.2.1 Vetor deslocamento 2.2.2 Vetor velocidade 2.2.3 Vetor aceleração 2.3 Lançamento de projétil 2.3.1 Independência dos movimentos 2.3.2 Forma

Leia mais

CAPÍTULO 3 DINÂMICA DA PARTÍCULA: TRABALHO E ENERGIA

CAPÍTULO 3 DINÂMICA DA PARTÍCULA: TRABALHO E ENERGIA CAPÍLO 3 DINÂMICA DA PARÍCLA: RABALHO E ENERGIA Neste capítulo será analisada a lei de Newton numa de suas formas integrais, aplicada ao movimento de partículas. Define-se o conceito de trabalho e energia

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais

z = y 1 n. (3) Conclusão. A equação de Bernoulli (1) se transforma em uma equação linear através da 1 n, y = 1 1 n z 1

z = y 1 n. (3) Conclusão. A equação de Bernoulli (1) se transforma em uma equação linear através da 1 n, y = 1 1 n z 1 Seção 6: Equação de Bernoulli Definição. Uma equação de Bernoulli é uma equação diferencial ordinária de a ordem da forma y + fx) y = gx) y n, ) onde n é um número real não precisa ser inteiro nem positivo).

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA TERCEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula introduziremos o conceito de derivada e a definição de uma reta tangente ao gráfico de uma função. Também apresentaremos

Leia mais

Limite e continuidade

Limite e continuidade Limite e continuidade Noção intuitiva de ite Considere a função f qualquer que seja o número real o Eemplo Se f ( ) Esta função está definida para todo R, isto é, f está bem definido, o valor ( ) o então

Leia mais

Física A Extensivo V. 2

Física A Extensivo V. 2 Extensivo V. Resolva Aula 5 5.) A a = v v t t a = 3 4 Veículo A (MRU) Pelo ráfico v A = m/s = x A = + v A Veículo B (MRUV) Pelo ráfico a B = t = 5 = 5 m/s x B = x B + v B + a x B = (5) x B = 5 t A ultrapassaem

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física. Física I IGM1 2014/1. Cap. 1 - Vetores. Prof. Elvis Soares

Universidade Federal do Rio de Janeiro Instituto de Física. Física I IGM1 2014/1. Cap. 1 - Vetores. Prof. Elvis Soares Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 1 - Vetores Prof. Elvis Soares Vetores são descrições matemáticas de quantidades que possuem intensidade, direção e

Leia mais

Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes

Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Muitos problemas de física envolvem diversas equações diferenciais. Na seção 14, por exemplo, vimos que o sistema

Leia mais

Matemática A Extensivo v. 4

Matemática A Extensivo v. 4 Matemática A Etensivo v. 4 Eercícios 0) D f() a +, com a 0. Considere os pontos (0, 4) e (, 7). Para (0, 4), temos: 4 a. 0 + 4. Para (, 7), temos: 7 a. + 7. a + 4 ( 4) 7 4 a 3 a a 3 a. 03) D 4% de 00.

Leia mais

Aula 19 06/2014. Integração Numérica

Aula 19 06/2014. Integração Numérica CÁLCULO NUMÉRICO Aula 19 06/2014 Integração Numérica Objetivo: Calcular integrais utilizando métodos numéricos Cálculo Numérico 3/41 Integração Numérica Cálculo Numérico 4/41 Integração Numérica Em determinadas

Leia mais

onde: F : força exercida pelo cavalo. P: peso, força exercida pela terra. N: força exercida pelo plano inclinado (normal ao plano inclinado).

onde: F : força exercida pelo cavalo. P: peso, força exercida pela terra. N: força exercida pelo plano inclinado (normal ao plano inclinado). Prova de Conhecimentos Específicos 1 a QUESTÃO: (1,0 ponto) Um cavalo pua uma carroça para cima num plano inclinado, com velocidade constante. A força de atrito entre a carroça e o plano inclinado é desprezível.

Leia mais

Apostila adaptada e editada da intenert pelo Professor Luiz

Apostila adaptada e editada da intenert pelo Professor Luiz Definição POLINÔMIOS Uma função polinomial ou simplesmente polinômio, é toda função definida pela relação P(=a n x n + a n-1.x n-1 + a n-.x n- +... + a x + a 1 x + a 0. Onde: a n, a n-1, a n-,..., a, a

Leia mais

Capítulo 5 Derivadas Parciais e Direcionais

Capítulo 5 Derivadas Parciais e Direcionais Capítulo 5 Derivadas Parciais e Direcionais 1. Conceitos Sabe-se que dois problemas estão relacionados com derivadas: Problema I: Taxas de variação da função. Problema II: Coeficiente angular de reta tangente.

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

= F 1. . x. div F = F 1 x + F 2. y + F 3 = F3. y F 2. z, F 1

= F 1. . x. div F = F 1 x + F 2. y + F 3 = F3. y F 2. z, F 1 Definição 0.1. eja F : R n R n um campo de vetores (diferenciável. screva F = (F 1,..., F n. (i O divergente de F é a função div F : R n R definida por div F. = m particular, para n = temos n F i = F 1

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o

Leia mais

Lista 2. As leis de Kepler e gravitação universal de Newton

Lista 2. As leis de Kepler e gravitação universal de Newton Lista 2. As leis de Kepler e gravitação universal de Newton Nestor Caticha Física Geral IFUSP Universidade de São Paulo, CP66318, CEP 05315-970, São Paulo, SP, Brazil 25 de Outubro de 2012 Resumo Esta

Leia mais

Derivada de algumas funções elementares

Derivada de algumas funções elementares Universidade de Brasília Departamento de Matemática Cálculo 1 Derivada de algumas funções elementares Vamos lembrar que a função f é derivável no ponto x = a se existe o limite f f(x) f(a) f(a+) f(a) (a).

Leia mais

POTENCIAL ELÉTRICO. Prof. Bruno Farias

POTENCIAL ELÉTRICO. Prof. Bruno Farias CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III POTENCIAL ELÉTRICO Prof. Bruno Farias Introdução Um dos objetivos da Física é determinar

Leia mais

Exercícios complementares Física Conteúdos: Força resultante e 2ª Lei de Newton 3 N 4 N. 8 N 2 kg 16 N 12 N 9 N

Exercícios complementares Física Conteúdos: Força resultante e 2ª Lei de Newton 3 N 4 N. 8 N 2 kg 16 N 12 N 9 N 1. Nas situações mostradas a seguir, cada objeto foi submetido a ação de diversas forças. Para cada situação realize os cálculos necessários e determine o valor da força resultante. Depois disso, desenhe

Leia mais

Antiderivadas e Integrais Indefinidas. Antiderivadas e Integrais Indefinidas

Antiderivadas e Integrais Indefinidas. Antiderivadas e Integrais Indefinidas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Antiderivadas e Integrais

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

: v 2 z = v 2 z0 2gz = v 2 0sen 2 θ 0 2gz. d = v 0 cosθ 0.t i) v0sen 2 2 θ 0 = 2g ii) v 0 senθ 0 =gt iii)

: v 2 z = v 2 z0 2gz = v 2 0sen 2 θ 0 2gz. d = v 0 cosθ 0.t i) v0sen 2 2 θ 0 = 2g ii) v 0 senθ 0 =gt iii) Questão 1 a) valor = (2,0 pontos) Durante a trejetória do atleta no ar este sofre a ação apenas de uma única força, a força peso, que está orientada no sentido negativo do eixo Z e produz uma aceleração

Leia mais

Fluido é um material que se deforma continuamente quando submetido a uma tensão de cisalhamento. F t

Fluido é um material que se deforma continuamente quando submetido a uma tensão de cisalhamento. F t Mecânica dos luidos Sólido luido é um material que se deforma continuamente quando submetido a uma tensão de cisalhamento. t t luido (t) t d dt t Estática de luidos Um fluido é considerado estático quando

Leia mais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais MAT140 - Cálculo I - Método de integração: Frações Parciais 4 de outubro de 2015 Iremos agora desenvolver técnicas para resolver integrais de funções racionais, conhecido como método de integração por

Leia mais

Atividade Complementar para a DP de Física 1. Profs. Dulceval Andrade e Luiz Tomaz

Atividade Complementar para a DP de Física 1. Profs. Dulceval Andrade e Luiz Tomaz Atividade Complementar para a DP de Física 1. Profs. Dulceval Andrade e Luiz Tomaz QUESTÕES DO CAPÍTULO 2 DO LIVRO FUNDAMENTOS DE FÍSICA HALLIDAY & RESNICK - JEARL WALKER 6 ª - 7 ª e 9ª EDIÇÃO VOLUME 1

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

e 4 8. Logaritmos 9. Equação da Recta log log 10 log lê-se logaritmo de 32 na base 2. Exemplos

e 4 8. Logaritmos 9. Equação da Recta log log 10 log lê-se logaritmo de 32 na base 2. Exemplos Matemática I - Gestão ESTG/IPB 1 8 Logaritmos 3 Base do aritmo: número positivo Logaritmando: número positivo 3 lê-se aritmo de 3 na ase Eemplos 8 3 significa que significa que 3 8 1 06 significa que 1

Leia mais

MOVIMENTOS CIRCULARES EXERCÍCIOS AVANÇADOS RESOLVIDOS

MOVIMENTOS CIRCULARES EXERCÍCIOS AVANÇADOS RESOLVIDOS MOVIMENTOS CIRCULRES EXERCÍCIOS VNÇDOS RESOLVIDOS Equipe SEI, pensando em você, preparou este artio com exercícios resolvidos sobre movimentos circulares. ons estudos! 1. (F 009) Uma pessoa, brincando

Leia mais

As primeiras equações polinomiais

As primeiras equações polinomiais A U L A As primeiras equações polinomiais Meta da aula Apresentar alguns prolemas clássicos que motivaram as estruturas algéricas modernas que formam o conteúdo do curso de Álgera II. ojetivos Ao final

Leia mais

Índice. AULA 5 Derivação implícita 3. AULA 6 Aplicações de derivadas 4. AULA 7 Aplicações de derivadas 6. AULA 8 Esboço de gráficos 9

Índice. AULA 5 Derivação implícita 3. AULA 6 Aplicações de derivadas 4. AULA 7 Aplicações de derivadas 6. AULA 8 Esboço de gráficos 9 www.matematicaemexercicios.com Derivadas Vol. 2 1 Índice AULA 5 Derivação implícita 3 AULA 6 Aplicações de derivadas 4 AULA 7 Aplicações de derivadas 6 AULA 8 Esboço de gráficos 9 www.matematicaemexercicios.com

Leia mais

Disciplina : Mecânica dos fluidos I. Aula 4: Estática dos Fluidos

Disciplina : Mecânica dos fluidos I. Aula 4: Estática dos Fluidos Curso: Engenharia Mecânica Disciplina : Mecânica dos fluidos I Aula 4: Estática dos Fluidos Prof. Evandro Rodrigo Dário, Dr. Eng. Estática dos Fluidos A pressão gerada no interior de um fluido estático

Leia mais

Teoria Escalar da Difração

Teoria Escalar da Difração Teoria Escalar da Difração Em óptica geométrica, o comprimento de onda da luz é desprezível e os raios de luz não contornam obstáculos, mas propagam-se sempre em linha reta. A difração acontece quando

Leia mais

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES 47 6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES Na figura abaixo, seja a reta r e o ponto F de um determinado plano, tal que F não pertence a r. Consideremos as seguintes questões: Podemos obter,

Leia mais

MODELAÇÃO E SIMULAÇÃO MEEC IST, TESTE N0.1 TIPO V02. Consider o sistema dinâmico descrito pela equação diferencial

MODELAÇÃO E SIMULAÇÃO MEEC IST, TESTE N0.1 TIPO V02. Consider o sistema dinâmico descrito pela equação diferencial MODELAÇÃO E SIMULAÇÃO - 2018 MEEC IST, TESTE N0.1 TIPO V02 Problema No.1 [5v] Análise de Sistemas Não Lineares Consider o sistema dinâmico descrito pela equação diferencial dx = x (x 1) +u (1) onde u é

Leia mais

Aula prática 2: Equação de Newton

Aula prática 2: Equação de Newton MO Mecânica e Ondas Aula prática 2: Equação de Newton Grandezas cinemáticas, Forças, equação de Newton Saber usar a Lei de Newton Identificar os corpos Escolher sistema de referência Representar forças

Leia mais

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é:

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é: AULA 41 ENERGIA NO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: - Estudar a conservação da energia no movimento harmônico simples 41.1 Introdução: A força restauradora que atua sobre uma partícula que possui

Leia mais

GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA

GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA GABARITO COMENTADO DE PROVAS DE FÍSICA CINEMÁTICA 1ª Prova 2007 Questão 1: FÁCIL O valor de H é calculado pela equação de Torricelli: Para isso, deve-se calcular a velocidade inicial e final: (sinal negativo,

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista MAT 146 - Cálculo I 218/I APLICAÇÃO DE DERIVADAS: OTIMIZAÇÃO Otimização é outra aplicação de derivadas. Em

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2016/2017

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2016/2017 MESTADO INTEGADO EM ENG. INFOMÁTICA E COMPUTAÇÃO 016/017 EIC0010 FÍSICA I 1o ANO, o SEMESTE 16 de junho de 017 Nome: Duração horas. Prova com consulta de formulário e uso de computador. O formulário pode

Leia mais

MAT Cálculo para funções de uma variável II. Revisitando a Função Logaritmo

MAT Cálculo para funções de uma variável II. Revisitando a Função Logaritmo MAT 1352 - Cálculo para funções de uma variável II Profa. Martha Salerno Monteiro IME-USP - Novembro de 2004 Revisitando a Função Logaritmo Considere a curva y = 1 t, t > 0. Para cada x > 1 defina a função

Leia mais

C(h) = 3h + 84h 132 O maior número de clientes presentes no supermercado será dado pela ordenada máxima da função:

C(h) = 3h + 84h 132 O maior número de clientes presentes no supermercado será dado pela ordenada máxima da função: Resposta da questão : [D] Reescrevendo a lei de f sob a forma canônica, vem f(x) = (x x) + 0 = (x ) +. Portanto, segue que a temperatura máxima é atingida após horas, correspondendo a C. Resposta da questão

Leia mais

7.1 Área: conceito e áreas do quadrado e do

7.1 Área: conceito e áreas do quadrado e do page 8 7.1 Área: conceito e áreas do quadrado e do retângulo 8 7.1 Área: conceito e áreas do quadrado e do retângulo Dada uma figura no plano, vamos definir a área desta figura como o resultado da comparação

Leia mais