Índice. AULA 5 Derivação implícita 3. AULA 6 Aplicações de derivadas 4. AULA 7 Aplicações de derivadas 6. AULA 8 Esboço de gráficos 9

Tamanho: px
Começar a partir da página:

Download "Índice. AULA 5 Derivação implícita 3. AULA 6 Aplicações de derivadas 4. AULA 7 Aplicações de derivadas 6. AULA 8 Esboço de gráficos 9"

Transcrição

1 Derivadas Vol. 2 1

2 Índice AULA 5 Derivação implícita 3 AULA 6 Aplicações de derivadas 4 AULA 7 Aplicações de derivadas 6 AULA 8 Esboço de gráficos 9 Derivadas Vol. 2 2

3 AULA 5 EXERCÍCIOS Derivação implícita A derivação implícita é a última ferramenta no cálculo de derivadas. Até agora trabalhamos sempre com funções onde y está definido como função explícita de x, ou seja, funções que podem ser escritas na forma y = f(x), como 3 y = x ou y = xsen(x), por exemplo. Porém, podemos ter funções onde isso não acontece, funções que são definidas implicitamente por uma relação entre x e y, como x 2 + y 2 = 25 por exemplo. Para derivar funções assim, não precisamos isolar as variáveis, basta utilizar a deivação implícita. Vejamos como isso acontece com um exemplo. Se x 2 + y 2 = 25, encontre dy dx. Temos que encontrar a derivada de y em relação a variável x. Basta derivar os dois lados da igualdade, multiplicando cada derivada por uma fração, onde o numerador e o denominador são dados por: d(variável que foi derivada) d(variável relacionada a derivação) Assim temos: 2x dx dy + 2y dx dx = 0 2x + 2y dy dx = 0 Basta dy dx nessa equação, pois é exatamente o que buscamos: 2y dy dx = 2x dy dx = 2x 2y dy dx = x y 1 a 5 - Encontre dy dx por derivação implícita 1) x 3 + y 3 = 1 2) x 2 y 2 + xsen(y) = 4 3)4 cos(x) sen(y) = 1 4) e x y = x y 5) e y cos(x) = 1 + sen(xy) 1) y = x2 y 2 GABARITO 2) y = 2xy2 sen(y) 2x 2 y + xcos(y) 3) y = tg(x)tg(y) ) 4) y = y(y ex y y 2 xe x y 5) y = ey sen(x) + ycos(xy) e y cos(x) xcos(xy) ANOTAÇÕES EXERCÍCIO RESOLVIDO Encontre dy dx por derivação implícita onde x 2 + xy y 2 = 4 Derivadas Vol. 2 3

4 AULA 6 Aplicações de derivadas Primeira derivada A partir de agora, vamos aplicar o conceito de derivada na análise de funções. Inicialmente, veremos como determinar quais os intervalos onde uma função é crescente e quais os intervalos onde ela é decrescente. Quem nos fornecerá essa informação é o sinal da primeira derivada da função. > 0, f é crescente Se f (x) { < 0, f é decrescente = 0, temos um ponto crítico f (2) = = 3 f (4) = = 9 Assim, como em zero a derivada é negativa, a função é decrescente de menos infinito até 1, entre 1 e 3 a função é crescente pois a derivada em 2 é positiva, e de 3 até mais infinito a função é decrescente, já que a derivada em 4 é negativa. Máximos e mínimos relativos Observe o gráfico a seguir: Pontos críticos são pontos onde a derivada da função é zero (a reta tangente a função no ponto é totalmente horizontal, paralela ao eixo x) ou não existe. Nesses pontos, e somente neles, a derivada pode mudar de sinal. Entre dois pontos críticos, ou em intervalos que vão de um ponto crítico até ± a derivada não muda de sinal, ou seja, a função mantém o comportamento. Portanto, determinamos primeiro quais são os pontos críticos da função, igualando a primeira derivada a zero, em seguida indicamos os intervalos onde a função é crescente ou decrescente de acordo com o sinal da derivada. Existem máximos e mínimos absolutos e Exemplo: máximos e mínimos relativos. Note que o ponto mais alto da curva é o ponto em x 1, esse ponto Dada a função f(x) = x 3 + 6x 2 9x + 5, é denominado de máximo absoluto, da mesma determine onde a função é crescente ou maniera que o ponto mais baixo, em x 2 é ponto decrescente. de mínimo absoluto. Porém os pontos em x 3 e x Inicialmente derivamos a função: 5, considerando suas redondezas, também são pontos de máximo, esses pontos são f (x) = 3x x 9 chamados de máximos relativos. Analogamente, temos em x Agora, fazendo f (x) = 0, temos: 4 um ponto de mínimo relativo, pois é o ponto mínimo de suas redondezas. 3x x 9 = 0 Mas como encontrar um ponto de máximo ou de mínimo em uma função? Simples, As raízes da equação, que são os pontos encontrando os pontos críticos, mas cuidado, críticos, são 1 e 3. Por fim, basta tomarmos um pontos críticos são candidatos a serem pontos valor arbitrário em cada intervalo para de máximos e mínimos. Pode acontecer de um observarmos o sinal da derivada nesse ponto crítico não ser ponto nem de máximo nem intervalo. Escolhendo 0 (um valor menor que 1), de mínimo, casos onde a derivada não existe ou depois 2 (um valor entre 1 e 3) e 4 (um valor quando ela não muda de sinal no ponto crítico, maior que 3), calculamos o valor da derivada aí temos um ponto de inflexão, o que veremos nesses pontos e assim temos o comportanto da melhor mais a frente. função em cada intervalo. As derivadas nesses Encontrados os pontos críticos da função, pontos são dadas por: basta observar o que acontece com a função f (0) = = 9 quando passa pelos pontos críticos. Se ela vem crescente antes do ponto crítico e passa a ser Derivadas Vol. 2 4

5 descrescente após o ponto crítico, esse ponto é um ponto de máximo relativo. Analogamente, se a função for decrescente antes do ponto crítico e crescente após o ponto crítico, temos um ponto de mínimo relativo. O máximo absoluto será o maior máximo relativo assim como o mínimo absoluto será o menor entre os mínimos relativos. Exemplo: Encontre os pontos de máximo ou de mínimo da função f(x) = x 3 3x + 2. O primeiro passo é encontrar os passos críticos: Fazendo f (x) = 0: f (x) = 3x 2 3 3x 2 3 = 0 3x 2 = 3 x 2 = 1 x = ±1 Escolhendo x = -2, x = 0 e x = 2 encontramos o sinal da derivada em cada intervalo. f ( 3) = 3( 2) 2 3 = 9 f (0) = = 3 f (2) = = 9 O estudo do sinal dessa função é: Como a função vem crescente até -1 e passa a ser decrescente após -1, temos um ponto de máximo. Se x é -1, encontramos y na função: f(x) = x 3 3x + 2 f( 1) = ( 1) 3 3( 1) + 2 = 5 O ponto (-1, 5) é um ponto de máximo. No outro ponto crítico, a função chega decrescente e passa crescente em 1, logo, temos um ponto de mínimo, basta determinar a coordenada y: f(x) = x 3 3x + 2 f(1) = = 0 O ponto (1, 0) é um ponto de mínimo. EXERCÍCIOS 1 a 3 Determine os intervalos de crescimento e decrescimento da função. 1) f(x) = x 2 6x + 7 2) f(x) = x3 3 2x2 + 3x + 2 3) f(x) = x 4 + 2x Ache p e q de modo que a função f(x) = x 3 + px 2 + qx + 3 tenha máximos relativos em x = 1 e x = Mostre que o vértice de uma função do 2º grau do tipo f(x) = ax 2 + bx + c é o ponto ( b 2a, (b2 4ac) ). 4a GABARITO 1) Crescente para x > 3 Decrescente para x < 3 2) Crescente para x < 1 ou x > 3 Decrescente para 1 < x < 3 3) Crescente para x < 1 ou 0 < x < 1 Decrescente para 1 < x < 0 ou x > 1 4) p = 6 e q = 9 5) Basta encontrar o ponto crítico da função. f(x) = ax 2 + bx + c f (x) = 2ax + b f (x) = 0 2ax + b = 0 x = b 2a Agora calculamos o valor da função nesse ponto: f ( b 2 ) = a ( b 2a 2a ) + b ( b 2a ) + c f ( b 2a ) = b2 4a b2 2a + c f ( b 2a ) = b2 2b 2 + 4ac 4a f ( b 2a ) = (b2 4ac) 4a Derivadas Vol. 2 5

6 AULA 7 Aplicações de derivadas Derivada segunda A segunda derivada de uma função, que é encontrada derivando-se duas vezes a função, nos determina sua concavidade. Isso é muito útil pois conhecendo a concavidade em um ponto crítico sabemos se esse ponto é de máximo ou de mínimo sem precisar analisar se a função é crescente ou decrescente antes e depois do ponto crítico, como fizemos na aula passada. A concavidade é dada pelo sinal da segunda derivada: > 0, f é côncava para cima < 0, f é côncava para baixo Se f (x) { = 0, temos um possível ponto de inflexão Para o ponto suspeito ser de fato um ponto de inflexão, o sinal da derivada segunda deve mudar quando passa por esse ponto, ou seja, a concavidade da função deve mudar no ponto. Problemas sobre máximos e mínimos A teoria de máximos e mínimos permite resolver diversos problemas que envolvem otimização, ou seja, problemas onde precisamos encontrar valores máximos ou mínimos. Para resolver estes problemas, devemos inicialmente intepretar a situação para converter o problema de otimização em um problema matemático, determinando a função a ser maximizada ou minimizada, aí basta encontrar os máximos ou mínimos. Exemplo 1: Determine as dimensões de um retângulo de área 100 m 2 de modo que seu perímetro seja mínimo. Resolução: Sejam x e y as dimensões do retângulo e P seu perímetro. Dá área do retângulo, sabemos que: y = 100 x O perímetro nos fornece a outra relação: P = 2x + 2y Substituindo y, temos: P = 2x x P = 2x x Essa é a função que dá o perímetro do retângulo em função da dimensão x, está modelado o problema. Basta encontrar o mínimo da função, pois queremos que o perímetro seja mínimo. Determinando os pontos críticos da função: P = x 2 P = x 2 = 0 2 = 200 x 2 2x 2 = 200 x 2 = 100 x ± 10 Logo, x = 10 m, pois não podemos ter uma dimensão negativa. Basta calcular a segunda derivada da função nesse ponto, se for maior que zero, a função é côncava para cima e o ponto é de mínimo. P = 400 x 3 P (10) = = 0,04 Concluímos que nesse ponto a curva é côncava para cima, dessa maneira temos o ponto mínimo que buscamos na função. Como x = 10, encontramos y na relação da área do retângulo: xy = 100 xy = y = 100 Podemos agora isolar uma das dimensões, y = 10 y por exemplo: Derivadas Vol. 2 6

7 As dimensões do retângulo são 10 m e 10 m, ou seja, o retângulo é um quadrado cujo perímetro vale = 40 m. Exemplo 2: Um agricultor deseja construir um reservatório cilíndrico, fechado em cima, com capacidade de 6280 m 3. Sabendo que o preço da chapa de aço é de R$ 50,00 por metro quadrado e π = 3,14, determine as dimensões do raio da base a da altura do cilindro para que o custo na produção seja mínimo. Determine também qual é o custo mínimo r 2 = 12,56r 12,56r 3 = r 3 = 1000 r = 10 m Agora calculamos a segunda derivada nesse ponto: A = r ,56 A (10) = ,56 Resolução: O volume de um cilindro é dado por: V = πr 2 h Onde r é a medida do raio da base e h é a altura do cilindro. Logo, temos: 6280 = 3,14r 2 h h = ,14r 2 h = 2000 r 2 A outra relação é a área total do cilindro, dada por: A = 2πrh + 2πr 2 Substituindo h encontramos a função que fornece a área total do cilindro em função da medida do seu raio: A = 2 3,14r 2000 r ,14r 2 A = r + 6,28r 2 Basta encontrar o ponto mínimo dessa função, pois ela nos dá a medida da superfície total do cilindro, e queremos que essa superfície seja a menor possível para que o agricultor gaste o mínimo de material. Então, buscamos os pontos críticos: A = r 2 A = 0 0 = r ,56r + 12,56r Observamos que A (10) > 0, assim, a função nesse ponto é côncava para cima e o ponto é um ponto de mínimo, confirmando que encontramos o que buscamos. O raio deve ser de 10 m para que a área total seja mínima. Se o raio deve ser 10 m, basta encontrar a altura com a relação do volume: h = 2000 r 2 h = = 20 m A primeira parte do problema está respondida, o raio da base do cilindro deve ser de 10 m e a altura de 20 m. Para obter o custo mínimo, é só calcular quantos metros quadrados de chapa de aço é necessário para construir o cilindro em sua área total mínima (é o valor da função A quando r = 10) e multiplicar esse valor por 50. A = r A(10) = ,28r 2 + 6, A(10) = A(10) = 1884 m 2 O custo mínimo será de = reais. Derivadas Vol. 2 7

8 EXERCÍCIOS GABARITO 1 Encontre dois números positivos cujo produto seja 100 e cuja soma seja mínima. 2 Um modelo usado para a produção Y de uma colheita agrícola como função do nível de nitrogênio N no solo (medido em unidades apropriadas) é Y = kn 1 + N 2 1) 10 e 10 2) 01 3) 300 m e 600 m 4) 4000 cm 3 5) x = y = 100 cm ANOTAÇÕES onde k é uma constante positiva. Que nível de nitrogênio dá a melhor produção? 3 - Um fazendeiro tem 1200 m de cerca e quer cercar um campo retangular que está na margem de um rio reto. Ele não precisa de cerca ao longo do rio. Quais são as dimensões do campo que tem maior área? 4 - Se 1200 m 2 de material estiverem disponíveis para a construção de uma caixa com uma base quadrada e sem tampa, encontre o maior volume possível da caixa. 5 - A janela de uma casa tem a forma da figura abaixo: um retângulo sobreposto por um semicírculo. Sabendo que o perímetro da janela é de 714 cm, calcule as dimensões x e y que permitem a maior entrada de luz. Adote π = 3,14. Derivadas Vol. 2 8

9 Esboço de gráficos AULA 8 Esboçar à mão o gráfico de uma função qualquer não é tarefa simples, mas os limites e as derivadas nos ajudam muito com esse problema. O roteiro a seguir, visa fornecer as informações necessárias para fazer um esboço que mostre os aspectos mais importantes da função. Para fazer um bom gráfico, devemos ter os seguintes elementos: Domínio da função; Pontos de intersecções com os eixos; Assíntotas horizontais e verticais; Pontos críticos, intervalos onde a função é crescente ou decrescente e pontos de máximo ou mínimo; Concavidade e pontos de inflexão. Exemplo: Esboçe a curva y = x4 4 3x x + 5 Seguindo nosso roteiro: 1) O domínio da função é o conjunto dos números reais, assim a curva é contínua. 2) Para encontrar os pontos de intersecção com os eixos, calculamos o valor da função quando x é zero (é o valor onde a curva corta o eixo y), na sequência fazemos y = 0, resolvendo a equação para obter x (os valores onde a curva corta o eixo x). Se x = 0: y = y = 5 Já temos o ponto (0, 5). Agora, se y = 0: 0 = x4 4 3x x = x4 6x 2 + 8x x 4 6x 2 + 8x + 20 = 0 É uma equação difícil de resolver, nesse caso podemos omitir esse passo sem encontrar as raízes da função, não é imprescindível. 3) Assíntotas horizontais e verticais. Lembrese de nossas aulas sobre limites, assíntota vertical de uma curva y = f(x) é a reta x = a, quando uma das seguintes condições é satisfeita: lim x a f(x) = lim x a + f(x) = lim x a f(x) = lim x a + f(x) = Já a assíntota horizontal de uma curva y = f(x), é a reta y = L, onde lim x ± f(x) = L. Em nossa função aqui do exemplo, não temos nenhuma assíntota. Em geral, as assíntotas são necessárias quando há restrições no domínio da função. 4) Intervalos onde a função é crescente ou decrescente. Para isso, encontramos a primeira derivada da função, em seguida igualamos a derivada a zero para obter os pontos críticos. y = x4 4 3x x + 5 Fazendo y = 0: y = x 3 3x + 2 x 3 3x + 2 = 0 Lembrando que toda equação do 3º grau é da forma ax 3 + bx 2 + cx + d = 0, utilizamos as Relações de Girard para chegar nas raízes x 1 + x 2 + x 3 = b a = 0 x 1 x 2 x 3 = d a = 2 As raízes são 2, 1 e 1. Agora encontramos o valor da função para cada raiz, obtendo os pontos críticos. Se x = 2: y = ( 2)4 4 Se x = 1: 3( 2)2 2 y = 1 + 2( 2) + 5 y = y = 23 4 = 5,75 Os pontos críticos são ( 2, 1) e (1, 5,75). Derivadas Vol. 2 9

10 Os intervalos onde devemos analisar se a função é crescente ou decrescente são x < 2, 2 < x < 1 e x > 1. Para isso, observamos o sinal da primeira derivada para qualquer valor em cada intervalo, podemos utilizar x = 3, x = 0 e x = 2. y ( 3) = ( 3) 3 3( 3) + 2 = 16 y (0) = (0) 3 3(0) + 2 = 2 y (2) = (2) 3 3(2) + 2 = 4 Como y ( 3) < 0, y (0) > 0 e y (2) > 0, a função é decrescente para x < 2, crescente para 2 < x < 1 e crescente para x > 1. Concluímos ainda, que em x = 2 temos um ponto de mínimo da função e em x = 1, mesmo sendo ponto crítico, não é ponto nem de máximo nem de mínimo da função, pois a derivada primeira não troca o sinal quando passa por ele. Veremos melhor esse ponto na sequência. 5) Concavidade e pontos de inflexão. Essas informações são dadas pela segunda derivada da função. Como y = x 3 3x + 2, temos y = 3x 2 3. Os pontos de inflexão são obtidos igualando a segunda derivada a zero. 3x 2 3 = 0 3x 2 = 3 x 2 = 1 x = ±1 Se x = 1, a coordenada y será y = ( 1)4 4 3 ( 1) ( 1) + 5 = 1,75 Se x = 1, já temos o ponto, é um dos pontos críticos. Logo, os pontos de inflexão são ( 1, 1,75) e (1, 5,75). Analisamos agora o sinal da segunda derivada antes e depois de cada ponto de inflexão, ou seja, para x < 1, 1 < x < 1 e x > 1. Podemos escolher x = 2, x = 0 e x = 2. y ( 2) = 3( 2) 2 3 = 9 y (0) = 3(0) 2 3 = 3 y (2) = 3(2) 2 3 = 9 Como y ( 2) > 0, y (0) < 0 e y (2) > 0, em x = 1 temos um ponto de inflexão onde a concavidade da curva muda de cima para baixo nesse ponto, e em x = 1 a curva muda a concavidade de baixo para cima. Podemos agora fazer um esboço da curva. Sabemos que ela vem decrescente de menos infinito até 2 com concavidade para cima, chega no ponto de mínimo ( 2, 1) e passa a ser crescente com convidade para cima até o ponto de inflexão ( 1, 1,75) onde continua crescente mas a convidade passa a ser para baixo. Chega no ponto de intersecção com o eixo y e vai até o ponto de inflexão (1, 5,75) onde a concavidade da curva muda para cima. O esboço fica mais ou menos assim: Derivadas Vol. 2 10

11 EXERCÍCIO RESOLVIDO REFERÊNCIAS Faça um esboço do gráfico da função f(x) = x2 + 1 x 2 4 GIOVANNI, José Ruy; BONJORNO, José Roberto. Matemática completa, vol. 3. 2a. ed. São Paulo, FTD. STEWART, James. Cálculo, vol.1. 7a. ed. São Paulo, Cengage Learning. Derivadas Vol. 2 11

Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Assíntotas, Esboço de Gráfico e Aplicações Aula 25 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 09 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Questão 1: (2 pontos) x (a) (0.4 ponto) Calcule o ite: 2 + 3 2. x 1 x 1 ( πx + 5 ) (b) (0.4 ponto) Calcule o ite:

Leia mais

Aula 22 O teste da derivada segunda para extremos relativos.

Aula 22 O teste da derivada segunda para extremos relativos. O teste da derivada segunda para extremos relativos. MÓDULO 2 - AULA 22 Aula 22 O teste da derivada segunda para extremos relativos. Objetivo: Utilizar a derivada segunda para determinar pontos de máximo

Leia mais

MAT146 - Cálculo I - Esboço de Gráficos. Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira

MAT146 - Cálculo I - Esboço de Gráficos. Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Nas aulas anteriores, estudamos várias ferramentas (Teste da Derivada Primeira, Teste da Derivada Segunda, Existência de Pontos Críticos,

Leia mais

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11

Índice. AULA 6 Integrais trigonométricas 3. AULA 7 Substituição trigonométrica 6. AULA 8 Frações parciais 8. AULA 9 Área entre curvas 11 www.matematicaemexercicios.com Integrais (volume ) Índice AULA 6 Integrais trigonométricas 3 AULA 7 Substituição trigonométrica 6 AULA 8 Frações parciais 8 AULA 9 Área entre curvas AULA Volumes 3 www.matematicaemexercicios.com

Leia mais

Derivada - Parte 3 - Aplicações

Derivada - Parte 3 - Aplicações Derivada - Parte 3 - Aplicações Wellington D. Previero previero@utfpr.edu.br http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D.

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012.

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012. UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012. GABARITO 1 a Questão. (3.0 pontos). (a) Calcule: lim x 0 +

Leia mais

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função f(x) = arctan x x + 1 (justifique) e a equação da reta tangente ao seu gráfico

Leia mais

Universidade Federal de Juiz de Fora Departamento de Matemática

Universidade Federal de Juiz de Fora Departamento de Matemática Universidade Federal de Juiz de Fora Departamento de Matemática Cálculo I - Prova Opcional - Primeiro Semestre Letivo de 016-03/08/016 - FILA A Aluno(a): Matrícula: Turma: Instruções Gerais: 1- A prova

Leia mais

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 16: Máximos e Mínimos - 2 a Parte

CÁLCULO I. 1 Concavidade. Objetivos da Aula. Aula n o 16: Máximos e Mínimos - 2 a Parte CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 16: Máximos e Mínimos - 2 a Parte Objetivos da Aula Denir e discutir a concavidade de uma função em um intervalo do domínio; Denir e calcular

Leia mais

AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10

AULA 1 Introdução aos limites 3. AULA 2 Propriedades dos limites 5. AULA 3 Continuidade de funções 8. AULA 4 Limites infinitos 10 Índice AULA 1 Introdução aos limites 3 AULA 2 Propriedades dos limites 5 AULA 3 Continuidade de funções 8 AULA 4 Limites infinitos 10 AULA 5 Limites quando numerador e denominador tendem a zero 12 AULA

Leia mais

ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD

ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD ANEXOS Anexo A: Esboço de Curvas Anexo B: Exemplos Extras Anexo C: Aplicação do Software SLD ANEXO A Critérios para determinar o comportamento de uma função através do estudo da derivada. Vamos relembrar

Leia mais

Universidade Federal de Alagoas Instituto de Matemática Curso de Graduação em Matemática. Banco de Questões

Universidade Federal de Alagoas Instituto de Matemática Curso de Graduação em Matemática. Banco de Questões Universidade Federal de Alagoas Instituto de Matemática Curso de Graduação em Matemática Banco de Questões Cálculo 1 Maceió, Brasil 11 de Março de 2010 Sumário 1 2005 3 1.1 1 a Avaliação-21 de fevereiro

Leia mais

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?

1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm? MAT 001 1 ō Sem. 016 IMC UNIFEI Lista 4: Aplicações da Derivação 1. O raio de uma esfera está aumentando a uma taxa de 4 mm/s. Quão rápido o volume da esfera está aumentando quando o diâmetro for 80 mm?.

Leia mais

Instituto de Matemática Universidade Federal do Rio de Janeiro Prova Final de Cálculo I - Unicado 05/12/2018

Instituto de Matemática Universidade Federal do Rio de Janeiro Prova Final de Cálculo I - Unicado 05/12/2018 Instituto de Matemática 5/1/18 1 a Questão: (4. pts) Faça o que se pede nos itens abaixo, indicando a solução no espaço adequado no seu caderno de respostas. As soluções devem ser sucintas e a resposta

Leia mais

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL -. EXAME FINAL Nome Legível RG CPF Respostas sem justificativas não serão aceitas. Além

Leia mais

Traçado do gráfico de uma função; otimização

Traçado do gráfico de uma função; otimização 15 Traçado do gráfico de uma função; otimização Sumário 15.1 Traçado do gráco de uma função.......... 15. Problemas de otimização............... 15 1 Unidade 15 Traçado do gráfico de uma função 15.1 Traçado

Leia mais

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi

Funções de Uma Variável - 1 a Avaliação - Turma B3 31 de outubro de Prof. Armando Caputi Funções de Uma Variável - 1 a Avaliação - Turma B 1 de outubro de 017 - Prof. Armando Caputi 1 Determine o domínio da função g(x) = arctan ( ln(x x + ) ) (justifique) e a equação da reta tangente ao seu

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Å INSTITUTO DE MATEMÁTICA Universidade Federal do Rio de Janeiro Gabarito da a Prova Unificada de Cálculo I a Questão: Calcule ou justifique caso não exista, cada um dos ite abaixo: ( (a) x + (+x )e x,

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática a Lista MAT 146 - Cálculo I 018/I DERIVADAS Para este tópico considera-se uma função f : D R R, definida num domínio

Leia mais

Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada.

Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada. O CONCEITO DE DERIVADA (continuação) Funções Crescentes e Decrescentes Existe uma relação direta entre a derivada de uma função e o crescimento desta função. Em geral, temos: Se, para todo x ]a, b[ tivermos

Leia mais

Demonstração. Sabemos que o volume de um cone reto com base circular de raio r e altura h é dado por

Demonstração. Sabemos que o volume de um cone reto com base circular de raio r e altura h é dado por UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 1-018.1 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível RG CPF Respostas sem justificativas

Leia mais

Derivação Impĺıcita e Derivadas de Ordem Superior - Aula 19

Derivação Impĺıcita e Derivadas de Ordem Superior - Aula 19 Máximos e Mínimos - Continuação Derivação Impĺıcita e Derivadas de Ordem Superior - Aula 19 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 11 de Abril de 2014 Primeiro Semestre

Leia mais

(d) 1 x + 1 y = 1. (e) x 2 = x+y. (0, 1 2 ) (cardióide) (3, 1) (lemniscata)

(d) 1 x + 1 y = 1. (e) x 2 = x+y. (0, 1 2 ) (cardióide) (3, 1) (lemniscata) UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ 4 a Lista de Exercícios de Cálculo Diferencial e Integral I: Derivada Prof. Wellington D. Previero 1. Ache dy/dx diferenciando implicitamente. (a) x 3 + xy 2x

Leia mais

MAT146 - Cálculo I - Problemas de Otimização

MAT146 - Cálculo I - Problemas de Otimização Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Um problema de otimização é aquele onde se procura determinar os valores extremos de uma função, isto é, o maior ou o menor valor que

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista MAT 146 - Cálculo I 218/I APLICAÇÃO DE DERIVADAS: OTIMIZAÇÃO Otimização é outra aplicação de derivadas. Em

Leia mais

Derivadas 1

Derivadas 1 www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com

Leia mais

Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Gráficos Material online: h-p://www.im.ufal.br/professor/thales/calc12010_2.html O que f nos diz sobre f? O que f nos diz sobre f? f (x) < 0 f (x) > 0 f(x) =x 2 f (x) =2x x>0 f (x) > 0 x

Leia mais

AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA

AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA As derivadas têm inúmeras aplicações. Com o estudo da primeira e da segunda derivada podemos esboçar o gráfico de uma

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT A02 CÁLCULO A ª LISTA ( QUESTÕES DE PROVAS )

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT A02 CÁLCULO A ª LISTA ( QUESTÕES DE PROVAS ) UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT A0 CÁLCULO A 009 ª LISTA ( QUESTÕES DE PROVAS ) Regra da cadeia ( f ( g( h(( t( )))))) f ( g( h(( t( ))))) g ( h(( t(

Leia mais

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G4 29 de junho de 2009 (versão I)

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G4 29 de junho de 2009 (versão I) DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC PUC-RIO MAT1157 Cálculo a uma Variável A G4 29 de junho de 2009 (versão I) Início: 17:00 Término: 18:50 Nome: Matrícula: Turma: Se você é um(a) aluno(a) aprovado(a)

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3).

A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3). Universidade de Brasília Departamento de Matemática Cálculo 1 A Regra da Cadeia Suponha que, a partir de uma lona de plástico com 6 metros de comprimento e 3 de largura, desejamos construir uma barraca

Leia mais

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x).

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x). UFRGS Instituto de Matemática DMPA - Depto. de Matemática Pura e Aplicada MAT 01 353 Cálculo e Geometria Analítica I A Gabarito da 1 a PROVA fila A de setembro de 005 Questão 1 (1,5 pontos). Seja f uma

Leia mais

FUNÇÃO DE 2º GRAU. O grau de um polinômio é determinado pelo maior expoente dentre todos os termos. Assim uma equação de 2º grua tem sempre a forma:

FUNÇÃO DE 2º GRAU. O grau de um polinômio é determinado pelo maior expoente dentre todos os termos. Assim uma equação de 2º grua tem sempre a forma: FUNÇÃO DE º GRAU O grau de um polinômio é determinado pelo maior expoente dentre todos os termos. Assim uma equação de º grua tem sempre a forma: y = ax + bx + c O gráfico da função é sempre uma parábola.

Leia mais

Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC238 Respostas da Prova de Final - 20/12/2013

Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC238 Respostas da Prova de Final - 20/12/2013 Página de 8 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC38 Respostas da Prova de Final - 0//03 Questão : ( pontos) (a) Dado o gráfico da função f, esboce o gráfico da função

Leia mais

Gabarito da Prova Final Unificada de Cálculo I- 2015/2, 08/03/2016. ln(ax. cos (

Gabarito da Prova Final Unificada de Cálculo I- 2015/2, 08/03/2016. ln(ax. cos ( Gabarito da Prova Final Unificada de Cálculo I- 05/, 08/03/06. Considere a função f : (0, ) R definida por ln(ax ), se x, f(x) = 6 ln cos ( π, x 3 se 0 < x

Leia mais

Concavidade e pontos de inflexão Aula 20

Concavidade e pontos de inflexão Aula 20 Concavidade e pontos de inflexão Aula 20 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 22 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.

Leia mais

RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta

RESUMO - GRÁFICOS. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação da reta RESUMO - GRÁFICOS Função do Primeiro Grau - f(x) = ax + b O gráfico de uma função do 1 o grau, y = ax + b, é uma reta. O coeficiente de x, a, é chamado coeficiente angular da reta e está ligado à inclinação

Leia mais

Universidade Federal de Juiz de Fora Departamento de Matemática

Universidade Federal de Juiz de Fora Departamento de Matemática Universidade Federal de Juiz de Fora Departamento de Matemática Cálculo I - Segunda Avaliação - Segundo Semestre Letivo de 2016-03/12/2016 - FILA A Aluno(a): Matrícula: Turma: Instruções Gerais: 1- A prova

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA DÉCIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos o Teorema do Valor Médio e algumas de suas conseqüências como: determinar os intervalos de

Leia mais

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

Instituto de Matemática - IM/UFRJ Gabarito da Primeira Prova Unificada de Cálculo I Politécnica e Engenharia Química

Instituto de Matemática - IM/UFRJ Gabarito da Primeira Prova Unificada de Cálculo I Politécnica e Engenharia Química Página de 5 Questão : (3.5 pontos) Calcule: + Instituto de Matemática - IM/UFRJ Politécnica e Engenharia Química 3 2 + (a) 3 + 2 + + ; + (b) ; + (c) 0 +(sen )sen ; (d) f (), onde f() = e sen(3 + +). (a)

Leia mais

s: damasceno.

s:      damasceno. Lista de exercícios 05 Questão 01) A função f(x) = 3x 6, com x real, a) é crescente b) é decrescente c) é crescente para x > 2 d) é decrescente para x < 2 e) não é crescente e nem decrescente Questão 02)

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

= 6 lim. = lim. 2x + 2 sin(x) cos(x) 4 sin(4x) 2 x cos(x) = lim. x + ln(x) cos ) ] 3x. 3 ln. = lim x 1 x +

= 6 lim. = lim. 2x + 2 sin(x) cos(x) 4 sin(4x) 2 x cos(x) = lim. x + ln(x) cos ) ] 3x. 3 ln. = lim x 1 x + UFRGS - PAG Cálculo - MAT05-0/ Lista 5-04/05/0 - Soluções.a ln + 0 + ln = + + 0 =.b sin8 0 sin4 = 0 8 cos8 4 cos4 =.c.d + sin 0 cos4 = 0 + sin cos 4 sin4 = 0 + cos sin 6 cos4 = 4 0 + sin e cos = 0 + e

Leia mais

Material de Apoio. Roteiro para Esboçar uma Curva 1

Material de Apoio. Roteiro para Esboçar uma Curva 1 Universidade Federal Rural de Pernambuco Departamento de Matemática Disciplina: Cálculo M I Prof a Yane Lísle Material de Apoio Roteiro para Esboçar uma Curva A lista a seguir pretende servir como um guia

Leia mais

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. f(x) = 3x 3 x 2

Respostas sem justificativas não serão aceitas. Além disso, não é permitido o uso de aparelhos eletrônicos. f(x) = 3x 3 x 2 UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL - 07. A VERIFICAÇÃO DE APRENDIZAGEM - TURMA ME Nome Legível RG CPF Respostas sem justificativas

Leia mais

FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal

FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Função Quadrática ou do 2 o grau Definição: Toda função do tipo y = ax 2 + bx + c, com {a, b, c} R e a

Leia mais

( ) ( ) 3 a Lista de Exercícios MAT CÁLCULO I. d x. d t. x d x

( ) ( ) 3 a Lista de Exercícios MAT CÁLCULO I. d x. d t. x d x a Lista de Eercícios MAT 0 - CÁLCULO I ) Utilizando o Teorema Fundamental do Cálculo, determine as seguintes integrais definidas: ) I = 7 0 d 6 + 9 ) I = d ) I = ) I = d t t + d ( 8 ) 6 0 5 ( ) 5) I =

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Derivada e Diferencial de uma Função Professora Renata Alcarde Sermarini Notas de aula

Leia mais

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 ( Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD

Leia mais

Derivadas. Derivadas. ( e )

Derivadas. Derivadas. ( e ) Derivadas (24-03-2009 e 31-03-2009) Recta Tangente Seja C uma curva de equação y = f(x). Para determinar a recta tangente a C no ponto P de coordenadas (a,f(a)), i.e, P(a, f(a)), começamos por considerar

Leia mais

Questão 1. (1,0 ponto por item)

Questão 1. (1,0 ponto por item) ESCOLA DE CIÊNCIAS E TECNOLOGIA UFRN PROVA 2 DE CÁLCULO 1 ECT 1113 Turma 2 10/11/2014 Prof. Ronaldo Batista Nome Legível: Assinatura: Instruções: 1. Leia todas as instruções antes de qualquer outra coisa.

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais

Leia mais

ANÁLISE DO COMPORTAMENTO DE UMA FUNÇÃO. Um ponto c do domínio de uma função f é chamado de ponto crítico da f se f (c) = 0 ou f (c) não existe.

ANÁLISE DO COMPORTAMENTO DE UMA FUNÇÃO. Um ponto c do domínio de uma função f é chamado de ponto crítico da f se f (c) = 0 ou f (c) não existe. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL Faculdade de Matemática - Departamento de Matemática Cálculo I - 2006 PONTO CRÍTICO ANÁLISE DO COMPORTAMENTO DE UMA FUNÇÃO Um ponto c do domínio de

Leia mais

ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado:

ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado: ā Lista de MAT 454 - Cálculo II - a) POLINÔMIOS DE TAYLOR 1. Seja f(x, y) = ln (x + y). a) Determine o polinômio de Taylor de ordem um de f em torno de ( 1, 1 ). b) Mostre que para todo (x, y) IR com x

Leia mais

Cálculo I -A- Humberto José Bortolossi. Departamento de Matemática Aplicada Universidade Federal Fluminense. Parte de novembro de 2013

Cálculo I -A- Humberto José Bortolossi. Departamento de Matemática Aplicada Universidade Federal Fluminense. Parte de novembro de 2013 Folha 1 Cálculo I -A- Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Parte 16 13 de novembro de 2013 Parte 16 Cálculo I -A- 1 Aproximações lineares (afins)

Leia mais

Cálculo Diferencial e Integral I para Economia (1 0 semestre 2019)

Cálculo Diferencial e Integral I para Economia (1 0 semestre 2019) 1 0 Lista de Exercício: MAT0146, turma 2019121- noturno Cálculo Diferencial e Integral I para Economia (1 0 semestre 2019) Referências principais(nas quais a lista foi baseada): 1. J. Stewart,Cálculo I

Leia mais

Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.

Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples. Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty

Leia mais

Distância entre duas retas. Regiões no plano

Distância entre duas retas. Regiões no plano Capítulo 4 Distância entre duas retas. Regiões no plano Nesta aula, veremos primeiro como podemos determinar a distância entre duas retas paralelas no plano. Para isso, lembramos que, na aula anterior,

Leia mais

Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples.

Resumo: Nestas notas faremos um breve estudo sobre as principais propriedades. mínimos, gráficos e algumas aplicações simples. Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Equação quadrática Prof. Doherty

Leia mais

c) R 2 e f é decrescente no intervalo 1,. , e f é crescente no intervalo 2, 2

c) R 2 e f é decrescente no intervalo 1,. , e f é crescente no intervalo 2, 2 UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº As questões de números a 9 referem-se à função f ( ). - O domínio da função f é o conjunto: a) R b) R c) R R, 0 e) R 0 - A derivada

Leia mais

ANOTAÇÕES DE AULA : DERIVADAS DE FUNÇÕES TRIGONOMÉTRICAS E DERIVADAS DE ORDEM SUPERIOR

ANOTAÇÕES DE AULA : DERIVADAS DE FUNÇÕES TRIGONOMÉTRICAS E DERIVADAS DE ORDEM SUPERIOR UNIVERSIDADE FEDERAL RURAL DA AMAZÔNIA INSTITUTO CIBER ESPACIAL MEDICINA VETERINARIA PROFº JOÃO SANTANNA ANOTAÇÕES DE AULA : DERIVADAS DE FUNÇÕES TRIGONOMÉTRICAS E DERIVADAS DE ORDEM SUPERIOR Derivadas

Leia mais

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B.

Capítulo 2. f : A B. 3. A regra em (3) não define uma função de A em B porque 4 A está associado a mais de um. elemento de B. Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 2 Funções 2.1 Definição Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento

Leia mais

Objetivos. Expressar o vértice da parábola em termos do discriminante e dos

Objetivos. Expressar o vértice da parábola em termos do discriminante e dos MÓDULO 1 - AULA 17 Aula 17 Parábola - aplicações Objetivos Expressar o vértice da parábola em termos do discriminante e dos coeficientes da equação quadrática Expressar as raízes das equações quadráticas

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 7 - a Fase Proposta de resolução GRUPO I. Como a área do retângulo é igual a 5, designado por x o comprimento de um dos lados e por y o comprimento de um lado adjacente,

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, veremos que o sinal da derivada segunda de uma função dá informações

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, veremos que o sinal da derivada segunda de uma função dá informações CÁLCULO L NOTAS DA DÉCIMA SEGUNDA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, veremos que o sinal da derivada segunda de uma função dá informações sobre a concavidade do gráfico desta função.

Leia mais

ANEXO A: Critérios para determinar o comportamento de uma função através do estudo da derivada.

ANEXO A: Critérios para determinar o comportamento de uma função através do estudo da derivada. ANEXO A: Critérios para determinar o comportamento de uma unção através do estudo da derivada. Vamos relembrar critérios que permitem determinar o comportamento de uma unção nas proimidades de um ponto

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru REGRA DE LHÔPITAL Teorema: Suponhamos que f (a) g(a) e que f (a) e g (a) eistam com g(a). Então: lim a f() g() f(a) g(a). in det er min ação. Forma mais avançada do Teorema de L Hospital: Suponhamos que

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios MAT 454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 7. Ache os pontos do hiperbolóide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6)..

Leia mais

12. Diferenciação Logarítmica

12. Diferenciação Logarítmica 2. Diferenciação Logarítmica A diferenciação logarítmica é uma técnica útil para diferenciar funções compostas de potências, produtos e quocientes de funções. Esta técnica consiste em executar os seguintes

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

Bons estudos e um ótimo semestre a todos!

Bons estudos e um ótimo semestre a todos! Cálculo 206.2 Caro aluno, O Dáskalos tem como objetivo proporcionar aos universitários um complemento de ensino de qualidade, por meio de aulas particulares, apostilas e aulões. Tendo isso em vista, a

Leia mais

Vejamos na seguinte tabela como se comportam os valores x(n) quando n aumenta. n

Vejamos na seguinte tabela como se comportam os valores x(n) quando n aumenta. n QUESTÕES-AULA 32 1. Considere a sequência de termo geral x : N R; x(n) = x n = 2n+1 1 2 n π Considerando valores cada vez maiores para a variável independente n, pode-se observar que os valores x(n) ficam

Leia mais

Lista 12. Aula 39. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Lista 12. Aula 39. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Revisão - Resolução de Exerícios Aula 39 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 13 de Junho de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

Universidade Federal de Juiz de Fora Departamento de Matemática

Universidade Federal de Juiz de Fora Departamento de Matemática Universidade Federal de Juiz de Fora Departamento de Matemática Cálculo I - Prova Opcional - Segundo Semestre Letivo de 2016-17/01/2017 - FILA A Aluno(a): Matrícula: Turma: Instruções Gerais: 1- A prova

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 17: Crescimento e Decrescimento de funções. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e

Leia mais

CURSO de MATEMÁTICA (Niterói) - Gabarito

CURSO de MATEMÁTICA (Niterói) - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 006 e 1 o semestre letivo de 007 CURSO de MATEMÁTICA (Niterói) - Gabarito Verifique se este caderno contém: INSTRUÇÕES AO CANDIDATO PROVA

Leia mais

. Os menores -2,0-1,5-1,0-0,5-5 0,0 0,5 1,0 1,5 2, = x 2y.. Os menores

. Os menores -2,0-1,5-1,0-0,5-5 0,0 0,5 1,0 1,5 2, = x 2y.. Os menores 1. Para cada uma das seguintes funções, verifique se ele é côncava, convexa ou nenhuma das duas, justificando em cada caso. (a) f(x, ) = 1x + (b) f(x) = 1x x (c) f(x, ) = x x 1 (a) = 1 = x = e = = = 1

Leia mais

Matemática 1 a QUESTÃO

Matemática 1 a QUESTÃO Matemática a QUESTÃO IME-007/008 Temos que: i) sen 3 x + cos 3 x = (senx + cosx) (sen x senxcosx + cos x) = (senx + cosx) ( senxcosx) ii) sen xcos x = ( + senxcosx) ( senxcosx) Então, a equação dada é

Leia mais

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 2. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 2 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

Cálculo 2. Guia de Estudos P1

Cálculo 2. Guia de Estudos P1 Cálculo 2 Guia de Estudos P1 Resuminho Teórico e Fórmulas Parte 1 Cônicas Conceito: Cônicas são formas desenhadas em duas dimensões, considerando apenas os eixos x (horizontal) e y (vertical). Tipos de

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, discutiremos a noção de continuidade que, juntamente com a diferenciação,

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, discutiremos a noção de continuidade que, juntamente com a diferenciação, CÁLCULO L1 NOTAS DA DÉCIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, discutiremos a noção de continuidade que, juntamente com a diferenciação, possibilitarão a solução de problemas de

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo:

1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo: Exercícios resolvidos e comentados 1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo: Plano Custo fixo mensal Custo adicional por minuto A R$ 35,00 R$ 0,50 B R$ 20,00 R$ 0,80

Leia mais

Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli

Integração Volume. Aula 07 Matemática II Agronomia Prof. Danilene Donin Berticelli Integração Volume Aula 7 Matemática II Agronomia Prof. Danilene Donin Berticelli Volume de um sólido Na tentativa de encontra o volume de um sólido, nos deparamos com o mesmo tipo de problema que para

Leia mais

Cálculo 1 - Quinta Lista de Exercícios Derivadas

Cálculo 1 - Quinta Lista de Exercícios Derivadas Cálculo 1 - Quinta Lista de Exercícios Derivadas Prof. Fabio Silva Botelho November 2, 2017 1. Seja f : D = R\{ 7/5} R onde 1 5x+7. Seja x D. Utilizando a definição de derivada, calcule f (x). Calcule

Leia mais

Integração por frações parciais - Parte 1

Integração por frações parciais - Parte 1 Universidade de Brasília Departamento de Matemática Cálculo Integração por frações parciais - Parte Neste pequeno texto vamos desenvolver algumas ideias para integrar funções racionais, isto é, funções

Leia mais

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação;

CÁLCULO I. 1 Taxa de Variação. Objetivos da Aula. Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas. Denir taxa de variação; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 10: Taxa de Variação, Velocidade, Aceleração e Taxas Relacionadas Objetivos da Aula Denir taxa de variação; Usar as regras de derivação

Leia mais

1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2

1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2 1. Limite Definição: o limite de uma função f(x) quando seu argumento x tende a x0 é o valor L para o qual a função se aproxima quando x se aproxima de x0 (note que a função não precisa estar definida

Leia mais

Capítulo 3. Função afim. ANOTAÇÕES EM AULA Capítulo 3 Função afim 1.5 CONEXÕES COM A MATEMÁTICA

Capítulo 3. Função afim. ANOTAÇÕES EM AULA Capítulo 3 Função afim 1.5 CONEXÕES COM A MATEMÁTICA Capítulo 3 Função afim 1.5 Função afim Uma função f: R R é função afim quando existem os números reais a e b tais que f(x) = ax + b para todo x R. Exemplos f(x) =, em que: a = e b = 6 g(x) = 7x, em que:

Leia mais

Prof.Letícia Garcia Polac. 8 de novembro de 2018

Prof.Letícia Garcia Polac. 8 de novembro de 2018 Fundamentos de Matemática Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 8 de novembro de 2018 Sumário 1 Máximos e Mínimos 2 Funções Monótonas: Crescimento e Decrescimento 3 Concavidades

Leia mais

MAT0146: Cálculo Diferencial e Integral I para Economia -noturno

MAT0146: Cálculo Diferencial e Integral I para Economia -noturno MAT0146: Cálculo Diferencial e Integral I para Economia -noturno P1-6/04/19 - Prova: A prova foi baseada na primeira lista de exercícios. Em particular compare: Questão 1 a) com Problema.6 da Primeira

Leia mais

Cálculo 1 A Turma F1 Prova VS

Cálculo 1 A Turma F1 Prova VS Cálculo 1 A 017. Turma F1 Prova VS Nome (MAIÚSCULO): Matrícula: O IMPORTANTE É O RACIOCÍNIO, PORTANTO DEIXE-O TODO NA PROVA. RESPOSTAS SEM AS DEVIDAS JUSTIFICATIVAS SERÃO DESCONSIDERADAS. (1) Encontre

Leia mais

LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi

LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi LISTA DE EXERCÍCIOS Cálculo I -A- Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 18 Esboço de gráficos de funções [01] Verdadeiro ou falso? Se f : R R é uma função de classe C e f (p)

Leia mais