FUNÇÕES E SUAS PROPRIEDADES Í N D I C E Funções Definição... Gráficos (Resumo): Domínio e Imagem... 5 Tipos de Funções... 7 Função Linear... 8 Função Linear Afim... 9 Coeficiente Angular e Linear... Função Constante... Função Definida por várias sentenças... Critério dos Mínimos Quadrados... 5 Função do º Grau ou Função Quadrática... 7 Função Cúbica... 9 Função Racional... Função Irracional... Função Modular... Função Inversa... Função Eponencial... Função Eponencial e... Função Logarítmica... Função Composta... 7 Funções Trigonométricas... 7 Função Seno... 8 Função Cosseno... 8 Função Tangente... 9 Função Arco-Seno... 9 Função Arco-Cosseno... Função Arco-Tangente... Bibliografia... Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
FUNÇÃO - Definição: Uma função f definida em um conjunto de números reais A, é uma regra ou lei (equação ou algoritmo) de correspondência, que atribui um único número real a cada número do conjunto A. O conjunto A dos valores permitidos para chama-se Domínio da função e o conjunto dos valores correspondentes de chama-se Imagem da função. Representação: ou f (), pois f ( ) Eemplo: + ou f ( ) + sendo variável independente variável dependente Noção Prática de Função: é quando o valor de uma quantidade depende do valor de outra. Eemplos: Salário (variável dependente ) é função do nº de horas trabalhadas (variável independente ); Produção de uma fábrica () depende do número de máquinas utilizadas (); Resistência de um fio elétrico () depende do diâmetro do fio com comprimento fio (); Volume de um gás a pressão constante () depende da temperatura (); etc. Salário 5 Horas Variável Dependente: Salário Variável Independente: Nº de horas trabalhadas ou 5. ou f ( ) 5. Eemplos Práticos: ) Seja f uma função definida pela equação, verifica-se que, sendo f () se, então, e se <, não eiste solução, isto é, não será um número real., tem-se: Portanto, o domínio (valor que pode assumir) de f é [,+ [ e a imagem (resultado da função após substituição dos valores que pode assumir) de f é [,+ [. Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
Resolução: f ( ) f ( ) f () f () f ( 5) 5 f (5) f (5) f ( 6) 6 f (6) f (6) f ( 7) 7 f (7) f (7) f ( 8) 8 f (8) f (8) f ( 9) 9 f (9) 5 f (9) f ( ) f () 6 f () 5 6 Considerando a função como um conjunto de pares ordenados, temos: 5 6 7 8 9 + Domínio [,+ [ 5 6 + Imagem [,+ [ (, ) (,) (5,) (6, ) (7, ) (8,) (9, 5 ) (, 6 )... (Domínio, Imagem) ) Função f: [, ] R, definida pela lei f(). (função do º grau gráfico reta ). 6 8 8 7 6 5 - - - - I m a g e m - - I I I I I I I I I I I I I I I I I I D o m í n i o Nesta função: Domínio: D(f) { Є R / } ou [,] Imagem: Im(f) { Є R / 8} ou [,8]. ) Função f: R R, definida pela lei f() ² (função do º grau gráfico parábola ). ² - - - - - - + + - - - - - - - I m a g e m I I I I I I I I I I I I I I I I I I I I I I I I I I D o m í n i o Nesta função: Domínio: D(f) R ou ]-,+ [ Imagem: Im(f) { Є R / } ou R + ou [,+ [ Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
Atividades Práticas ) Dada a função f definida por f() ² + 8. 5. Calcule: f(); f(+h) e f() +f(h). f ( + h) f ( ) ) Calcule onde h, se f().². + 9. h ) Dada à função f definida por f() ³ +. Calcule: f(); f(+h) e f() +f(h). f ( + h) f ( ) ) Calcule onde h, se f() 7.². +. h 5) Um vendedor recebe mensalmente um salário composto de duas partes: uma parte fia, no valor de R$ 6,, e uma parte variável, que corresponde a uma comissão de 8% do total de vendas que ele fez durante o mês. a) Epressar a função que representa seu salário mensal; b) Calcular o salário do vendedor sabendo que durante um mês ele vendeu R$., em produtos. 6) O preço a pagar por uma corrida de tái depende da distância percorrida. A tarifa é composta de duas partes: uma fia denominada bandeirada e uma parte variável que depende do número de quilômetros rodados. Suponha que a bandeirada esteja custando R$ 5, e o quilômetro rodado, R$,5. a) Epressar a função que representa a tarifa b) Quanto se pagará por uma corrida em que o tái rodou km? 7) Determine o conjunto imagem da função f : {,, } R definida por f() ² +. 8) Dadas as funções definidas por f ( ). + e g ( ), calcule f ( 6) + g ( ). 9) São dadas as funções f ( ). + e g ( ). + a. Sabendo que f ( ) g (), 5 calcule o valor de a. ) Determine os pares ordenados da função f : A B, definida por f(). +. A... B.. 5. 6. 7. 9. Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
Gráficos (RESUMO): Domínio e Imagem ) ) ² Função Par ³ Função Ímpar D(f) < < + ou R Im(f) < + ou [,+ [ D(f) < < + ou R Im(f) < < + ou R ) ) Função Racional Função Racional D(f) ou R* Im(f) ou R* D(f) ou R* Im(f) < < + ou R + * 5) 6) Função Irracional Função Irracional D(f) < + ou [,+ [ Im(f) < + ou [,+ [ D(f) - < < + ou R Im(f) - < < + ou R 5 Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
Atividades Práticas A) Determine o domínio de cada função definida por: ) f() 5 ) f() 5, com ) 5) 7) f ( ) ) f ( ) 5 f ( ) 6 6) f ( ) 5 f ( ) + B) Determine o domínio de cada função definida por: ) ) 5) 7) + f ( ) ) f ( ) 5 f ( ) ) f ( ) f ( ) 6) f ( ) + 9 + + ( + f ) + 8) f ( ) 9 9) f ( ) ) f ( ) + + 5 ) f ( ) + ) f ( ) + + RESUMO DOS TIPOS DE FUNÇÕES: Tipos de Funções Eemplos Par f(-) f() (-) Impar f(-) - f() (-) - Polinomiais f()a +a +a +..+a n n +5-7 e outros. Racionais P( ) f ( ) Q( ) Algébricas Trigonométricas Trigonométricas Inversas Logarítmicas + + Todas as anteriores. sen, cos, etc. arccoscos - ln, ou log a Eponenciais e f() ou a f() Hiperbólicas f ( ) tgh e e + e e 6 Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
Tipos de Funções As funções mais usuais são: as pares, as ímpares, as polinomiais, as racionais, as algébricas, eponenciais e as trigonométricas. Função Polinomial n n n n. + an. + an. +... + a. +, para a, a,..., an f ( ) a a (a n ) e n um número inteiro não negativo (Z + ). são números reais Eemplo: f() +, a, a, a PARIDADE DE UMA FUNÇÃO ) EXPOENTE PAR: Eemplo: f() ² - - + + D(f) R Im(f) R + ) EXPOENTE ÍMPAR: - - Esta função é simétrica em relação ao eio (função par). f() n, n sendo par e n f ( ) f ( ) Eemplo: f() ² f ( ) ( ) f ( ) Eemplo: f() ³ + - + - Esta função é simétrica em relação à origem (função ímpar). f() n, n sendo ímpar e n f ( ) f ( ) Eemplo: f() ³ f ( ) ( ) f ( ) D(f) R Im(f) R 7 Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
FUNÇÃO LINEAR: A. ou f() A. É a função f dada por A., com Є R e A um número real qualquer não nulo (zero). A representação gráfica de uma função linear é uma reta que contém a origem (,) do sistema de eios (plano cartesiano,), ou seja, a reta dessa função sempre irá passar pela origem do plano cartesiano (,). Sendo assim, necessitamos, portanto, de apenas mais um ponto para construir a reta. No eemplo a seguir, além do número (zero), estamos atribuindo aleatoriamente o valor (quatro) para e substituindo-os na função.. Lembrando que poderíamos atribuir qualquer valor para para obtermos o gráfico, assim: Eemplo :... (,) (,) (,) D(f) < < + ou R Im(f) < < + ou R Eemplo :., se 5. (,) (,) 5 (5,)., se 5 5 D(f) 5 Im(f) 8 Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
ATIVIDADES PRÁTICAS Construa o gráfico de cada uma das funções e determine o domínio D(f) e o conjunto imagem Im(f): ) f(). ) f ( ) ) f ( ) ) f(),5. 5) f() 6,. 6) f(). FUNÇÃO LINEAR AFIM: A. + B ou f() A. + B É a função f dada por A. + B, com Є R e A e B números reais não nulos (zero). A representação gráfica da função linear afim é uma reta pelo ponto (, B), ou seja, o valor do número real B, sempre será um ponto, que deverá ser marcado em cima da reta do. Sendo assim, necessitamos de mais um ponto para a construção da reta. Eemplo :. + 5. +. + (,) (,) 5 (,5) A > Função Crescente D(f) < < + ou R Im(f) < < + ou R 9 Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
Eemplo :. +, se. + (,) (,) (,). + se D(f) Im(f) A < Função Decrescente ATIVIDADES PRÁTICAS Construa o gráfico de cada uma das funções e determine o domínio D(f) e o conjunto imagem Im(f): ) f(). + ) f(). + 7 ) f ( ). + ) f(). 5) f(). 6) f(),6. 7) f(). 8) f(). + 9) f(). ) f(). ) f ( ) ) f() + ) f() 6. 5 ) f(). + Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
COEFICIENTE ANGULAR E LINEAR variável dependente variável independente A. + B B identifica o ponto de intersecção da reta com o eio, é chamado coeficiente linear. A é a variação em para cada aumento unitário em, é chamado coeficiente angular da reta. Eemplo:. +. + (,) 5 (,5) 8 (,8) 8 7 -- 6 --. + A Coeficiente Linear Ponto de intersecção com o eio 5 -- -- um aumento unitário em acarreta um aumento de unidades em. Coeficiente Angular B -- Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
Atividades Práticas ) Calcular a equação de uma reta A. + B, que contém os pontos P (,5) e P (,). ) Calcular a equação da reta que contém o ponto P(,8) e tem inclinação A. ) Escrever a equação da reta que contém os pontos: a) P (, ) P ( 8, ) b) P (, ) P (, ) c) P (, 5 ) P ( 8, ) ) Escrever a equação da reta que contém o ponto P e tem declividade A: a) P (, ) A b) P ( 8, 8 ) A c) P (, ) A 5 Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
FUNÇÃO CONSTANTE: k ou f() k Seja k um número real qualquer. A função f definida em R e tal que f() k, recebe o nome de função constante, portanto, o valor de não varia com o aumento de. A representação gráfica de uma função constante é sempre uma reta paralela ou coincidente com o eio (abscissas), passando pelo ponto (, ). Eemplo : ou f() - - D(f) < < + ou R Im(f) Eemplo : 5 5, se 5, se 5 5 Nota: É importante observarmos que temos (funções) constantes e cada uma delas é delimitada em cima do eio de acordo com seu Domínio, ou seja, a primeira função, está em cima do eio sobre o intervalo de (zero) até (dois) e a segunda função 5, está em cima do eio sobre o intervalo de (dois) até 5 (cinco). Esses intervalos que delimitam as funções, estabelecendo fronteiras, são chamados de Domínio da função. Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
ATIVIDADES PRÁTICAS Construa o gráfico de cada uma das funções e determine o domínio D(f) e o conjunto imagem Im(f): ) f() + ) f() ) f() 7 ) f() ½ 5) f() 6) 7) f() 8), se 5, se 5, se, se < 6, se > FUNÇÕES DEFINIDAS POR VÁRIAS SENTENÇAS: ATIVIDADES PRÁTICAS Construa o gráfico de cada uma das funções e determine o domínio D(f) e o conjunto imagem Im(f): ), se f ( ) ) + 7, se > f ( ), se, se > ) +, se f ( ) ) +, se > f ( ),,, se se se > < 5) +, se ( ), se > f 6) f +, se < ( ) ( ), se 7), se f ( ) +, se < 8), se > f ( ) + +, se +, se > Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
CRITÉRIO DOS MÍNIMOS QUADRADOS: EQUAÇÃO DA RETA QUE APROXIMA UM CONJUNTO DE PONTOS NO PLANO. EXEMPLO: Construir a equação A + B de uma reta que aproima um conjunto de pontos: P (, 5), P (, ), P (, ) e P (5, 7). A+B? 5 5 5 Fórmula dos Mínimos Quadrados: A. + B A e B. A. n.. n. onde: Σ Soma dos produtos (multiplicações). n Número de pontos observados Σ² Soma dos quadrados dos valores de e Médias Aritméticas n n Organizando os cálculos em uma tabela: n (, ). ² (, 5) 5 5 (, ) (, ) 8 6 (5, 7) 5 7 85 5 Soma Σ 58 6 5 Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
Encontrando as médias aritméticas de e : n n n Substituindo na fórmula dos mínimos quadrados: A e. n.. n. 58 6... 58 6 6 6 a,6 B A.,6. 7,8 B, A. + B,6. +, equação procurada Obs: A equação,6. +, representa a RETA que se aproima do conjunto de pontos dados aleatoriamente. ATIVIDADES PRÁTICAS Escrever a equação da reta que aproima o conjunto de pontos dados, usando o critério dos mínimos quadrados. a. P (, ), P (, 5), P (, 8) e P (, 9) Resposta:,. +, b. P (-, ), P (, ), P (, ), P (, 6) e P 5 (, 5) Resposta:,. +,8 c. P (, ), P (, ), P (, 7), P ( 6, ) e P 5 (8 ;,5) Resposta: -,. + 8, d. P (, ), P (5, ), P (, 7) e P (5, 9) Resposta: 5,. + 5,5 Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br 6
FUNÇÕES DO º GRAU OU FUNÇÃO QUADRÁTICA: A. + B. + C ou f() A. + B. + C É a função f definida por A. + B. + C, com Є R e onde A, B e C são números reais quaisquer, com A. O gráfico da função quadrática é uma parábola que tem concavidade voltada para cima, caso A seja positivo, e concavidade voltada para baio, caso A seja negativo. Eemplos:. +. + 5 ou. + 8 CONSTRUÇÃO DA PARÁBOLA: A parábola fica bem caracterizada quando conhecemos seu cruzamento com os eios e, e seu vértice. O vértice da parábola posiciona seu eio de simetria vertical. Os pontos principais são: a. Cruzamento com o eio O. São as raízes (soluções e ) da equação do º Grau A. + B. + C b. Cruzamento com o eio O. É o ponto correspondente a, onde C. c. Vértice, corresponde ao ponto X v B ; Y v.a.a ESQUEMA GRÁFICO COM OS PONTOS PRINCIPAIS: Eio de Simetria Ponto C X X Vértice 7 Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
Eemplo: Construir a representação gráfica da função quadrática 5 + 6 Resolução: a. Cruzamento com eio é o resultado da equação do º grau 5 + 6 Então: A, B 5 e C 6 B.A.C (- 5)..6 5 B ±. A ( 5 ) ±. 5 ± 5 5 + A parábola cruza o eio nos pontos (, ) e (, ). b. Cruzamento com o eio é o ponto (, C), ou seja: A parábola cruza o eio no ponto (, 6 ) c. Vértice da parábola Xv - B - ( - 5) 5,5.A. Yv - - - -,5.A. O vértice da parábola tem coordenadas PV (,5 ; -,5 ). Eio de Simetria Ponto C 6,5,5 X X Ponto Vértice D(f) < < + ou R Im(f),5 < + ou [-,5 ; + [ 8 Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
ATIVIDADES PRÁTICAS Construa o gráfico de cada uma das funções e determine o domínio D(f) e o conjunto imagem Im(f): ) f(). + ) f() +. 6 ) f() + ) f() +. + 5) f() +. + 7 FUNÇÃO CÚBICA: A.³ + B.² + C. + D ou f() A.³ + B.² + C. + D Sejam A, B, C e D números reais, sendo A não nulo. A função cúbica é uma função f:r R que para cada em R, associa A.³ + B.² + C. + D ou f() A.³ + B.² + C. + D. Eemplo: ³ ³ (,) ³ 8 6 - - 8 (-,-8) - - (-,-) (, ) + + (+,+) + + 8 (+,+8) - - + + - - -6-8 D(f) < < + ou R Im(f) < < + ou R ATIVIDADES PRÁTICAS Construa o gráfico de cada uma das funções e determine o domínio D(f) e o conjunto imagem Im(f): ) f().³ ) f().³ + + ) f() 7³ +² + + 7 Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br 9
FUNÇÃO RACIONAL: Definição: f: R* R* f ( ), com Eemplo: (,) - - ½ (-,-½) - - (-,-) - ½ - (-½,-) ½ + (½,+) + + (+,+) + + ½ (+,+½) ½ - - -½ +½ + + -½ - - D(f) R* Im(f) R* ATIVIDADES PRÁTICAS Construa o gráfico de cada uma das funções e determine o domínio D(f) e o conjunto imagem Im(f): + ) f() ) f() ) f() ( ).( ) ) f() + + FUNÇÃO IRRACIONAL: Quando é etraído a raiz de um polinômio, passa-se das funções racionais para a classe das funções algébricas. 5 Eemplos: a) f ( ) b) f ( ) + c) f ( ) + Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
FUNÇÃO MODULAR: Definição: f: R R f ( ) Eemplo: (,) - + (-,+) - + (-,+) (, ) + + (+,+) + + (+,+) - - + + - - D(f) < < + ou R Im(f) < + ou [,+ [ ou R + ATIVIDADES PRÁTICAS Construa o gráfico de cada uma das funções e determine o domínio D(f) e o conjunto imagem Im(f): ) f() ) f() + ) f() ) f() 5) f() 6) f() + 7) f() + + 8) f() FUNÇÃO INVERSA: A Função inversa de f, que é indicada por f -, define uma correspondência contrária, isto é, de para, e indicamos: f - () As funções onde isso ocorre são denominadas funções bijetoras e são chamadas de funções inversíveis. ATIVIDADES PRÁTICAS Determine a função inversa das seguintes funções: ) f() 5. ) f() ³ + ) f() ) f() + 5) f() ² 6) f() 7 Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
FUNÇÃO EXPONENCIAL A função f: R R dada por f() a (com a e a > ) é denominada função eponencial de base a e definida para todo real. EXEMPLO : f() NA TABELA: 9 -, -, 9 D(f) < < + ou R Im(f) < < + ou ],+ [ ou R* + - - EXEMPLO : f() NA TABELA: - 9 -,, / 9 D(f) < < + ou R Im(f) < < + ou ],+ [ ou R* + - - Pelos eemplos dados, podemos observar que: f() a é crescente quando a > f() a é decrescente quando < a < Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
ATIVIDADES PRÁTICAS Construa o gráfico de cada uma das funções e determine o domínio D(f) e o conjunto imagem Im(f): Em todos os casos o intervalo do Domínio é [ -, + ]. ) ) + ) f() ) + FUNÇÃO EXPONENCIAL e A função eponencial mais importante para a modelagem de fenômenos naturais, físicos e econômicos é a função eponencial natural cuja base é o famoso número e, que vale,78888 para nove casas decimais. Podemos definir e como o número para o qual tende a função f ( ) + quando cresce indefinidamente. Eemplo: + -,5 5,96 -, + + 5 -,7 -,769 -,776,778 FUNÇÕES LOGARÍTMICAS: Conceito de Logaritmo Princípios básicos dos logaritmos transformar uma multiplicação em adição ou uma divisão em subtração. Após anos de trabalho, o escocês John Napier (55-67), formalizou a teoria dos logaritmos com a publicação das obras Descrição das Normas dos Logaritmos Maravilhosos, em 6, e Cálculo das Normas dos Logaritmos Maravilhosos, em 69, cuja finalidade é simplificar cálculos numéricos. Para compreender o que é um logaritmo, considere uma potência de base positiva e diferente de. Por eemplo, 8. Ao epoente dessa potência damos o nome de logaritmo. Dizemos que é o logaritmo de 8 na base. Em símbolos: 8 log 8 Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
Definição O logaritmo de um número real e positivo b, na base a, positiva e diferente de, é o número ao qual se deve elevar a para se obter b. log b a a b Condição de Eistência: com b >, a > e a forma forma logarítmica eponencial Na forma logarítmica Na forma eponencial a base do logaritmo a base da potência log a b b logaritmando a b b potência logaritmo epoente Observação: b Aos logaritmos que se indicam log a chamamos de sistema de logaritmos de base a. Eiste uma infinidade de sistemas de logaritmos. Dentre todos os sistemas, o mais importante é o sistema de logaritmos decimais, ou de base. Indica-se: log ou log. Quando o sistema é de base, é comum omitir-se a base na sua representação. Resolução de equações logarítmicas: a) log 6 é o epoente tal que 6 Então, temos: (transformando a equação dada em igualdade de mesma base) (com as bases iguais, igualam-se os epoentes) log 6 A Base Os logaritmos que tem base são chamados logaritmos decimais, ou de Briggs (56-6), e são os mais utilizados. Sua base não é escrita, e indicamos, simplesmente, log b. De acordo com a criação de Napier e Briggs, podemos escrever qualquer número na forma de potências de ou descobrir o valor de qualquer potência de. Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
Podemos escrever o número na forma de potência de base,,, ou determinar o valor de,769, que é aproimadamente 5. Esses epoentes fazem parte de uma tabela que foi elaborada por Napier e Briggs. Eles demoraram cerca de anos para construí-la. Essa tabela, conhecida como tábua de logaritmos, foi usada até há pouco tempo. Atualmente, usamos a calculadora para determinar logaritmos. Mudança de base: Suponha que apareçam bases diferentes e que precisemos reduzir os logaritmos de bases diferentes para uma base conveniente. Essa operação é chamada mudança de base. Veja como funciona. Dado log a b, vamos indicá-lo em outra base c, temos então: b log a log log c c b a A epressão acima mostra como se efetua a mudança de um logaritmo de base a para um logaritmo de base c (arbitrária). Eemplo: Dados: log, e log,, calcule log Resolução: Como log e log estão na base, vamos passar log para a base. Casos especiais: log log,, log,. Se a base do logaritmo é igual a, dizemos que é o logaritmo decimal de e denotamos: log ().. Se a base do logaritmo é igual a e (aproimadamente,788), dizemos que é o logaritmo natural de e denotamos ln (). Tendo em vista o desenvolvimento das calculadoras eletrônicas, passaremos a utilizar sempre a base e. Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br 5
Gráfico da função logarítmica: Devemos lembrar que, para eistir o logaritmo, é preciso que >. ) Construa o gráfico da função logarítmica log Atribuindo valores para, obtemos a tabela e o gráfico a seguir: log /8 / / 8 - - - Crescente, base: > D(f) < < + ou ],+ [ ou R* + Im(f) < < + ou R ) Construa o gráfico da função logarítmica log ½ Atribuindo valores para, obtemos a tabela e o gráfico a seguir: 8 / / /8 - - - log ½ Decrescente, base: < ½ < D(f) < < + ou ],+ [ ou R* + Im(f) < < + ou R ATIVIDADES PRÁTICAS Construa o gráfico de cada uma das funções e determine o domínio D(f) e o conjunto imagem Im(f): ) log ) log ( ) ) log ) log / Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br 6
FUNÇÃO COMPOSTA: Dadas as funções f: A B e g: B C, a composta f com g, denotada por gof, é função definida por gof() g(f()). Eemplos: f: A B definida por f() g: B C definida por g() ² Resolução: g(f()) ² g() ()² g(f()) ² Então, podemos afirmar que vai eistir uma função h de A em C definida por h()², que indicamos por gof ou g(f()) (lê-se: g composta com f). ATIVIDADES PRÁTICAS ) Dados f() ² e g() +, Calcule f(g()) e g(f()). ) Se f() 5 e h(), calcule f(f()) e h(h()). FUNÇÕES TRIGONOMÉTRICAS: Funções que estão associadas a ângulos e retas. Elas são importantes no equacionamento de situações práticas que tenham caráter periódico. Valores de funções trigonométricas para alguns ângulos: Graus -8º -5º -9º -5º º º 5º 6º 9º 5º 8º θ (radianos) sen θ cos θ 6 tg θ 7 Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
FUNÇÃO SENO: A função seno é definida como sen: R R sen() sen - D (sen) ] -, + [ Im (sen) [, + ] Período. FUNÇÃO COSSENO: A função cosseno é definida como cos: R R cos() cos - D (sen) ] -, + [ Im (sen) [, + ] Período. 8 Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
FUNÇÃO TANGENTE: A função tangente é definida como sendo o quociente da função seno pela função cosseno. tg: A R sen ( ) tg() cos( ) tg - D (tg): ±, ±,... Im (sen) - < < + Período ALGUMAS FUNÇÕES INVERSAS TRIGONOMÉTRICAS: FUNÇÃO ARCO-SENO A função f: R [ ; ] definida por f() sen não é bijetora. Entretanto, restringindo o domínio ao intervalo arco-seno. ;, obtemos uma função bijetora cuja inversa denominamos função Temos, para Є ; e Є [ ; ]: sen arcsen Trocando por, e por, temos arcsen. Portanto, a função inversa de f: ; [ ; ], f() sen, é f - : [ ; ] ;, f - () arcsen 9 Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
- sen, Є [ -/ ; +/ ] arcsen FUNÇÃO ARCO-COSSENO A função f: [ ; ] [ ; ] definida por f() cos, restrição do cosseno ao intervalo [ ; ], é bijetora, e sua inversa é denominada função arco-cosseno. Temos, para Є [ ; ] e Є [ ; ]: cos arccos Trocando por, e por, temos arccos. Portanto, a função inversa de f é f - : [ ; ] [ ; ], f - () arccos - cos, Є [ ; ] arccos Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br
FUNÇÃO ARCO-TANGENTE A função f: ; R definida por f() tg, restrição da tangente ao intervalo é bijetora e sua inversa é denominada função arco-tangente. Temos, para Є ; e Є R: Trocando por, e por, temos arctg. tg arctg Portanto, a função inversa de f é f - : R ;, f - () arctg ;, - tg, Є ] -/ ; +/ [ arctg BIBLIOGRAFIA: DOWLING, E. T. Matemática Aplicada a Economia e Administração. São Paulo: Mcgraw-Hill do Brasil, 98. GIOVANNI, J. R. Matemática Fundamental: º Grau: Volume Único. São Paulo: FTD, 99. GOLDSTEIN, L. J. Matemática Aplicada: Economia, Administração e Contabilidade. 8. ed. Porto Alegre: Bookman,. LEITHOLD, L. Matemática Aplicada a Economia e Administração. São Paulo: Harbra,. MACHADO, A.S. Matemática Temas e Metas: 6 Funções e Derivadas. São Paulo: Atual, 988. SILVA, S. M. Matemática: Para os Cursos de Economia, Administração, Ciências Contábeis. 5.ed. São Paulo: Atlas, 999. SILVA, S.M. Matemática Básica para Cursos Superiores. São Paulo: Atlas,. Prof.Ms.Carlos Henrique Email: carloshjc@ahoo.com.br