UNIVERSIDADE DE ÉVORA DEPARTAMENTO DE ENGENHARIA RURAL PROBABILIDADE E ESTATÍSTICA APLICADA À HIDROLOGIA 0
ESTATÍSTICA E PROBABILIDADE APLICADA À HIDROLOGIA. Itrodução Nehum processo hdrológco é puramete determístco, sto é, ão é possível determar com eactdão a realzação desse processo, pos ele está sujeto à acção de factores aleatóros. Por eemplo, apesar de ser possível prever com alguma atecedêca a ocorrêca de precptação, ão é possível determar qual a quatdade eacta de precptação que rá ocorrer. Este facto, parece estabelecer uma dfculdade básca o plaeameto e gestão de qualquer sstema hdrológco, uma vez que para plaear e gerr é fudametal cohecer o comportameto futuro dos processos que tegram esse sstema hdrológco. No etato, esta dfculdade pode ser ultrapassada, cosderado que os processos hdrológcos são processos estocástcos, sto é, processos goverados pelo meos em parte por factores aleatóros. Se são processos estocástcos podem ser tratados recorredo às les de probabldade e à estatístca, sedo possível determar qual a probabldade duma realzação desses processos se stuar detro de determados tervalos. Por eemplo, se chover, pode-se determar com atecedêca qual probabldade de ocorrer um determado valor de precptação.. Dstrbuções de Frequêca Em estatístca população desga um cojuto de elemetos com alguma característca comum, por eemplo: os ros portugueses ou as precptações auas uma baca hdrográfca. Pode-se dzer que a estatístca se ocupa do estudo das propredades das populações, populações estas que podem ser ftas ou ftas coforme for fto ou fto o úmero dos seus elemetos. No etato, e porque a observação de toda a população em sempre é possível, o estudo das propredades dessa população tem de ser feto sobre um seu subcojuto fto que se supõe ser represetatvo e se desga por amostra. Quado, a partr da formação cotda uma amostra, se tram coclusões, epressas em termos de probabldade, sobre toda a população etra-se o domío da ferêca estatístca.
3 Cosdere-se uma amostra costtuída por um determado cojuto de dados,...,,. A dfereça etre o maor e o meor dos valores dos dados, chama-se ampltude dos dados, I. I maor meor (.) Para resumr grades quatdades de dados é usual dstrbu-los em classes. O úmero de dvíduos pertecetes a cada classe deoma-se frequêca absoluta da classe. A razão etre a frequêca absoluta da classe e a frequêca total (úmero total de valores da amostra) chama-se frequêca relatva da classe. À dstrbução dos dados em classes com as respectvas frequêcas absolutas, chama-se dstrbução de frequêcas ou dstrbução empírca e à dstrbução dos dados em classes com as respectvas frequêcas relatvas, chama-se dstrbução de frequêcas relatvas ou dstrbução das percetages. (ver Quadro.. do eemplo..) Geralmete, o úmero de classes, m, deverá ser etre 5 e 0, o etato, pode utlzar-se, para cálculo do úmero de classes, a fórmula sugerda por STURGES: m 0 + log + 3,393log (.) Determado o úmero de classes e uma vez cohecda a ampltude dos dados I, a ampltude de cada classe, c, pode ser determada por: I c (.3) m Eemplo. Cosderem-se as precptações auas regstadas a estação de Castro D Are durate 79 aos, apresetadas o Quadro.. A ampltude dos dados, determa-se faclmete pela equação (A.): I 349,6 870,9 378,7 mm, o úmero de classes, utlzado a equação (.), é:
4 m + 3,393 log0 79 7 classes, e a ampltude de cada classe, determa-se recorredo à equação (.3). I 378,7 c 340mm m 7 Isto é, a ª classe terá como lmte feror o valor 870,9 mm e como lmte superor 0,9 mm (870,9 + 340), a ª classe terá como lmte feror 0,9 mm e como lmte superor 550,9 mm (0,9 + 340), e assm sucessvamete até ao lmte superor da últma classe. O apurameto dos valores pertecetes a cada classe que coduz às frequêcas absolutas e relatvas de cada classe, ão oferece qualquer dfculdade, cosderado que um determado valor pertece a uma classe quado e só quado é maor que o lmte feror e meor ou gual que o lmte superor dessa classe. A dvsão da amostra em classes bem como as frequêcas absolutas e relatvas de cada classe são apresetadas o Quadro A.. Quadro.. Precptação aual (mm) em Castro D Are Ao Precptação Precptação ordeada Nº de ordem (mm) de forma crescete(mm) 96/7 8, 870,9 97/8 00, 903,5 98/9 093, 9,8 3 99/0 556,4 95,8 4 90/ 90,6 00, 5 9/ 785,4 039, 6 9/3 830, 055,4 7 93/4 50, 076, 8 94/5 749,6 7, 9 95/6,6 44,5 0 96/7 04, 80,0 97/8 93,7 0,0 98/9 7, 39,6 3 99/30 630,9 47, 4 930/3 48, 54,0 5 93/3 46,0 75,7 6 93/33 334,4 90,6 7 933/34 30, 98,7 8 934/35 58,0 300,3 9 935/36 349,6 30, 0 936/37 069,0 334,4 937/38 54,0 344,7 938/39 974,0 39,9 3 939/40 059,6 4,7 4 940/4 569,6 4,9 5 94/4 50,6 46,8 6 94/43 664, 43,0 7
5 943/44 344,7 44,0 8 944/45 95,8 45,9 9 945/46 763,0 46,0 30 Quadro.. (Cot.) Precptação aual (mm) em Castro D Are Ao Precptação Precptação ordeada Nº de ordem (mm) de forma crescete(mm) 946/47 079,3 478, 3 947/48 4,7 48, 3 948/49 9,8 496,4 33 949/50 0,0 504, 34 950/5 903,9 50,6 35 95/5 65,0 556,4 36 95/53 076, 567,9 37 953/54 75,7 578, 38 954/55 699,5 58,0 39 955/56 50,9 585,4 40 956/57 039, 588, 4 957/58 588, 595,9 4 958/59 746, 603,3 43 959/60 563,6 65,0 44 960/6 987,4 664, 45 96/6 585,4 689,7 46 96/63 83, 699,5 47 963/64 0, 746, 48 964/65 80,0 749,6 49 965/66 806,9 763,0 50 966/67 595,9 785,4 5 967/68 4,9 86, 5 968/69 80,0 830, 53 969/70 496,4 83, 54 970/7 567,9 903,9 55 97/7 300,3 93,7 56 97/73 478, 930, 57 973/74 689,7 974,0 58 974/75 39,6 987,4 59 975/76 903,5 000, 60 976/77 34,0 04, 6 977/78 4, 059,6 6 978/79 599, 069,0 63 979/80 45,9 079,3 64 980/8 44,5 093, 65 98/8 504, 8, 66 98/83 46,8 4, 67 983/84 603,3 50, 68 984/85 000, 50,9 69 985/86 578, 0, 70 986/87 39,9,6 7 987/88 930, 80,0 7 988/89 870,9 34,0 73 989/90 43,0 563,6 74 990/9 44,0 569,6 75 99/9 055,4 599, 76 99/93 47, 630,9 77
6 993/94 86, 806,9 78 994/95 98,7 349,6 79 Quadro.. Dstrbução de frequêcas e dstrbução de frequêcas relatvas da precptação aual Classes de Precptação Aual Frequêcas Frequêcas (mm) absolutas relatvas 870,9-0,9 /79 0,5898734 0,9-550,9 3 3/79 0,9394 550,9-890,9 9 9/79 0,4050639 890,9-30,9 8 8/79 0,78480 30,9-570,9 3 3/79 0,037974684 570,9-90,9 3 3/79 0,037974684 90,9-350,9 /79 0,06588 TOTAL 79 A represetação gráfca duma dstrbução de frequêcas, forece uma vsão global da dstrbução. Esta represetação gráfca pode ser feta através de um hstograma. O hstograma é uma sucessão de rectâgulos adjacetes, tedo cada um deles por base um segmeto que correspode à ampltude de cada classe e por altura as respectvas frequêcas absolutas ou relatvas. Na fgura.. apreseta-se o hstograma das frequêcas absolutas referete ao eemplo.. Fgura.. Hstograma das frequêcas absolutas para a precptação aual em Castro D Are. Hstograma da dstrbução de precptações 5 Frequêcas absolutas 0 5 0 5 0 870,9-0,9 0,9-550,9 550,9-890,9 890,9-30,9 30,9-570,9 570,9-90,9 90,9-350,9 Precptação aual (mm)
7 3. Localzação, Dspersão e assmetra Aspectos fudametas para a caracterzação das dstrbuções de frequêca são a localzação, dspersão e assmetra. Far-se-á dstção etre as gradezas avaladas a partr da população parâmetros - das gradezas calculadas com base a amostra estatístcas -. Assm, os parâmetros serão represetados por letras gregas ( µ, σ, γ,... ) e as estatístcas serão represetadas por letras latas (, S, g,... ). 3. Localzação a) Méda O mas mportate parâmetro de localzação é a méda ou valor médo e represeta o ceto de gravdade do sstema. A méda de uma amostra costtuída por,..., por e para dados ão classfcados, defe-se por,,, desga-se (3.) Para dados classfcados, utlza-se, para cálculo da méda, epressão, m j η ' jj m j f ' jj (3.) ode m é úmero de classes, η j represeta a frequêca absoluta de cada classe, ' j o poto médo de cada classe e f j a frequêca relatva de cada classe. A esta últma epressão dá-se o ome de méda poderada. b) Medaa Cosdere-se uma amostra,,...,,, a medaa, pode defr-se como o valor cetral da amostra ordeada por ordem crescete,,...,.
8 Assm, a medaa, M, pode defr-se por duas epressões: Se a amostra tem úmero mpar de dados, k +, e a medaa vem, M k + para k (3.3) + Se a amostra tem úmero par de dados, k, e a medaa vem, M k + k+ para k (3.4) c) Moda A moda de uma amostra,...,,, defe-se como o valor mas frequete da amostra. É a medda de localzação meos usada em hdrologa, pos em amostras de dados hdrológcos (precptações, caudas, etc) é pouco provável que haja valores eactamete guas. No etato para cálculo da moda, Mod, pode utlzar-se a epressão, Mod ( M) 3 (3.5) Eemplo 3. Cálculo da méda, medaa e moda Cosderem-se as precptações auas regstadas a estação de Castro D Are (Quadro..) e a respectva dstrbução de frequêcas e dstrbução de frequêcas relatvas (Quadro..) a) cálculo da méda Utlzado a equação (3.) vem, 8, +... + 98,7 67,5 mm 79 A méda poderada determa-se utlzado a equação (A3.), m j η ' j j 870,9 + 0,9 90,9 +... + 79 + 350,9 677,9 mm
9 m f j 870,9 + 0,9 90,9 + 350,9 ' j j 0,59 +... + 0,66 9 677, mm b) cálculo da medaa Uma vez que é mpar, utlza-se a equação (A3.3) para cálculo da medaa, 78 79 k 39 M k + 40 585,4mm b) cálculo da moda Utlzado a epressão (3.5), vem, ( M) 67,5 367,5 ( 585,4 ) 4, mm Mod 3. Para esta dstrbução de precptações, tem-se que, > M > Mod 3. Dspersão A dspersão pode defr-se como a posção dos dados em relação a uma referêca fa. Quado esta referêca é a méda, a dspersão dca o modo como os dados se espalham à volta do valor médo. a) Desvo Padrão Uma mportate medda de dspersão é o desvo padrão que mostra o comportameto do cojuto de desvos em relação à méda. Se a dspersão é grade, os desvos dos dados em relação à méda são grades e o desvo padrão será elevado. O cotráro também se verfca quado os desvos são pequeos. O desvo padrão de uma amostra costtuída por,..., desga-se por S e para dados ão classfcados, defe-se por,,, S + ( ) (3.6)
0 Para dados classfcados, vem, S + m j η j ' ( ) j (3.7) corrgdo, Quado as amostras são pequeas, utlza-se o desvo padrão S + ( ) (3.8) e S + m η j j ' ( ) j (3.9) amostras pequeas vem, Ao quadrado do desvo padrão, chama-se varâca,s, e para S ( ) (3.0) b) Desvo Médo Outra forma de aalsar o cojuto de desvos em relação à méda é cosderar o módulo dos desvos. Isto coduz ao coceto de desvo médo, d, ode os desvos perdem o sal, e quato maor o valor do desvo médo, mas as observações se afastam da méda da amostra. O desvo médo de uma amostra classfcados, por,,...,, determa-se, para dados ão d (3.) e para dados classfcados por,
d m j η j ' j (3.) b) Coefcete de Varação É um parâmetro admesoal que mede a varabldade da amostra e defe-se por, S C v 00% (3.3) Quato maor o coefcete de varação, maor é o desvo padrão em relação à méda, sto é, mas dspersos estão os dados em toro da méda. d) Varável Reduzda amostra A varável reduzda, z, mede o desvo, de cada observação da,...,,, em relação à méda em udades de desvo padrão. É, portato, uma quatdade abstracta depedete das udades usadas. z (3.4) S Assm, o total de varáves reduzdas da amostra, de,,...,, apreseta méda ula e desvo padrão gual à udade. Isto é, z z 0,0 (3.5) ( z z) Sz +,0 (3.6) Eemplo 3. Cálculo do desvo padrão, desvo médo, coefcete de varação e varável reduzda
Cosderem-se as precptações auas regstadas a estação de Castro D Are (Quadro..) e a respectva dstrbução de frequêcas e dstrbução de frequêcas relatvas (Quadro..) a) cálculo do desvo padrão Utlzado a equação (A3.8) vem, S + ( ) + ( 8, 67,5 ) +... + ( 98,7 67,5 ) 79 479,4 mm e utlzado a equação (A3.9) vem, S + m j η j ' ( ) j + ( 040,9 67,5 ) +... + ( 3080,9 67,5 ) 79 460,0 mm b) cálculo do desvo médo Utlzado a equação (A3.) vem, d 8, 67,5 +... + 79 98,7 67,5 38,8 mm e utlzado a equação (A3.), d m j η j ' j 040,9 67,5 +... + 79 3080,9 67,5 367,0 mm c) cálculo do coefcete de varação C v S Utlzado a equação (3.3) vem, 479,4 00 00 67,5 8,7% d) cálculo da varável reduzda
3 Utlzado a equação (3.4) as varáves reduzdas de cada uma das observações da precptação aual, são as apresetadas o Quadro 3.. O valor médo e o desvo padrão foram calculados pelas equações (3.5) e (3.6), respectvamete. Quadro 3.. Varáves reduzdas da precptação aual em Castro D Are Ao Precptação Z (mm) 96/7 8, 0,9 97/8 00, -,4 98/9 093, 0,9 99/0 556,4-0, 90/ 90,6-0,8 9/ 785,4 0, 9/3 830, 0,3 93/4 50,,0 94/5 749,6 0, 95/6,6, 96/7 04, 0,7 97/8 93,7 0,5 98/9 7, -, 99/30 630,9,0 930/3 48, -0,4 93/3 46,0-0,4 93/33 334,4-0,7 933/34 30, -0,8 934/35 58,0-0, 935/36 349,6 3,3 936/37 069,0 0,8 937/38 54,0-0,9 938/39 974,0 0,6 939/40 059,6 0,8 940/4 569,6,9 94/4 50,6-0,3 94/43 664, 0,0 943/44 344,7-0,7 944/45 95,8 -,6 945/46 763,0 0, 946/47 079,3 0,8 947/48 4,7-0,5 948/49 9,8 -,6 949/50 0,0 -,0 950/5 903,9 0,5 95/5 65,0-0, 95/53 076, -, 953/54 75,7-0,8 954/55 699,5 0, 955/56 50,9,0 956/57 039, -,3 957/58 588, -0,
4 958/59 746, 0, 959/60 563,6,9 960/6 987,4 0,7 96/6 585,4-0, 96/63 83, 0,3 963/64 0,, 964/65 80,0 -,0 Quadro 3.. (Cot.) Varáves reduzdas da precptação aual em Castro D Are Ao Precptação Z (mm) 965/66 806,9,4 966/67 595,9-0, 967/68 4,9-0,5 968/69 80,0,3 969/70 496,4-0,4 970/7 567,9-0, 97/7 300,3-0,8 97/73 478, -0,4 973/74 689,7 0,0 974/75 39,6-0,9 975/76 903,5 -,6 976/77 34,0,3 977/78 4, 0,9 978/79 599,,9 979/80 45,9-0,5 980/8 44,5 -, 98/8 504, -0,4 98/83 46,8-0,5 983/84 603,3-0, 984/85 000, 0,7 985/86 578, -0, 986/87 39,9-0,6 987/88 930, 0,5 988/89 870,9 -,7 989/90 43,0-0,5 990/9 44,0-0,5 99/9 055,4 -,3 99/93 47, -0,9 993/94 86, 0,3 994/95 98,7-0,8 Méda 67,5 0,0 Desvo Padrão 479,4,0 3.3 Assmetra Assmetra é o grau de desvo, ou afastameto da smetra, de uma dstrbução. Quado se trabalha com dstrbuções de frequêcas, a assmetra pode ser estudada cosderado a posção relatva dos três
5 parâmetros de localzação: méda, medaa e moda. Assm, as dstrbuções smétrcas (Fgura 3.), estes três parâmetros cocdem. Nas dstrbuções assmétrcas postvas (desvadas para a dreta)(fgura 3.), méda>medaa>moda e as dstrbuções assmétrcas egatvas (desvadas para a esquerda)(fgura 3.3), méda<medaa<moda. A assmetra avala-se pelo coefcete de assmetra, g, sedo o valor deste coefcete postvo os desvos para a dreta e egatvo os desvos para a esquerda. g ( ) 3 ( )( ) S 3 (3.7) Fgura 3.. Dstrbução smétrca Dstrbução Smétrca Méda Medaa Moda Fgura 3.. Dstrbução assmétrca postva
6 Dstrbução Assmétrca Postva Moda Medaa Méda Fgura 3.3. Dstrbução assmétrca egatva Dstrbução Assmétrca Negatva Méda Medaa Moda Eemplo 3.3 Cálculo do coefcete de assmetra Cosderado as precptações auas regstadas a estação de Castro D Are (Quadro A..), o coefcete de assmetra vem, g 79 3 3 [( 8, 67,5 ) +... + ( 98,7 67,5 ) ] 3 ( 79 )( 79 ) 479,4 0,7 Como a dstrbução tem assmetra postva, sgfca que > M > Mod (já determado o eemplo 3.), sto é, trata-se de uma dstrbução desvada para a dreta.
7 4.Dstrbuções de Probabldade 4. Varável aleatóra. Fução de dstrbução Chama-se varável aleatóra X a toda a varável susceptível de tomar dferetes valores de aos quas é possível afectar uma probabldade. Processo estocástco é aqu eteddo como uma colecção ordeada de varáves aleatóras croológca,..., X,...,, X, X3 X e ode a sucessão,, 3 resultate da sua observação, represeta uma úca realzação do processo. Uma varável aleatóra dz-se dscreta se só pode tomar um úmero fto de valores, por eemplo: o úmero de das com chuva uma semaa, mês ou ao, ou o úmero de vezes que o caudal ultrapassou determado valor. Uma varável aleatóra dz-se cotíua se pode assumr qualquer valor detro de um determado tervalo de úmeros reas, por eemplo: a precptação aual, a temperatura méda dára, etc., podem tomar qualquer valor detro de um certo tervalo lmtado por um mímo e por um mámo. Sedo X uma varável aleatóra, dá-se o ome de fução de dstrbução (ou fução de dstrbução de probabldade) da varável X à fução, ( X ) F( ) P (4.) que represeta a probabldade de a varável aleatóra X assumr um valor feror ou gual a. Faclmete se verfca que a fução de dstrbução satsfaz as segutes propredades: P ( X ) P( X ) F( ) P > (4.) ( X ) F( F( ) < ) (4.3) Quado X é uma varável aleatóra dscreta, só pode tomar valores detro de um cojuto fto {,,...}. Neste caso o comportameto da varável aleatóra é defdo pela sua fução massa Para evtar cofusões, a varável aleatóra represeta-se por maúsculas,x, e as observações (ou realzações) dessa varável por músculas,.
8 de probabldade (f.m.p.), que assoca uma probabldade a cada valor que a varável pode assumr: P P ( ) 0 se {,,... } ( ) P( X ) P ( ) P( X ) P P etc. (4.4) e pela sua fução de dstrbução acumulada, ou fução de dstrbução (f.d.): ( X ) P( ) F ( ) P com,,... (4.5) Quato à probabldade de uma varável dscreta X tomar um valor compreeddo um tervalo ( a, b) pode ser determada aplcado a equação (4.3), b > a ( a < X b) F b F( a) P( ) P ( ) (4.6) Eemplo 4. Fução massa de probabldade e fução de dstrbução para uma varável dscreta Eemplfcado, se para um determado período de tempo o úmero de das ublados (X), em dado local, tver a segute fução massa de probabldade (f.m.p.): P ( ) 0,5 0,0 0,30 0,0 0,5 se se se se se 0 3 4 a fução de dstrbução (f.d.) será:
9 0 se < 0 0,5 se 0 < F ( ) 0,35 0,65 se se 3 0,85 se 3 4,00 se 4 Nas fguras 4. e 4. estão represetados os gráfcos da f.m.p e f.d. para o úmero de das ublados. Quado X é uma varável aleatóra cotíua o seu comportameto é defdo pela sua fução desdade de probabldade (f.d.p.), que defe a probabldade méda da varável aleatóra se stuar detro de um determado tervalo. Fgura 4. Fução massa de probabldade para a varável X Fução Massa Probabldade 0,35 0,30 0,5 P() 0,0 0,5 0,0 0,05 0,00 3 4 Fgura 4. Fução de dstrbução para a varável X
0 Fução de dstrbução F(), 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0, 0, 0 0 - - - 3 3-4 >4 Cosderado que o tervalo (, ] a quatdade de probabldade é F ( ), etão o tervalo ( + ],, a quatdade de probabldade será, de acordo com a equação (A4.3), F( + ) F( ) o quocete, ( + ) ( ) F F méda esse tervalo. O lmte,, e, será a quatdade de probabldade ( ) f lm 0 ( + ) ( ) F F ( ) F' ( ) df d (4.7) se estr, represeta a desdade de probabldade, f ( ). Dode resulta que a fução de dstrbução (f.d.) de uma varável cotíua será, F (4.8) ( ) f( ) d Note-se que, equato o caso dscreto a f.m.p. é uma probabldade P ( ) P( X ), o caso cotíuo, a f.d.p. ( ) desdade de probabldade, uca a probabldade o poto. f é a Para varáves cotíuas: e f ( ) > 0 (4.9) + f ( d )( ) (A4.0)
Quato à probabldade de a varável cotíua X tomar um valor compreeddo um tervalo ( a, b) pode ser determada por: ( a < X < b) F b) F() a P ( f( d ) (A4.) e a probabldade de X tomar um valor partcular, a, é ula, vsto que: a b a f( d )( ) 0 (4.) a Eemplo 4. Fução desdade de probabldade e fução de dstrbução para uma varável cotíua. A precptação aual em Évora é uma varável aleatóra cotíua, X, com fução de dstrbução, F(), e fução desdade de probabldade, f(), dadas por, F ( ) f( ) d f( ) ep π 03,5 ( 65,8 ) 03,5 ( ) Nas Fguras 4.3 e 4.4 mostra-se a represetação gráfca destas duas fuções. Fgura 4.3. Fução desdade de probabldade da varável X
Fução desdade de probabldade 0,003 f() 0,00 0,00 0,000 0 00 00 300 400 500 600 700 800 900 000 00 00 300 (precptação mm) Fgura 4.4- Fução de dstrbução da varável X Fução de dstrbução F(),0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0, 0, 0,0 H 0 00 00 300 400 500 600 700 800 900 000 00 00 300 a b (precptação mm) Na Fgura 4.3, a área lmtada pela curva e pelo eo dos é gual a um. A área a tracejado, correspodete às vertcas 0 e 400mm, represeta a probabldade da precptação em determado ao ser gual ou meor que 400mm. A área a tracejado, correspodete às vertcas 800mm e 900mm, represeta a probabldade da precptação tomar um valor etre 800 e 900 mm. Na Fgura 4.4. a altura H, correspode à probabldade da precptação em determado ao ser gual ou meor que 400mm. A altura b - a, represeta a probabldade da precptação tomar um valor etre 800 e 900 mm.
3 5.Dstrbuções Teórcas Estem mutas dstrbuções teórcas, que servem como modelo probablístco de varáves ou feómeos aleatóros. Cosderado que as varáves hdrológcas são aleatóras, etão elas podem ser represetadas por algum tpo de dstrbução teórca. Apresetam-se de seguda as dstrbuções teórcas mas utlzadas em hdrologa. 5. Dstrbuções Dscretas a) Dstrbução Bomal A dstrbução Bomal é o modelo probablístco dcado para descrever o úmero de sucessos em repetdas provas de Beroull. As provas de Beroull (ou eperêcas de Beroull) são sucessões de eperêcas aleatóras depedetes, ode em cada uma delas só estem dos resultados possíves: realzação de determado acotecmeto e realzação do cotráro desse acotecmeto. Cosderado um qualquer acotecmeto, A, de probabldade P(A) p, a realzação de, A, dz-se sucesso, a realzação do cotráro, A, que tem probabldade P( A) p, dz-se sucesso. Por eemplo, a ocorrêca de precptação em determado da do futuro, só tem dos resultados possíves: ou chove (sucesso) ou ão chove (sucesso) esse da. Etão, a probabldade de chover é p, e a probabldade de ão chover, será logcamete -p. Se a varável aleatóra, X, desgar o úmero de sucessos em provas, dz-se que tem dstrbução Bomal e escreve-se smbolcamete ( p) B,. A sua fução massa de probabldade é, P! p!! ( ) P( X ) ( ) e a sua fução de dstrbução é, ( p), 0,,..., (5.)! F( ) p!! ( ) ( p) (5.) Eemplo 5.
4 Cosderado que em determado ro ocorre uma chea por ao e que a probabldade desta chea ser catastrófca é 0%, qual é a probabldade de ocorrêca de 3 destas cheas os prómos 5 aos? Neste caso, tem-se, 5 aos 3 p 0, logo, pela equação (5.) vem, P ( 3) P( X 3) 3! 5! 0, 3! ( 5 ) 3 5 3 ( 0, ) 0, 85 Isto é, os prómos 5 aos a probabldade de ocorrêca de 3 cheas catastrófcas este ro é de,85%. 5. Dstrbuções Cotíuas a) Dstrbução Normal A mas mportate e mas dvulgada dstrbução cotíua de probabldade é sem dúvda a dstrbução Normal. Teorcamete, a fução de dstrbução da soma de varáves aleatóras tede para a dstrbução Normal quado aumeta defdamete, qualquer que seja a fução de dstrbução de cada uma das varáves aleatóras. Por esta razão a dstrbução Normal adapta-se bem a um grade úmero de varáves hdrológcas, omeadamete a precptação aual e o escoameto aual, resultates da soma de um grade úmero de varáves aleatóras. Uma varável aleatóra X com uma fução desdade de probabldade, f( ) e σ π ( µ ) σ < < + (5.3) dz-se que tem dstrbução Normal com parâmetros µ e σ, e escreve-se smbolcamete, Ν ( µ, σ). Os parâmetros µ e σ, são determados por, µ e ( ) σ S +. A sua fução de dstrbução é dada por,
5 ( µ ) F( ) e σ d (5.4) σ π Para se efectuar o estudo da dstrbução Normal é ecessáro passar à dstrbução Normal Reduzda, vsto que os valores da fução desdade de probabldade e de dstrbução são dados através de tabelas em fução dos valores reduzdos. Isto cosegue-se fazedo uma mudaça de varável de modo a que a ova varável teha valor médo gual a zero e desvo padrão gual à udade. Isto é, trasforma-se a varável X com Ν ( µ, σ) uma varável Z com Ν( 0) reduzda, e é dada por, Z X µ σ,. Z é a varável (5.5) Ao realzar-se esta trasformação, estadardza-se a varável X e este caso a sua fução desdade de probabldade é, f( z) e π z < z < + (5.6) e a sua fução de dstrbução, F( z) π z z e dz (5.7) Os valores de f( z ) e F( z ) são dados por tabelas em fução de z. Ver tabelas para a dstrbução Normal, apresetadas o poto 9. Na fgura 5. apresetam-se o gráfco da fução desdade, f( z ), bem como os valores das ordeadas para os respectvos valores de z e a fgura 5. o gráfco da fução dstrbução, F( z ). A altura H a fgura 5. é a probabldade acumulada correspodete à área tracejada a fgura 5.. Fg. 5.. Fução desdade probabldade Ν( 0, )
6 0,5 z -3.0 f(z) 0.004 0,4 -.5 -.0 0.08 0.054 f(z) 0,3 0, 0, -.5 -.0-0.5 0.0 0.5 0.30 0.4 0.35 0.399 0.35 0,0-3,0 -,0 -,0 0,0,0,0 3,0 z.0.5.0.5 0.4 0.30 0.054 0.08 3.0 0.004 Fg. 5.. Fução de dstrbução probabldade Ν( 0, ),0 z -3.0 F(z) 0.003 -.5 0.006 -.0 0.08 F(z) 0,5 H -.5 -.0-0.5 0.0668 0.587 0.3085 0.0 0.5000 0.5 0.695.0 0.843 0,0-3,0 -,0 -,0 0,0,0,0 3,0 z.5.0.5 3.0 0.933 0.977 0.9938 0.9987 Como se pode verfcar pelas Fguras 5. e 5., a dstrbução Normal é uma dstrbução smétrca, sto é caracterza-se por ter uma desdade de probabldade smétrca em relação à méda, que é ao mesmo tempo medaa e moda. Isto sgfca que a probabldade méda que a varável aleatóra tem de se stuar o tervalo (,µ ] é gual à probabldade méda que ela tem de se stuar o tervalo [ µ,+ ). Como se pode observar a fgura 5.3 e comprovar com as tabelas (Ver 9), a área total lmtada pela curva e pelo eo dos é utára (00%). Também se pode observar que 50% da dstrbução Normal 50% correspodem ao tervalo (,µ ]. Isto sgfca que a probabldade
7 méda de a varável aleatóra tem de se stuar o tervalo (,µ ] é gual 50%. Ou, por outras palavras, a probabldade méda de a varável aleatóra ser gual ou feror ao valor médo é 50%. Também se pode observar a fgura que 68.6% da dstrbução ormal correspodem ao tervalo [ µ ± σ], que 95.44% correspodem ao tervalo [ µ ± σ] e que 99.74% correspodem ao tervalo [ µ σ] ± 3, sgfcado, obvamete, que a probabldade méda da varável aleatóra aumeta à medda que o tervalo alarga. (Ver 9) Fgura 5.3 - Áreas compreeddas pela curva Normal reduzda (%) 0.3%.5% 3.59% 34.3% 34.3% 3.59%.5% 0.3% -3σ -σ -σ 0 σ σ 3σ 0.3%.8% 5.87% 50.00% 84.3% 97.7% 99.87% b) Dstrbução Log - Normal É uma geeralzação da dstrbução ormal, torada assmétrca por uma mudaça da varável, Y l X. Se uma varável aleatóra Y, tem dstrbução ormal, etão a varável X, dz-se Log ormal, e a sua fução desdade é, ( y µ ) y σ y ( ) e f > 0 (5.8) σ π
8 ode, µ y e σ y são, respectvamete a méda e o desvo padrão da varável Y l X, dados por µ y y e y ( y y) σ y Sy +. A dstrbução Log ormal ajusta-se bem a varáves hdrológcas resultates da multplcação de mutas varáves. Isto é, se XX X, etão Y l X l X... grade, tede para a dstrbução ormal. X Y, que para c) Dstrbução Gama Dz-se que uma varável aleatóra X, tem dstrbução Gama com parâmetros β e λ, smbolcamete, G ( β,λ) desdade de probabldade é da forma,, quado a respectva fução ode Γ ( β), é a fução Gama dada por, β β λ λ e f( ), β, λ > 0 (5.9) Γ( β) Γ ( β ) ( β )! > 0 β (5.0) Os parâmetros β e λ, são determados, por, e, β (5.) S Cv λ (5.) S A dstrbução Gama é frequetemete aplcada a determação da probabldade da precptação para durações de das, semaas, meses, e até aos.
9 d) Dstrbução de Pearso tpo III A dstrbução de Pearso tpo III, também chamada dstrbução Gama de três parâmetros, troduz um tercero parâmetro, ε, a dstrbução Gama. Uma varável aleatóra X, tem dstrbução Pearso tpo III com parâmetros β, λ e ε, quado a respectva fução desdade de probabldade é da forma, β β λ( ε) λ ( ε) e Γ( β) f( ) ε (5.3) Os parâmetros β, λ e ε, podem ser determados por, β, (5.4) g e S λ (5.5) β ε S β (5.6) A dstrbução Pearso tpo III é aplcada para descrever a dstrbução de probabldade dos pcos de máma chea aual. e) Dstrbução Log - Pearso tpo III Se Y l X, segue a dstrbução de Pearso tpo III, etão dz-se que X tem dstrbução Log - Pearso tpo III, e tem como fução desdade de probabldade, β β λ( y ε) λ ( y ε) e Γ( β) f( ) l ε (5.7) Os parâmetros β, λ e ε, podem ser determados por, β, (5.8) g y
30 e S y λ (5.9) β ε y S β (5.0) y A dstrbução Log - Pearso tpo III é utlzada para descrever a dstrbução de frequêcas dos caudas de chea. f) Dstrbução Assmptótca de Etremos Tpo I Gumbel Também cohecda por dstrbução de Gumbel, é bastate aplcada a acotecmetos mámos, por eemplo, a dstrbução dos caudas mámos auas, ou a dstrbução das precptações mámas auas. Uma varável aleatóra X, tem dstrbução de Gumbel, com parâmetros α, e u, quado a respectva fução desdade de probabldade é da forma, u u e α α f( ) e < < + (5.) α e a fução dstrbução é da forma, u e α F ( ) e α > 0 (5.) Os parâmetros, α e u, podem ser determados por, e 6S α (5.3) π u 0,577α (5.4) Utlzado a varável reduzda, dstrbução, y u, vem para a fução de α e y F( ) e (5.5)
3 No Quadro 5. apresetam-se, o resumo das dstrbuções teórcas cotíuas de probabldade mas utlzadas em Hdrologa. Quadro 5. Dstrbuções teórcas cotíuas de probabldade utlzadas em Hdrologa. Dstrbução Normal Log Normal F. desdade de Probabldade f( ) e σ π ( µ ) σ ( y µ ) y σy ( ) e f σ π Itervalo Equações dos parâmetros < < + µ, σ S > 0 µ y y, σ y Sy y l β λ f( ) Gama Γ( β) Pearso Tpo III Log Pearso Gumbel β ode ( β) gama f( ) e λ Γ fução β β λ ( ) ( ε) λ ε e Γ( β) β β λ( y ε) λ ( y ε) e f( ) Γ( β) y l f( ) e α u u e α α > l 0 ε ε < < + β λ S S β, g ε S Cv S λ, β β S y β, λ, g y β ε y Sy β 6S α, π u 0,577α 5.3 Eercícos de aplcação a) Dstrbução Normal Admtdo que a precptação aual em determado local, é uma varável aleatóra X, com dstrbução ormal e com parâmetros µ 570mm e 0mm valor de precptação σ, N ( 570;0) 600mm., determar a probabldade de um
3 Trasformado a varável X com N ( 570;0) a varável reduzda Z com N ( 0, ) vem, z 600 570 0 0,5 Para obter o correspodete valor de F(z), pode-se recorrer à tabela A9.: - Pela tabela, para z 0, 5 vem F ( z) 0, 5987 Isto é probabldade de a varável X, assumr um valor de 59,87%. 600mm é b) Dstrbução Log - Normal Cosderado que o caudal aual de determado curso de água, é uma varável aleatóra X, com dstrbução Log Normal, com µ 5,0646 e σ 0, 58906, determar a probabldade de se y y verfcar um valor de caudal feror a 3 m s. 50 Fazedo uma mudaça a varável, tal que Y l X, vem, y l l50 5,0064, dode a varável reduzda Z é, z 5,0064 5,0646 0,58906 0,09 A9.: Para obter o correspodete valor de F(z), utlza-se a tabela - Para Z 0, 09 vem, F ( z) F( z) 0,5359 0, 464 Que sgfca que a probabldade de se verfcar um valor de caudal feror a 3 m s é de 46,4%. 50 c) Dstrbução de Gumbel
33 Os caudas mámos statâeos auas um determado curso de água seguem a dstrbução de Gumbel, com méda, 3 m e 6,5 s desvo padrão, S 3 4,8 m s. Determe a probabldade de ocorrer um valor de caudal 3 300m s Os parâmetros, α e u, podem ser determados pelas equações (5.3) e (5.4), α 6S π 6 4,8 π 0,6 u 0,577α 6,5 0,577 0,6 6,7 u 300 6,7 Utlzado a varável reduzda y, 44, a α 0,6 probabldade pretedda, pode ser determada por aplcação da equação (5.5), F( ) e e y e e,44 0,749 74,9%. 6. As Dstrbução Teórcas e as Varáves Hdrológcas Quado se afrma que as varáves hdrológcas podem ser represetadas por algum tpo cohecdo de dstrbução, ão quer dzer que elas sgam perfetamete essas dstrbuções teórcas. Obvamete que, quado se trata de varáves reas, estem lmtações, que toram o ajuste perfeto mpossível. Por eemplo, como já referdo, a precptação aual é uma varável que segue a dstrbução ormal. No etato, a varável aleatóra ormal, pode assumr qualquer valor o tervalo (, + ), equato que a precptação apeas pode assumr valores postvos ou ulos. Além dsso, como se vu, a dstrbução ormal é uma dstrbução smétrca, equato que a dstrbução de precptação aual tede a ser assmétrca postva. Assm, quado se dspõe de uma amostra de valores de uma determada varável hdrológca, o objectvo é determar qual a dstrbução teórca que melhor se ajusta à dstrbução empírca. Depos de ajustar um cojuto de varáves hdrológcas a uma qualquer
34 dstrbução teórca cohecda, grade parte da formação probablístca da amostra pode ser resumda por essa dstrbução teórca e pelos respectvos parâmetros. O ajustameto de um modelo de dstrbução à dstrbução empírca de varáves hdrológcas, é habtualmete aalsado com base em testes de hpóteses estatístcos. 6. Testes de Hpóteses Os testes de hpóteses costtuem uma área de etrema mportâca a Estatístca Aplcada à Hdrologa. Quado se pretede saber se uma determada varável aleatóra segue uma qualquer dstrbução teórca, utlza-se um teste de hpóteses. etapas: O estabelecmeto de um teste de hpóteses costa das segutes º - Formulação da hpótese a ser testada, H 0 - Hpótese ula º - Formulação da hpótese alteratva, H 3º - Selecção da estatístca amostral a ser utlzada 4º - Estabelecmeto da regra de decsão, em fução de uma costate c. 5º - Selecção do ível de sgfcâca, α 6º - Utlzação da estatístca amostral para determar o valor da costate c, de modo a que, quado H 0 for verdadera, haja uma probabldade α de se rejetar esta hpótese. 7º - Rejeção ou acetação da hpótese H 0, se a estatístca amostral observada car, respectvamete, a regão de rejeção (crítca), ou a regão de acetação. Ao tomar uma destas duas decsões, pode-se cometer dos tpos de erros: erro de prmera espéce erro que se comete quado se rejeta H 0, sedo ela verdadera e erro de seguda espéce erro que se comete quado se aceta H 0, sedo ela falsa. A probabldade α de se cometer um erro de prmera espéce, chama-se ível de sgfcâca do teste. A probabldade β de se cometer um erro de seguda espéce, chama-se ível de cofaça do teste. A regão crítca (Fg. 6.) do teste é o cojuto dos valores
35 de uma estatístca que determam a rejeção de H 0, de acordo com uma regra pré estabelecda. Fgura 6.. Dferetes tpos de regões crítcas α/ α/ α α De um modo geral, α e β varam em setdo cotráro. O que se costuma fazer é far α um ível coveete (5%, %, etc.) e procurar, detro de todas as regões de ível α, aquela que mmza β, sto é, aquela que mamza β, chamada potêca do teste. Um melhor teste de ível α é aquele a que correspode uma maor potêca. a) Teste do Qu-Quadrado O teste do Qu-Quadrado, χ, é um teste de adequação do ajustameto, ode se pretede determar se uma dada dstrbução teórca é razoável face aos dados dspoíves. Assm, as hpóteses a testar são, H 0: A fução de dstrbução é F() H : A fução de dstrbução ão é F() O teste do Qu-Quadrado, faz uma comparação etre o úmero real de observações e o úmero esperado de observações que caem as respectvas classes, através do cálculo da estatístca, m ( Oj Ej) χ c (6.) E j j que assmptotcamete tem dstrbução de Qu-Quadrado com ν m p graus de lberdade, sedo m o úmero de classes, p o úmero de parâmetros a estmar a partr da amostra, O j o úmero de observações a classe j, e E j o úmero de observações que seram de esperar, a classe j, através da dstrbução teórca.
36 A decomposção da amostra em classes, deve ser tal que o efectvo teórco por classe ão seja feror a 5, ou pode ser utlzada a equação (A.) de STURGES. As classes devem ser escolhdas de forma a que cada tervalo de classe correspoda uma probabldade gual, (classes equprováves), dode E j. m A hpótese H 0 é rejetada se χ c for maor que χ α; ν tabelado, para um determado ível de sgfcâca α e ν graus de lberdade. (Tabela A9.3). a) Teste de Kolmogorov - Smrov Uma alteratva ao teste do χ, é o teste de Kolmogorov Smrov. É um teste, ode ão se estmam parâmetros para a dstrbução empírca. Para a realzação deste teste, deve cosderarse, º F ( ) a fução teórca da dstrbução acumulada admtda como hpótese ula, H 0 ; º F 0 ( ) a fução de dstrbução acumulada para os dados amostras ; 3º maf( ) F ( ) D 0, a estatístca utlzada; 4º Se, para um determado ível de sgfcâca α, o valor D for maor ou gual ao valor D tabelado (Tabela 9.4), a hpótese H 0 é rejetada. 7 Aálse Frequecal em Hdrologa Nos sstemas hdrológcos estem mutas vezes evetos etremos, tas como secas ou cheas. O valor de um acotecmeto etremo é versamete proporcoal à sua frequêca de ocorrêca, sto é, um acotecmeto etremo ocorre com meos frequêca do que um eveto moderado. O objectvo da aálse frequecal em hdrologa é relacoar a magtude dos valores etremos com a sua frequêca de ocorrêca, através da utlzação de dstrbuções de probabldade. Os resultados desta aálse podem ser usados em város problemas de egehara, tas como, dmesoameto de barrages, potes, estruturas de cotrolo de cheas, etc.
37 Para efectuar a aálse frequecal pode-se recorrer ao poscoameto gráfco dos dados a forma de uma dstrbução cumulatva de probabldade ou utlzar téccas aalítcas baseadas em factores de frequêca. Em qualquer dos casos tora-se ecessáro troduzr a oção de período de retoro. 7. Período de Retoro e Rsco Hdrológco Período de retoro, T, de uma varável X, defe-se como o úmero de aos que deve, em méda, decorrer para que o valor dessa varável ocorra ou seja superado. Desgado a probabldade de a varável aleatóra X assumr um valor feror ou gual a, por probabldade de ão ecedêca, F ( ) com, F ) P( X ) ( - Equação (A.) e desgado a probabldade de a varável aleatóra X assumr um valor superor a, por probabldade de ecedêca G ( ), com G( ) P( X > ) P( X ) F( ) - Equação (4.), pode eprmr-se o período de retoro por, T G ( ) F( ) (7.) Rsco hdrológco, R, é fução do período de retoro e represeta a probabldade de um valor da varável aleatóra X ser eceddo em pelo meos uma vez em aos sucessvos. Eprme-se por, R (7.) T T ( G( ) ) 7. Aálse Frequecal por Poscoameto gráfco Cosdere-se uma amostra,, 3, atrbudo a estes,..., dados amostras, uma probabldade empírca F ) P( X ) ( ou ( ) P( X ), é possível marcar estes pares de valores [ F( ) ] G > [ G( ) ], ou, em gráfcos de modo a poder-se efectuar a aálse frequecal. Este método utlza-se também para avalar o ajustameto de uma qualquer dstrbução teórca de probabldade à dstrbução empírca dos dados amostras.
38 A fução de dstrbução de uma determada dstrbução teórca pode ser represetada grafcamete um papel de probabldade adequado a essa dstrbução. Em tal papel, as ordeadas represetam os valores da varável X e as abcssas represetam a probabldade de ão ecedêca F ) P( X ) ( ) P( X ) (, a probabldade de ecedêca G >, o período de retoro T, ou a varável reduzda y. As escalas das ordeadas e das abcssas são fetas de tal modo, que a fução de dstrbução teórca aparece represetada por uma recta. Sedo assm, se os dados amostras, afectados da respectva probabldade empírca, se ajustam à recta da dstrbução teórca, etão pode-se afrmar que a dstrbução empírca segue a dstrbução teórca cosderada. Nesse caso, é possível efectuar etrapolações para valores etremos. Supoha-se que se dspõe de todas as observações de uma varável aleatóra. Se as observações () forem classfcadas por ordem crescete, a probabldade empírca de X tomar valores ferores ou guas a um determado será: F( ) ( P( X )) (7.3) ode é o.º de ordem do valor a amostra. Se as observações () forem classfcadas por ordem decrescete, a probabldade empírca de X tomar valores guas ou superores a um determado será: G( ) ( P( X > )) (7.4) Neste caso, o meor valor da população tera uma probabldade gual a zero e o maor valor uma probabldade gual a um. No etato, a afectação de probabldade a uma amostra é mas delcada, pos ão há a certeza de que ela coteha o meor e o maor valor da população descohecda. Das váras fórmulas estetes para afectar cada valor da amostra de uma probabldade empírca, utlzar-se-á a de WEIBULL, por ser a mas geeralzada, F( ) ( P( X )) (7.5) + para os dados classfcados por ordem crescete e G( ) ( P( X > )) (7.6) + para os dados classfcados por ordem decrescete.
39 7.3 Aálse Frequecal por Factores de Frequêca A aálse frequecal pode ser feta recorredo a téccas aalítcas baseadas em factores de frequêca. CHOW et al (988) propõe a segute fórmula geral para a aálse hdrológca de frequêcas, K S (7.7) T + T ode, T, é o valor do acotecmeto assocado a determado período de retoro, K T, é o factor de frequêca que é fução do período de retoro, T, e do tpo de dstrbução de probabldade a ser utlzada a aálse. Se a varável em aálse é utlzado, aplcado aos logartmos dos dados, y l, o mesmo método pode ser T y KTSy (7.8) y + O factor de frequêca proposto por VEN TE CHOW é aplcável a mutas dstrbuções de probabldade utlzadas a aálse hdrológca de frequêcas. Para uma determada dstrbução teórca, é possível determar uma relação, K T, etre o factor de frequêca e o correspodete período de retoro, relação esta que pode ser epressa por tabelas ou em termos matemátcos. Para determar o valor de T (Equação 7.7), é etão ecessáro calcular os parâmetros estatístcos para a dstrbução proposta e determar para um dado período de retoro, o factor de frequêca. Segudamete descreve-se a relação teórca dstrbuções de probabldade. K T, para váras a) Dstrbução Normal O factor de frequêca pode ser epresso por, K T T σ µ z (7.9) que é a mesma epressão da varável ormal reduzda Z, defda a equação (5.5), e que se ecotra tabelada (Tabela A9.).
40 b) Dstrbução Log Normal Para a dstrbução Log Normal O factor de frequêca pode ser epresso por, K T y µ T y (7.0) σy ode y l. Este factor de frequêca aplca-se à equação (7.8) c) Dstrbução Pearso Tpo III O factor de frequêca para esta dstrbução, é epresso por meo de uma tabela em fução do coefcete de assmetra, g, e do período de retoro, T. (Tabela 9.5) d) Dstrbução Log - Pearso Tpo III Igual ao caso ateror, o etato, o factor de frequêca obtdo pela tabela deverá ser aplcado à equação (7.8). e) Dstrbução de Gumbel (Etremos tpo I) por, Para esta dstrbução, o factor de frequêca é determado K T 6 0,577 + π T l l T (7.) Para epressar T, em termos de K T, utlza-se a segute equação, T e πk 0,577+ t e 6 (7.) 8 Eercícos de Aplcação 8. Ajustameto de uma dstrbução empírca à dstrbução Normal
4 Verfcar o ajustameto das precptações auas ocorrdas a estação meteorológca de Castro D Are (Quadro.) à dstrbução Normal. Esta verfcação pode ser feta de duas maeras: por poscoameto gráfco dos dados ou através de um teste de adequação do ajustameto. a) Poscoameto gráfco (Ver poto 7.) A fução de dstrbução da dstrbução Normal pode ser represetada grafcamete um papel de probabldade Normal. Em tal papel, as ordeadas represetam os valores da varável X e as abcssas represetam a probabldade F( ) P( X ) ou G ( ) P( X > ). As escalas das ordeadas e das abcssas são fetas de tal modo, que a fução de dstrbução teórca aparece represetada por uma recta. Assm, um papel de probabldade ormal, qualquer dstrbução ormal terá como gráfco uma lha recta, correspodedo a méda dessa dstrbução ao poto 50% e um desvo padrão para cada lado da méda, aos potos 5.87% e 84.3%, respectvamete (ver Fgura 5. e 5.3). Neste caso a recta da dstrbução ormal teórca deseha-se o papel ormal udo os três pares de potos, ( S; 5,87% ) ( 93,;5,87% ) ( ; 50% ) ( 67,5;50% ) ( + S; ) ( 5,9;84,3% ) Esta recta correspode à dstrbução Normal teórca, se os valores da amostra, afectados da respectva probabldade empírca, ajustarem à recta, etão pode-se afrmar que a sére de precptações auas segue a dstrbução Normal. Para atrbur uma probabldade empírca aos valores da amostra, utlza-se a epressão (7.5), que dá a probabldade de ão ecedêca, F(), para os valores da amostra, ordeados de forma crescete. Quadro 8.. A recta teórca de probabldade Normal e os valores da dstrbução empírca da precptação aual estão represetados a A méda e o desvo padrão foram determados o Eemplo 3. e 3. e são, respectvamete 67, 5mm e S 479, 4mm
4 Fgura 8., ode se pode verfcar o ajustameto à recta, dode se pode afrmar que a sére de precptações em estudo tem dstrbução Normal. Quadro 8. Probabldade de ão ecedêca, F(), para os valores de precptação aual em Castro Dáre. Ao Prec. ( ) Prec.ordeada ( ) F() 96/7 8, 870,9,3 97/8 00, 903,5,5 98/9 093, 9,8 3 3,8 99/0 556,4 95,8 4 5,0 90/ 90,6 00, 5 6,3 9/ 785,4 039, 6 7,5 9/3 830, 055,4 7 8,8 93/4 50, 076, 8 0,0 94/5 749,6 7, 9,3 95/6,6 44,5 0,5 96/7 04, 80,0 3,8 97/8 93,7 0,0 5,0 98/9 7, 39,6 3 6,3 99/30 630,9 47, 4 7,5 930/3 48, 54,0 5 8,8 93/3 46,0 75,7 6 0,0 93/33 334,4 90,6 7,3 933/34 30, 98,7 8,5 934/35 58,0 300,3 9 3,8 935/36 349,6 30, 0 5,0 936/37 069,0 334,4 6,3 937/38 54,0 344,7 7,5 938/39 974,0 39,9 3 8,8 939/40 059,6 4,7 4 30,0 940/4 569,6 4,9 5 3,3 94/4 50,6 46,8 6 3,5 94/43 664, 43,0 7 33,8 943/44 344,7 44,0 8 35,0 944/45 95,8 45,9 9 36,3 945/46 763,0 46,0 30 37,5 946/47 079,3 478, 3 38,8 947/48 4,7 48, 3 40,0 948/49 9,8 496,4 33 4,3 949/50 0,0 504, 34 4,5 950/5 903,9 50,6 35 43,8 95/5 65,0 556,4 36 45,0 95/53 076, 567,9 37 46,3 953/54 75,7 578, 38 47,5 954/55 699,5 58,0 39 48,8 955/56 50,9 585,4 40 50,0 956/57 039, 588, 4 5,3 Quadro 8. (cot.) Probabldade de ão ecedêca, F(), para os valores de precptação aual em Castro Dáre. Ao Prec. ( ) Prec.ordeada ( ) F() 957/58 588, 595,9 4 5,5 958/59 746, 603,3 43 53,8 959/60 563,6 65,0 44 55,0
43 960/6 987,4 664, 45 56,3 96/6 585,4 689,7 46 57,5 96/63 83, 699,5 47 58,8 963/64 0, 746, 48 60,0 964/65 80,0 749,6 49 6,3 965/66 806,9 763,0 50 6,5 966/67 595,9 785,4 5 63,8 967/68 4,9 86, 5 65,0 968/69 80,0 830, 53 66,3 969/70 496,4 83, 54 67,5 970/7 567,9 903,9 55 68,8 97/7 300,3 93,7 56 70,0 97/73 478, 930, 57 7,3 973/74 689,7 974,0 58 7,5 974/75 39,6 987,4 59 73,8 975/76 903,5 000, 60 75,0 976/77 34,0 04, 6 76,3 977/78 4, 059,6 6 77,5 978/79 599, 069,0 63 78,8 979/80 45,9 079,3 64 80,0 980/8 44,5 093, 65 8,3 98/8 504, 8, 66 8,5 98/83 46,8 4, 67 83,8 983/84 603,3 50, 68 85,0 984/85 000, 50,9 69 86,3 985/86 578, 0, 70 87,5 986/87 39,9,6 7 88,8 987/88 930, 80,0 7 90,0 988/89 870,9 34,0 73 9,3 989/90 43,0 563,6 74 9,5 990/9 44,0 569,6 75 93,8 99/9 055,4 599, 76 95,0 99/93 47, 630,9 77 96,3 993/94 86, 806,9 78 97,5 994/95 98,7 349,6 79 98,8 b) Teste do Qu-Quadrado, χ (Ver poto 6.) Para melhor ajuzar da qualdade do ajustameto da dstrbução ormal à dstrbução empírca de precptações auas, utlza-se o teste de hpótese do χ. As hpóteses a testar são, Fgura 8.. Dstrbução das Precptações auas
44 H 0: A fução de dstrbução é ormal H : A fução de dstrbução ão é ormal O úmero de classes, m, para esta amostra é 7 (determado o Eemplo.) Uma vez que é ecessáro trabalhar com as tabelas para a dstrbução Normal, utlzar-se-á a varável reduzda z. Como as classes devem ser equprováves vem para a probabldade de cada classe, F ( z) 0,48 7 F(z 4 )4/7 F(z 3 )3/7 F(z 5 )5/7 F(z )/7 F(z 6 )6/7 F(z )/7 F(z 7 ) z z z3 z4 z5 Z6 Os z serão calculados, a partr dos valores F(z ) cohecdos, por cosulta da tabela 9.. A partr de z determa-se faclmete os tervalos das classes,, sabedo que 67, 5mm e S 479, 4mm. Como se mostra o Quadro 8.. Quadro 8. Cálculo dos tervalos e lmtes das classes z F(z ) z z S + z /7 0,49 -,0674 60,8 z /7 0,857-0,5659 40, z 3 3/7 0,486-0,8 586, z 4 4/7 0,574 0,8 758,8 z 5 5/7 0,743 0,5659 943,8 z 6 6/7 0,857,0674 84,
45 Com estes elemetos pode-se costrur o Quadro 8.3 e calcular o m ( Oj Ej) χ c (Equação 6.). E j j Quadro 8.3 Teste do Qu-quadrado Lm. de Classe Nº de elemetos esperados em cada classe (E j) Nº de elemetos observados em cada classe (O j) ( Oj Ej) <60,8,857 0 0,465 60,8-40,,857 3 0,604 40, - 586,,857 7,8933 586, - 758,8,857 9 0,469 758,8-943,8,857 8 0,9566 943,8-84,,857 0,045 >84,,857 0 0,465 TOTAL 79 79 4,94 E j Da tabela 9.3 vem, para α 0, 05 e ν m p 7 4 graus de lberdade, χ 0,95;4 9,49 Como χ c 4,94 < χ0,95;4 9, 49 pode-se dzer que a hpótese de ormaldade ão é rejetada, o que vem cofrmar a aálse gráfca feta a alíea ateror. 8. Ajustameto de uma dstrbução empírca à dstrbução de Gumbel Verfcar o ajustameto das precptações dáras mámas auas ocorrdas a estação meteorológca de Castro D Are (Quadro 8.4) à dstrbução de Gumbel. A verfcação do ajustameto rá ser realzada de duas formas: por poscoameto gráfco dos dados ou através de um teste de adequação do ajustameto. a) Poscoameto gráfco (Ver poto 7.) Tal como a dstrbução Normal, também a dstrbução de Gumbel pode ser represetada por uma recta quado desehada o papel de Gumbel. Neste papel, as ordeadas represetam os valores da varável X
46 e as abcssas represetam a probabldade F ) P( X ) ( e a varável u reduzda y. Para traçado da recta basta ur, por eemplo, α três potos ( ), escolhdos, com u + y α. Para tal é y ecessáro determar os parâmetros α e u, que como já se vu são determados em fução da méda e do desvo padrão da amostra (Equações A5.3 e A5.4). A méda e o desvo padrão das precptações dáras mámas auas em Castro D Are, são respectvamete 89, 6mm e S 4, 9mm 6 4,9, dode os parâmetros são, α 9, 4 e π u 89,6 0,577 9,4 78,4. Para traçado da recta teórca, basta atrbur valores a y, obter os correspodetes valores de e marcar estes pares de valores o papel de Gumbel. Por eemplo, y u + y - 59,0 0 78,4 97,8 α Com os pares ( 59,0; ), ( 78,4;0 ) e (,8; ) 8.. 97 deseha-se a recta da Fgura Para atrbur uma probabldade empírca aos valores da amostra, utlza-se a epressão (7.5), que dá a probabldade de ão ecedêca, F(), para os valores da amostra, ordeados de forma crescete. Estes valores, apresetados o Quadro 8.4, foram marcados o papel de Gumbel (Fg. 8.), ode se pode verfcar o ajustameto à recta teórca, dode se pode afrmar que a sére de precptações em estudo segue a dstrbução de Gumbel. Quadro 8.4 Precptação dára máma aual (mm) em Castro D Are e Probabldade de ão ecedêca, F(). Ao Prec. ( ) Prec.ordeada ( ) F() 96/7 99,4 49,6,3 97/8 49,6 5,6,5 98/9 0,4 53,3 3 3,8 99/0 05,0 53,4 4 5,0 90/ 73,6 54,3 5 6,3 9/ 7,4 59, 6 7,5
47 Quadro 8.4 (Cot.) Precptação dára máma aual (mm) em Castro D Are e Probabldade de ão ecedêca, F() Ao Prec. ( ) Prec.ordeada ( ) F() 9/3 99,6 6,3 7 8,8 93/4 79,8 64,6 8 0,0 94/5 98,6 65,6 9,3 95/6 0,0 66,5 0,5 96/7 8,0 67,3 3,8 97/8 99,3 67,4 5,0 98/9 5,6 69,7 3 6,3 99/30 0, 7,0 4 7,5 930/3 98, 7, 5 8,8 93/3 77,8 7, 6 0,0 93/33 53,4 7,4 7,3 933/34 65,6 7,4 8,5 934/35 00,8 7,6 9 3,8 935/36 05,8 73,6 0 5,0 936/37 0,6 73,6 6,3 937/38 8,6 73,8 7,5 938/39 6,4 74,5 3 8,8 939/40 7,4 74,9 4 30,0 940/4 30,8 75, 5 3,3 94/4 84,9 75, 6 3,5 94/43, 75,8 7 33,8 943/44 4,0 77,4 8 35,0 944/45 83,4 77,8 9 36,3 945/46 73,6 78,4 30 37,5 946/47 78,4 78,8 3 38,8 947/48 99,6 79, 3 40,0 948/49 64,6 79,8 33 4,3 949/50 80,4 80,4 34 4,5 950/5 78,8 8,0 35 43,8 95/5 99,0 8,6 36 45,0 95/53 90,6 83,4 37 46,3 953/54 93,0 83,6 38 47,5 954/55 7,0 83,7 39 48,8 955/56, 84,4 40 50,0 956/57 54,3 84,9 4 5,3 957/58 04,4 84,9 4 5,5 958/59 88,6 86,6 43 53,8 959/60 84,9 88,5 44 55,0 960/6 86,6 88,6 45 56,3 96/6 59, 90, 46 57,5 96/63 7,6 90,6 47 58,8 963/64 8,8 9, 48 60,0 964/65 90, 9,5 49 6,3 965/66,0 93,0 50 6,5 966/67 40,6 93, 5 63,8 967/68 83,7 96,8 5 65,0 968/69 67,4 98, 53 66,3 969/70 84,4 98,6 54 67,5 970/7 66,5 99,0 55 68,8 97/7 69,7 99,3 56 70,0 97/73 96,8 99,6 57 7,3
48 Quadro 8.4 (Cot.) Precptação dára máma aual (mm) em Castro D Are e Probabldade de ão ecedêca, F() Ao Prec. ( ) Prec.ordeada ( ) F() 973/74 74,9 99,6 58 7,5 974/75 9, 00,8 59 73,8 975/76 73,8 0, 60 75,0 976/77 83,6 0,6 6 76,3 977/78 5,5 0,0 6 77,5 978/79 9,3 04,4 63 78,8 979/80 75,8 05,0 64 80,0 980/8 79, 05,8 65 8,3 98/8 9,5,0 66 8,5 98/83 93,, 67 83,8 983/84 77,4 3,4 68 85,0 984/85 88,5 7,5 69 86,3 985/86 74,5 8,8 70 87,5 986/87 7, 9,3 7 88,8 987/88 7,5 0,4 7 90,0 988/89 75,, 73 9,3 989/90 7, 4,0 74 9,5 990/9 6,3 5,5 75 93,8 99/9 67,3 30,8 76 95,0 99/93 75, 40,6 77 96,3 993/94 3,4 6,4 78 97,5 994/95 53,3 99,4 79 98,8 89,6 89,6 S 4,9 4,9 α 9,4 9,4 u 78,4 78,4 b) Teste de Kolmogorov - Smrov (Ver poto 6.) Para melhor ajuzar da qualdade do ajustameto da dstrbução de Gumbel à dstrbução empírca de precptações mámas auas, utlzar-se-á o teste de Kolmogorov Smrov, segudo os passos descrtos a alíea b) do poto 6.: º Admte-se que a Fução de dstrbução de Gumbel, F( ) e u e α º Cosdera-se que valores da amostra; e 78,4 e 9,4 é a hpótese ula, H 0 ; 0 ( F ) é a fução de dstrbução para os 79 3º Calcula-se a estatístca maf( ) F ( ) D 0 ; 4º Rejeta-se H 0, se para um ível de sgfcâca α 0, 05, o valor de D for maor ou gual ao valor D tabelado (Tabela 9.4).
49 Fgura 8.. Dstrbução das Precptações dáras mámas auas
50 No Quadro 8.5 mostram-se os passos ecessáros para efectuar este teste, já eplcado o poto 6.. Pela aálse do Quadro 8.5, pode-se coclur que a hpótese ula ma F F0 é feror ao ão é rejetada, uma vez que o ( ) ( ) 0, 0545 dcado a tabela 9.4 -,36 79 aálse gráfca feta a alíea ateror. 0. 5, o que vem cofrmar a Quadro 8.5 Teste de Kolmogorov - Smrov para ajustameto das precptações dáras mámas auas (mm) à dstrbução de Gumbel. 78,4 ordeada y e( y) 9,4 F 0( ) F( ) e F( ) F0( ) 79 49,6 -,48 0,03 0,0 0,0005 5,6 -,33 0,05 0,03 0,004 3 53,3 -,9 0,038 0,06 0,08 4 53,4 -,9 0,05 0,07 0,039 5 54,3 -,4 0,063 0,03 0,038 6 59, -0,99 0,076 0,067 0,0088 7 6,3-0,83 0,089 0,0 0,07 8 64,6-0,7 0,0 0,3 0,096 9 65,6-0,66 0,4 0,45 0,030 0 66,5-0,6 0,7 0,58 0,036 67,3-0,57 0,39 0,70 0,03 67,4-0,57 0,5 0,7 0,00 3 69,7-0,45 0,65 0,09 0,0448 4 7,0-0,38 0,77 0,3 0,0545 5 7, -0,37 0,90 0,35 0,0453 6 7, -0,3 0,03 0,53 0,0504 7 7,4-0,3 0,5 0,57 0,044 8 7,4-0,3 0,8 0,57 0,087 9 7,6-0,30 0,4 0,60 0,096 0 73,6-0,5 0,53 0,78 0,05 73,6-0,5 0,66 0,78 0,05 73,8-0,4 0,78 0,8 0,0036 3 74,5-0,0 0,9 0,95 0,0038 4 74,9-0,8 0,304 0,30 0,004 5 75, -0,7 0,36 0,306 0,003 6 75, -0,6 0,39 0,308 0,0 7 75,8-0,3 0,34 0,39 0,05 8 77,4-0,05 0,354 0,349 0,0050 9 77,8-0,03 0,367 0,357 0,000 30 78,4 0,00 0,380 0,368 0,03 3 78,8 0,0 0,39 0,376 0,064 3 79, 0,04 0,405 0,38 0,034 33 79,8 0,07 0,48 0,395 0,08
5 Quadro 8.5 (Cot.) Teste de Kolmogorov - Smrov para ajustameto das precptações dáras mámas auas (mm) à dstrbução de Gumbel. 78,4 ordeada y e( y) F ) 9,4 0( F( ) e F( ) F0( ) 79 34 80,4 0,0 0,430 0,406 0,04 35 8,0 0,9 0,443 0,436 0,0067 36 8,6 0, 0,456 0,447 0,008 37 83,4 0,6 0,468 0,46 0,006 38 83,6 0,7 0,48 0,466 0,05 39 83,7 0,7 0,494 0,468 0,059 40 84,4 0,3 0,506 0,48 0,058 4 84,9 0,34 0,59 0,490 0,094 4 84,9 0,34 0,53 0,490 0,04 43 86,6 0,4 0,544 0,50 0,045 44 88,5 0,5 0,557 0,553 0,0044 45 88,6 0,53 0,570 0,554 0,054 46 90, 0,6 0,58 0,58 0,005 47 90,6 0,63 0,595 0,587 0,0077 48 9, 0,66 0,608 0,595 0,04 49 9,5 0,73 0,60 0,67 0,003 50 93,0 0,75 0,633 0,65 0,008 5 93, 0,76 0,646 0,66 0,093 5 96,8 0,95 0,658 0,679 0,0 53 98,,0 0,67 0,698 0,069 54 98,6,04 0,684 0,703 0,094 55 99,0,06 0,696 0,708 0,08 56 99,3,08 0,709 0,7 0,009 57 99,6,09 0,7 0,76 0,0060 58 99,6,09 0,734 0,76 0,086 59 00,8,6 0,747 0,730 0,068 60 0,,8 0,759 0,735 0,047 6 0,6,0 0,77 0,739 0,038 6 0,0, 0,785 0,744 0,0409 63 04,4,34 0,797 0,770 0,075 64 05,0,37 0,80 0,776 0,0340 65 05,8,4 0,83 0,784 0,0386 66,0,68 0,835 0,830 0,005 67,,69 0,848 0,83 0,06 68 3,4,8 0,86 0,848 0,03 69 7,5,0 0,873 0,875 0,000 70 8,8,08 0,886 0,883 0,0030 7 9,3, 0,899 0,886 0,09 7 0,4,7 0,9 0,89 0,096 73,, 0,94 0,896 0,08 74 4,0,35 0,937 0,909 0,075 75 5,5,43 0,949 0,96 0,0337 76 30,8,70 0,96 0,935 0,068 77 40,6 3, 0,975 0,960 0,043 78 6,4 4,8 0,987 0,986 0,00 79 99,4 6,4,000 0,998 0,009
5 8.3 Aálse Frequecal 8.3. Relatvamete às precptações auas em Castro D Are (Eercíco 8.), determar: a precptação assocada a um período de retoro de 00 aos; o período de retoro do maor valor de precptação. Depos de se ter verfcado (Eercíco 8.) que as precptações auas em Castro D Are seguem a dstrbução Normal é possível efectuar a aálse frequecal pretedda. Para esta a aálse pode-se recorrer ao poscoameto gráfco dos dados a forma de uma dstrbução cumulatva de probabldade ou utlzar téccas aalítcas baseadas em factores de frequêca. a) Aálse Frequecal por Poscoameto gráfco Utlzado a Equação (7.) é possível determar a probabldade de ão ecedêca correspodete a um período de retoro gual a 00 aos, T F ( ) F( ) T 00 Com este valor é possível trar da recta teórca Normal, o 0,99 99% correspodete valor de X. Para F() 99% vem que 770mm (Ver Fgura A8.). Isto é a precptação assocada a um T 00 aos, é 770 mm. O maor valor de precptação aual em Castro D Are é 349, 6mm (Ver Quadro A8.). Com este valor pode-se ler a recta teórca o correspodete valor de F(). Pela letura da Fgura A8.. vem, para 349, 6mm um valor de F ( ) 99,95%. Dode, o período de retoro de um valor de precptação 349,6mm é, T 000 F 0,9995 aos. ( ) b) Aálse Frequecal por Factores de Frequêca Sabedo que o factor de frequêca, K T, para a dstrbução Normal, é gual à varável reduzda z, (Equação 7.9), a Equação (7.7) trasforma-se em, T + zs (7.3)
53 que para a dstrbução em estudo é, T 67,5 + z 479,4 (7.4) Um período de retoro gual a 00 aos correspode a uma probabldade de ão ecedêca de 99%. Cosultado a tabela 9., vem para F ( z) 0,99 um valor de z, 33, dode da equação (7.4) vem que a precptação assocada a um T 00 aos é, T 67,5 +,33 479,4 789, 5mm O maor valor de precptação aual em Castro D Are é Resolvedo a equação (A7.4) em ordem a z, vem, 349, 6mm. 349,6 67,5 349,6 67,5 + z 479,4 z 479,4 3,9 Pela Tabela A9., para z 3, 9 vem F ( z) 0, 9995, e o período de retoro do valor 349,6 mm é, T 000 F 0,9995 aos. ( ) 8.3. Relatvamete às precptações dáras mámas auas em Castro D Are (Eercíco 8.), determar: a precptação dáras máma assocada a um período de retoro de 00 aos; o período de retoro do maor valor de precptação. Depos de se ter verfcado (Eercíco 8.) que as precptações dáras mámas auas em Castro D Are seguem a dstrbução de Gumbel é possível efectuar a aálse frequecal pretedda. a) Aálse Frequecal por Poscoameto gráfco Pela recta teórca da dstrbução de Gumbel (Fgura 8.), vem para T 00 aos, uma precptação dára máma aual de apromadamete 70 mm.
54 O maor valor de precptação dára máma aual em Castro D Are é 99, 4mm (Ver Quadro 8.4). Com este valor pode-se ler a recta teórca o correspodete valor de T. Pela letura da Fgura A8.. vem, para 99,4 mm um valor de T 450 aos. b) Aálse Frequecal por Factores de Frequêca Para esta dstrbução, a equação (7.7) é, 89,6 + K 4,9 (7.5) T t Sabedo que o factor de frequêca, K T, para a dstrbução de Gumbel, dado pela Equação (A7.), vem para um período de retoro de 00 aos, K T 6 π 0,577 + 00 l l 00 3,37 Por (7.5) vem uma precptação dára máma aual de, T 89,6 + 3,37 4,9 67, 7mm O maor valor de precptação dára máma aual é, resolvedo a Equação (7.5), em ordem a K T vem, 99, 4mm, 99,4 89,6 99,4 89,6 + K t 4,9 Kt 4,9 4,40 Para determar o período de retoro do, maor valor de precptação dára máma aual, basta resolver a Equação (7.) T e πk 0,577+ t e 6 e π 4,40 0,577+ e 6 50 aos.