Desigualdades Clássicas

Tamanho: px
Começar a partir da página:

Download "Desigualdades Clássicas"

Transcrição

1 Desigualdades Clássicas Márcio Nascimeto da Silva 9 de maio de 009 Resumo As desigualdades são de extrema importâcia as ciêcias. Sua utilização vai desde a estimativa de uma gradeza com um certo erro pré-defiido, passado por problemas de olimpíadas de Matemática até a demostração de grades teoremas. O presete trabalho trata de algumas desigualdades que são de grade uso a demostração de resultados a matemática, sedo, de certa forma, um trabalho bastate técico. Palavras-Chave: desigualdades, Hölder, Cauchy. 1 Médias Artimética e Geométrica A média aritmética de dois úmeros ão egativos x, y é defiida por A(x, y) = x + y já a média geométrica de tais úmeros é dada por G(x, y) = xy Um dos resultados mais utilizados tato a demostração de algus teoremas, como a demostração de outras igualdades é o seguite Teorema 1.1 Se x, y são úmeros ão egativos, etão a média geométrica deles ão é maior que sua média artimética. Ocorre igualdade das médias se, e somete se, x = y. Prova: Devemos mostrar que G(x, y) A(x, y). Sedo x, y ão egativos, podemos supor x = a e y = b. Daí, o que temos a mostrar é ab a + b Cosidere o úmero ão egativo (a b). Etão (1) (a b) 0 a + b ab 0 a + b ab a + b ab x + y xy Sedo (a b) 0 uma seteça verdadeira, segue que (1) também o é. Além disso, se x = y, temos: x = y a = b a = b (a b) = 0 a + b ab = 0 a + b = ab x + y = xy 1

2 Vejamos uma prova geométrica para o mesmo resultado. Cosidere a reta y = x e os potos O(0, 0), P (c, 0), Q(0, c), T (d, d), R(c, d), S(c, c) como mostra a Figura 1. S y=x Q T R c d O d c P Figura 1: Prova geométrica para a Desigualdade G(x, y) A(x, y). Claramete, a área do retâgulo OP RQ é estritamete meor do que a soma das áreas dos triâgulos OP S e OQT, ou seja: cd < c + d Perceba que quado aumetamos o triâgulo OQT de modo que T coicida com S, teremos isto é, quado c = d, obtemos area(op RS) = area(op S) + area(oqt ) cd = c + d Nosso próximo passo é geeralizar a desigualdade etre as médias aritmética e geométrica para úmeros ão egativos. Defiamos, pois, as médias esses casos. Sejam x 1, x,..., x, úmeros ão egativos. A média aritmética de tais úmeros é dada por e a média geométrica é A(x 1, x,..., x ) = x 1 + x x G(x 1, x,..., x ) = x 1.x..x Para verificar que G(x 1, x,..., x ) A(x 1, x,..., x ), precisaremos do seguite resultado. Lema 1.1 Se x 1.x..x = 1 etão x 1 + x x. Prova: Provemos por idução, iiciado com o caso =. Mostremos que Se x 1.x = 1, temos dois casos a cosiderar: x 1.x = 1 = x 1 + x ou x 1 = x = 1 ou x 1 1, x 1 Se x 1 = x = 1, etão, obviamete, x 1 + x =. Se x 1 1, x 1 etão devemos ter x 1 < 1 e x > 1 (oux 1 > 1 e x < 1). De fato, se ambos fossem maiores que 1, o produto seria maior que 1. Se ambos fossem meores que 1, o produto seria meor que 1. Assim, temos:

3 x 1 > 1 = x 1 1 > 0 x < 1 = 1 x > 0 e portato Por outro lado e assim (x 1 1)(1 x ) > 0 (x 1 1)(1 x ) = x 1 + x x 1.x 1 x 1 + x = x 1 x (x 1 1)(1 x ) > x 1 x + 1 = = e está provado que x 1.x = 1 = x 1 + x ocorredo igualdade somete quado x 1 = x = 1. Passemos agora à hipótese de idução, isto é, vamos supor e mostrar que x 1.x..x k = 1 = x 1 + x x k k x 1.x..x k.x k+1 = 1 = x 1 + x x k + x k+1 k + 1 Novamete, separemos em dois casos: (i) Os termos x i são todos iguais e portato iguais a 1; (ii) Os termos ão são todos iguais. No caso (i), sedo x 1 = x =... = x k = x k+1 = 1, temos obviamete x 1 +x +...+x k +x k+1 = k + 1 k + 1. Cosideremos, etão, o caso em que os termos x i ão são todos iguais. Para que o produto de tais úmeros seja exatamete 1, é ecessário que tehamos termos meores que 1 e termos maiores que 1. De fato, se todos fossem maiores que 1, o produto seria maior que 1. Se todos fossem meores que 1, o produto seria meor que 1. Vamos supor x 1 < 1 e x k+1 > 1. Etão x 1 1 < 0 e 1 x k+1 < 0, sedo o produto (x 1 1)(1 x k+1 ) positivo. Além disso, fazedo y 1 = x 1.x k+1, temos: x 1.x..x k.x k+1 = 1 (x 1.x k+1 ).x..x k = 1 (y 1 ).x..x k = 1 e pela hipótese de idução, se o produto de k termos é igual a 1, etão sua soma é maior do que ou igual a k. Em símbolos: (y 1 ).x..x k = 1 = (y 1 ) + x + + x k k Por outro lado, desevolvedo a soma x 1 + x x k+1, temos: x 1 + x x k + x k+1 = (y 1 + x x k ) + x k+1 + x 1 y 1 k + x k+1 + x 1 y 1 = k x k+1 + x 1 y 1 = k x k+1 + x 1 (x 1.x k+1 ) = k x k+1 (1 x 1 ) + (x 1 1) = k (x 1 1)(1 x k+1 ) > k + 1 Agora passemos a geeralização do Teorema

4 Teorema 1. A média geométrica de úmeros ão egativos ão é maior que a sua média aritmética. Prova: Devemos mostrar que, se x 1, x,..., x são úmeros ão egativos, etão: x1.x..x x 1 + x x Se g = x 1.x..x. Etão e portato Pelo Lema 1.1, 1 = x 1.x..x g = x 1.x..x g.g..g x 1 g.x g..x g = 1 x1 = g.x g..x g x 1 g + x g x g 1 g (x 1 + x x ) x 1 + x x.g x 1 + x x g x 1 + x x g x 1 + x x x 1.x..x Desigualdade de Cauchy Sejam a, b, c, d R. Etão (a + b )(c + d ) (ac + bd) Para demostrar tal resultado, vamos desevolver o lado esquerdo até que fializemos com a desigualdade acima. Temos: (a + b )(c + d ) = a c + b d + a d + b c = (ac) + (ac)(bd) + (bd) + (ad) (ad)(bc) + (bc) = (ac + bd) + (ad bc) (ac + bd) a desigualdade vem do fato de (ad bc) 0. Vejamos uma prova geométrica para tal desigualdade. Cosidere a Figura. Utilizado a fórmula para a distâcia etre dois potos, temos: d(o, P ) = c + d d(o, Q) = a + b d(p, Q) = (a c) + (b d) 4

5 d P b O θ c a Q Figura : Iterpretação geométrica para a Desigualdade de Cauchy. Pela lei dos cosseos, temos: d(p, Q) = d(o, P ) + d(o, Q).d(O, P ).d(o, Q). cos θ (a c) + (b d) = (c + d ) + (a + b ). (c + d )(a + b ). cos θ cos θ = (a c) + (b d) (a + b ) (c + d ). (c + d )(a + b ) cos θ = = cos θ = ac + bd (c + d )(a + b ) (ac + bd) (c + d )(a + b ) Como cos θ 1, segue que (ac + bd) (c + d )(a + b ) 1 (c + d )(a + b ) (ac + bd) Observe que ocorre igualdade se os potos P, Q, O, são colieares. A desigualdade de Cauchy pode ser geeralizada. Teorema.1 (Desigualdade de Cauchy) Dados a 1, a,..., a e b 1, b,..., b úmeros reais, temos (a 1 + a a )(b 1 + b b ) (a 1 b 1 + a b a b ) 3 Desigualdade de Hölder Podemos obter uma forma aida mais geral para o Teorema.1: Teorema 3.1 (Desigualdade de Hölder) Sejam a 1, a,..., a, b 1, b,..., b úmeros ão egativos. Se p, q são racioais tais que 1 p + 1 = 1, etão q (a p 1 + ap ap ) 1/p. (b q 1 + bq bq ) 1/q a 1 b 1 + a b a b Para demostrar tal desigualdade, vamos utilizar o seguite resultado auxiliar. 5

6 Lema 3.1 Seam p, q Q e a, b 0. Etão a p p + bq q ab Agora passemos a prova do Teorema 3.1. Sejam p, q Q tais que 1 p + 1 q = 1 e defia a = a 1 (a p ap ) 1/p Pelo Lema 3.1, temos b = b 1 (b q bq ) 1/q a p 1 p (a p ap ) + b q 1 q (b q bq ) a 1.b 1 Em seguida, defiido Também pelo Lema 3.1, temos a a = (a p ap ) 1/p b b = (b q bq ) 1/q a p p (a p ap ) + b q q (b q bq ) a.b Efim, podemos defiir e pelo Lema 3.1, teremos a p k p (a p ap ) + para todo k {1,,..., }. {1,,..., }, teremos: a k a = (a p ap ) 1/p b k b = (b q bq ) 1/q b q k q (b q bq ) a k.b k () Fazedo o somatório das desigualdades como em (), com k a p ap p (a p ap ) + bq bq q (b q bq ) 1 p + 1 q a 1.b a.b 1 a 1.b a.b a 1.b a.b a 1.b a.b Referêcias [1] BECKENBACH, Edwi. BELLMAN, Richard. A Itroductio to Iequalities. Yale Uiversity. New York, [] KOROVKIN, P. P. Desigualdades. Tradução para o Espahol, Editorial Mir,

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares Expoeciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares 1 Prelimiares Lembremos que, dados cojutos A, B R ão vazios, uma fução de domíio A e cotradomíio B, aotada por, f : A B,

Leia mais

INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP

INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP Nível Avaçado. INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP Vamos abordar esse artigo a aritmética de dois cojutos de iteiros algébricos: os Iteiros de Gauss e os Iteiros

Leia mais

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio Material Teórico - Módulo de ESTATÍSTICA As Diferetes Médias Primeiro Ao do Esio Médio Autor: Prof Atoio Camiha Muiz Neto Revisor: Prof Fracisco Bruo Holada Nesta aula, pausamos a discussão de Estatística

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA OLIMPÍADA REGIONAL DE MATEMÁTICA PET MATEMÁTICA. Gabarito da Prova 2 a fase de 2008 Nível 3

UNIVERSIDADE FEDERAL DE SANTA CATARINA OLIMPÍADA REGIONAL DE MATEMÁTICA PET MATEMÁTICA. Gabarito da Prova 2 a fase de 2008 Nível 3 UNIVERSIDADE FEDERAL DE SANTA CATARINA XI OLIMPÍADA REGIONAL DE MATEMÁTICA PET MATEMÁTICA OLIMPÍADA REGIONAL DE MATEMÁTICA SANTA CATARINA - UFSC Gabarito da Prova a fase de 008 Nível 3. Seja N a a a a

Leia mais

Desigualdades Aritméticas

Desigualdades Aritméticas Projecto Delfos: Escola de Matemática Para Joves Desigualdades Aritméticas. Mostra que a + b a + b, para todos os úmeros reais a e b (desigualdade triagular). Quado é que se tem a igualdade? Geeraliza

Leia mais

Universidade do Estado do Amazonas

Universidade do Estado do Amazonas Uiversidade do Estado do Amazoas Professor Alessadro Moteiro 6 de Julho de 08 PROJETO DE EXTENSÃO Resoluções de Problemas de Aálise Real I 5º Ecotro/Parte I: Limites de Fuções 5. O Limite de uma Fução

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,... Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

Considerações finais

Considerações finais Cosiderações fiais Bases Matemáticas Defiições prelimiares Defiição 1 Dizemos que y é uma cota superior para um cojuto X se, para todo x X é, verdade que y x. Exemplo 1 os úmeros 2, 3, π e quaisquer outros

Leia mais

x 1 + x x x = lim x x x 2 = lim x x = lim lim x x 2 limx x Exercício 3

x 1 + x x x = lim x x x 2 = lim x x = lim lim x x 2 limx x Exercício 3 Exercício Item p Esboço do algoritmo. É o seguite:. Fatorar a maior potêcia do umerador e do deomiador 2. Rearrajar a expressão. 3. Cocluir. Implemetação. Vejamos a implemetação. x + 3 x lim x x 2 + 3

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 miutos Data: Cadero (é permitido o uso de calculadora) Na resposta aos ites de escolha múltipla, selecioe a opção correta. Escreva, a folha de respostas,

Leia mais

11 Aplicações da Integral

11 Aplicações da Integral Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos

Leia mais

FUNÇÕES CONTÍNUAS Onofre Campos

FUNÇÕES CONTÍNUAS Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL III SEMANA OLÍMPICA Salvador, 19 a 26 de jaeiro de 2001 1. INTRODUÇÃO FUNÇÕES CONTÍNUAS Oofre Campos oofrecampos@bol.com.br Vamos estudar aqui uma ova classe de

Leia mais

Aula 4 - Desigualdades I

Aula 4 - Desigualdades I Murilo Vascocelos Adrade 7 de Fevereiro de 05 Itrodução A partir de agora partiremos para técicas meos gerais de resoluções de problemas. Etrado o mudo da álgebra, começamos com desigualdades. A razão

Leia mais

Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório

Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório Uiversidade Federal de Lavras Departameto de Estatística Prof. Daiel Furtado Ferreira 1 a Aula Prática Técicas de somatório Notação e propriedades: 1) Variáveis e ídices: o símbolo x j (leia x ídice j)

Leia mais

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição;

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição; CÁLCULO I Prof Edilso Neri Júior Prof Adré Almeida Aula o 9: A Itegral de Riema Objetivos da Aula Deir a itegral de Riema; Exibir o cálculo de algumas itegrais utilizado a deição; Apresetar fuções que

Leia mais

Instituto de Matemática - UFRJ Análise 1 - MAA Paulo Amorim Lista 2

Instituto de Matemática - UFRJ Análise 1 - MAA Paulo Amorim Lista 2 Istituto de Matemática - UFRJ Lista. Sejam (x ), (y ) sequêcias covergetes, com x y,. Mostre que se tem lim x lim y. Sabemos das aulas teóricas que se uma sequêcia z verifica z 0, etão lim z 0 (caso exista).

Leia mais

Desigualdades b n b ) n ( a

Desigualdades b n b ) n ( a Polos Olímpicos de Treiameto Curso de Álgebra - Nível 3 Prof Atoio Camiha Aula 2 Desigualdades 2 Esta aula é devotada ao estudo de outras desigualdades elemetares importates Para saber mais sobre o material

Leia mais

Desigualdades Matemáticas e Aplicações

Desigualdades Matemáticas e Aplicações Uiversidade Estadual Paulista Júlio de Mesquita Filho Istituto de Geociêcias e Ciêcias Exatas Campus de Rio Claro Desigualdades Matemáticas e Aplicações Rebeca Cristia Boelli Dissertação apresetada ao

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A º Teste º Ao de escolaridade Versão Nome: Nº Turma: Professor: José Tioco 9//8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

UMA INTRODUÇÃO À TEORIA DE PONTOS CRÍTICOS

UMA INTRODUÇÃO À TEORIA DE PONTOS CRÍTICOS UMA INTRODUÇÃO À TEORIA DE PONTOS CRÍTICOS INTRODUÇÃO Carlos Herique Togo e Atôio Carlos Nogueira Hoje em dia, um dos mais produtivos e atraetes ramos da Matemática é a Teoria de Sigularidades A Teoria

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A º Teste º Ao de escolaridade Versão Nome: Nº Turma: Professor: José Tioco 9//8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

Números primos, números compostos e o Teorema Fundamental da Aritmética

Números primos, números compostos e o Teorema Fundamental da Aritmética Polos Olímpicos de Treiameto Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 4 Números primos, úmeros compostos e o Teorema Fudametal da Aritmética 1 O Teorema Fudametal da Aritmética

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b, 0 y f x Isso sigifica que S, ilustrada

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as ustificações

Leia mais

CO-SENOS EXPRESSÁVEIS COM RADICAIS REAIS

CO-SENOS EXPRESSÁVEIS COM RADICAIS REAIS CO-SENOS EXPRESSÁVEIS COM RADICAIS REAIS Rafael Afoso Barbosa Bolsista do programa PETMAT - Faculdade de Matemática - Uiversidade Federal de Uberlâdia Atoio Carlos Nogueira Professor Doutor da Faculdade

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática. O NO DE ESOLRIDDE Duração: 90 miutos Data: adero (é permitido o uso de calculadora) Na resposta aos ites de escolha múltipla, selecioe a opção correta. Escreva,

Leia mais

A maneiras. Concluindo, podemos obter

A maneiras. Concluindo, podemos obter Matemática A. o ao TESTE DE AVALIAÇÃO DE MATEMÁTICA.º ANO PROPOSTA DE RESOLUÇÃO. A soma de todos os termos da liha de ordem do triâgulo de Pascal é ; assim, para esta liha, tem-se 96 log 96 log. O elemeto

Leia mais

TESTE DE AVALIAÇÃO GLOBAL MATEMÁTICA A 11.º ANO PROPOSTA DE RESOLUÇÃO. (proposição verdadeira) (proposição verdadeira)

TESTE DE AVALIAÇÃO GLOBAL MATEMÁTICA A 11.º ANO PROPOSTA DE RESOLUÇÃO. (proposição verdadeira) (proposição verdadeira) Matemática A o ao TESTE DE AVALIAÇÃO GLOBAL MATEMÁTICA A º ANO PROPOSTA DE RESOLUÇÃO A circuferêcia tem raio Tomado MN para base do triâgulo, tem-se: altura = 5 cos 6 5 base = si 6 A área do triâgulo é

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta Questão 1 a) O faturameto de uma empresa este ao foi 1% superior ao do ao aterior; oteha o faturameto do ao aterior, saedo que o deste ao foi de R$1.4.,. ) Um comerciate compra calças a um custo de R$6,

Leia mais

( ) ( ) Novo Espaço Matemática A 11.º ano Proposta de Resolução [janeiro ] + = é tangente a uma esfera de centro ( 1, 0, 1)

( ) ( ) Novo Espaço Matemática A 11.º ano Proposta de Resolução [janeiro ] + = é tangente a uma esfera de centro ( 1, 0, 1) Novo Espaço Matemática A º ao Proposta de Resolução [jaeiro - 08] Seja CA = a CADERNO (É permitido o uso de calculadora gráfica) CA AM = 7, 5 CA AM cos 0 = 7, 5 a a = a = 7, 5 89 ( ) Como a > 0, tem-se:

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento 5 Nível 3

XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento 5 Nível 3 UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treiameto 5

Leia mais

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes: Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

Aula 16. Integração Numérica

Aula 16. Integração Numérica CÁLCULO NUMÉRICO Aula 6 Itegração Numérica Itegração Numérica Aula 6 Itegração Numérica Cálculo Numérico 3/4 Itegração Numérica Em determiadas situações, itegrais são diíceis, ou mesmo impossíveis de se

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

2Parte. Soluções das Fichas de trabalho. FICHa De trabalho 1 Resolução de triângulos

2Parte. Soluções das Fichas de trabalho. FICHa De trabalho 1 Resolução de triângulos Soluções das FICHa De trabalho Resolução de triâgulos Aretâgulo 9 = A 0 68. 0, círculo. a =,. ta a =. 78 m a) V A.,7 ; B U., e a. 8,9 cm b) B U. 99, ; C V.,6 e b.,8 cm ou B U = 0,6 ; C V., e b.,8 cm c)

Leia mais

Universidade Federal Fluminense - UFF-RJ

Universidade Federal Fluminense - UFF-RJ Aotações sobre somatórios Rodrigo Carlos Silva de Lima Uiversidade Federal Flumiese - UFF-RJ rodrigouffmath@gmailcom Sumário Somatórios 3 Somatórios e úmeros complexos 3 O truque de Gauss para somatórios

Leia mais

(def) (def) (T é contração) (T é contração)

(def) (def) (T é contração) (T é contração) CAPÍTULO 5 Exercícios 5 (def) (T é cotração) a) aa Ta ( ) Ta ( 0) aa0, 0 Portato, a a aa0 (def) (def) (T é cotração) b) a3a Ta ( ) Ta ( ) TTa ( ( ) TTa ( ( 0)) (T é cotração) Ta ( ) Ta ( ) 0 aa0 Portato,

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se

Leia mais

CPV O cursinho que mais aprova na FGV

CPV O cursinho que mais aprova na FGV O cursiho que mais aprova a FGV FGV ecoomia a Fase 0/dezembro/00 MATEMÁTICA 0. Se P é 0% de Q, Q é 0% de R e S é 0% de R, etão P S é igual a: 0 c 0. Dado um petágoo regular ABCDE, costrói-se uma circuferêcia

Leia mais

Elementos de Matemática

Elementos de Matemática Elemetos de Matemática Números Complexos e Biomiais: Exercícios - 2007 Versão compilada o dia de Outubro de 2007. Departameto de Matemática - UEL Prof. Ulysses Sodré: ulysses(auel(ptbr Matemática Essecial:

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual

Leia mais

O Teorema Fundamental da Aritm etica

O Teorema Fundamental da Aritm etica 8 O Teorema Fudametal da Aritm etica Vimos, o cap ³tulo 5, o teorema 5.1, que estabelece que os primos positivos s~ao os blocos usados para costruir, atrav es de produtos, todos os iteiros positivos maiores

Leia mais

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim

Leia mais

Induzindo a um bom entendimento do Princípio da Indução Finita

Induzindo a um bom entendimento do Princípio da Indução Finita Iduzido a um bom etedimeto do Pricípio da Idução Fiita Jamil Ferreira (Apresetado a VI Ecotro Capixaba de Educação Matemática e utilizado como otas de aula para disciplias itrodutórias do curso de matemática)

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 miutos Data: CADERNO I (60 miutos com calculadora). Cosidere um plao em que está fixado um referecial ortoormado xoy, os vetores

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Uiversidade Federal do Rio de Jaeiro Istituto de Matemática Departameto de Matemática Disciplia: Cálculo Diferecial e Itegral IV Uidades: Escola Politécica e Escola de Quimica Código: MAC 248 Turmas: Egeharias

Leia mais

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia. 6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

Estudo da Função Exponencial e Função Logarítmica

Estudo da Função Exponencial e Função Logarítmica Istituto Muicipal de Esio Superior de Cataduva SP Curso de Liceciatura em Matemática 3º ao Prática de Esio da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da Fução Expoecial

Leia mais

QUESTÕES OBJETIVAS., definida por f ( x) b,

QUESTÕES OBJETIVAS., definida por f ( x) b, 9) Cosidere uma fução f : uma progressão: a) aritmética decrescete. b) geométrica decrescete. c) aritmética crescete. d) geométrica crescete. e) costate. QUESTÕES OBJETIVAS x, defiida por f ( x) b, com

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros 3. Poliômios Defiição: Um poliômio ou fução poliomial P, a variável x, é toda expressão do tipo: P(x)=a x + a x +... a x + ax + a0, ode IN, a i, i = 0,,..., são úmeros reais chamados coeficietes e as parcelas

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

Provas de Matemática Elementar - EAD. Período

Provas de Matemática Elementar - EAD. Período Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova

Leia mais

Proposta de Exame de Matemática A 12.º ano

Proposta de Exame de Matemática A 12.º ano Proposta de Eame de Matemática A 1.º ao Nome da Escola Ao letivo 0-0 Matemática A 1.º ao Nome do Aluo Turma N.º Data Professor - - 0 GRUP I Na resposta aos ites deste grupo, selecioe a opção correta. Escreva,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

INTEGRAÇÃO NUMÉRICA. b a

INTEGRAÇÃO NUMÉRICA. b a INTEGRAÇÃO NUMÉRICA No cálculo, a itegral de uma ução oi criada origialmete para determiar a área sob uma curva o plao cartesiao. Ela também surge aturalmete em dezeas de problemas de Física, como por

Leia mais

Séries de Fourier AM3D. Generalidades sobre funções periódicas

Séries de Fourier AM3D. Generalidades sobre funções periódicas 11 1 Séries de Fourier AM3D Geeralidades sobre fuções periódicas Defiição 1 Seja f uma fução da variável real. Diz-se que f é periódica de período T > se x D f, f(x+t = f(x. Exemplo As fuções seo e co-seo

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Em um paralelepípedo retâgulo,

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS Istituto Superior Técico Departameto de Matemática Secção de Álgebra e Aálise CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 009/10 7 a FICHA DE EXERCÍCIOS I. Poliómio e Teorema de Taylor. 1) Determie

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, o

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, ABCD

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 O poliômio p( ) 5 04 +

Leia mais

ESCOLA BÁSICA DE ALFORNELOS

ESCOLA BÁSICA DE ALFORNELOS ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r

Leia mais

Matemática E Extensivo V. 1

Matemática E Extensivo V. 1 Extesivo V. 0) a) r b) r c) r / d) r 7 0) A 0) B P.A. 7,,,... r a + ( ). a +. + 69 a 5 P.A. (r, r, r ) r ( r + r) 6r r r r 70 Exercícios 05) a 0 98 a a a 06) E 07) B 08) B 7 0 0; 8? P.A. ( 7, 65, 58,...)

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

A desigualdade de Jensen

A desigualdade de Jensen A desiguadade de Jese Emaue Careiro - emauec@baydeet.com.br 5 de março de 004 Preimiares de Cácuo Coheceremos este capítuo uma das mais poderosas armas para o combate aos probemas de oimpíada: a desiguadade

Leia mais

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais.

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais. Séries de Fourier As séries de Fourier são séries cujos termos são fuções siusoidais. Importâcia prática: uma fução periódica (em codições bastate gerais) pode ser represetada por uma série de Fourier;

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

( α ) tan. Máximo do Aluno: Rumo ao Exame! θ <, portanto, 24 x e tan52º = h x. Teste de avaliação 1. tan 36º h. Págs. 3 e 4. Assim, resulta que: = = <

( α ) tan. Máximo do Aluno: Rumo ao Exame! θ <, portanto, 24 x e tan52º = h x. Teste de avaliação 1. tan 36º h. Págs. 3 e 4. Assim, resulta que: = = < Máimo do Aluo: Rumo ao Eame! Teste de avaliação A { R : ( ) } < A R : ta < A R : ta < Págs e A R : k, < A R : k, < A R : k, < A R : k, < A, 7 7 cos θ cos θ cos θ 6 cos θ cosθ cosθ No etato, θ,, pelo que

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais Tarefa º. Desta figura, do trabalho da Olívia e da Susaa, retire duas sequêcias e imagie o processo

Leia mais

TESTE DE AVALIAÇÃO GLOBAL - MATEMÁTICA A 11.º ANO DURAÇÃO DO TESTE: 90 MINUTOS GRUPO I

TESTE DE AVALIAÇÃO GLOBAL - MATEMÁTICA A 11.º ANO DURAÇÃO DO TESTE: 90 MINUTOS GRUPO I TESTE DE AVALIAÇÃO GLOBAL - MATEMÁTICA A 11º ANO DURAÇÃO DO TESTE: 90 MINUTOS GRUPO I Os cico ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções, das quais só uma está

Leia mais

ESCOLA ONLINE DE CIÊNCIAS FORMAIS CURSO DE INTRODUÇÃO À LÓGICA MATEMÁTICA (3) MÉTODO AXIOMÁTICO E TEORIAS FORMAIS AULA 10 VERDADE DE TARSKI (PARTE 1)

ESCOLA ONLINE DE CIÊNCIAS FORMAIS CURSO DE INTRODUÇÃO À LÓGICA MATEMÁTICA (3) MÉTODO AXIOMÁTICO E TEORIAS FORMAIS AULA 10 VERDADE DE TARSKI (PARTE 1) AULA 10 VERDADE DE TARSKI (PARTE 1) Iterpretação Uma iterpretação I de uma liguagem de primeira ordem cosiste em: Um domíio D de iterpretação; Para cada costate idividual, atribuímos como seu sigificado

Leia mais

Aula 3 : Somatórios & PIF

Aula 3 : Somatórios & PIF Aula 3 : Somatórios & PIF Somatório: Somatório é um operador matemático que os permite represetar facilmete somas de um grade úmero de parcelas É represetado pela letra maiúscula do alfabeto grego sigma

Leia mais

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 0 Profa Maria Atôia Gouveia 6 A figura represeta um cabo de aço preso as etremidades de duas hastes de mesma altura h em relação a uma plataforma horizotal A represetação

Leia mais

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central. Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Análise Matemática I 2 o Exame

Análise Matemática I 2 o Exame Aálise Matemática I 2 o Exame Campus da Alameda LEC, LET, LEN, LEM, LEMat, LEGM 29 de Jaeiro de 2003, 3 horas Apresete todos os cálculos e justificações relevates I. Cosidere dois subcojutos de R, A e

Leia mais

O TEOREMA ERGÓDICO DE BIRKHOFF

O TEOREMA ERGÓDICO DE BIRKHOFF O TEOREMA ERGÓDICO DE BIRKHOFF BRUNO SANTIAGO Resumo. Neste artigo expositório discutiremos a prova clássica do teorema ergódico de Birkhoff, via o teorema ergódico maximal. Buscaremos explorar os sigificados

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

ASSOCIANDO UM POLINÔMIO A EXPRESSÕES ALGÉBRICAS E TRIGONOMÉTRICAS Marcílio Miranda, IFRN (Caicó RN)

ASSOCIANDO UM POLINÔMIO A EXPRESSÕES ALGÉBRICAS E TRIGONOMÉTRICAS Marcílio Miranda, IFRN (Caicó RN) ASSOCIANDO UM POLINÔMIO A EXPRESSÕES ALGÉBRICAS E TRIGONOMÉTRICAS Marcílio Mirada, IFRN (Caicó RN) Nível Itermediário O objetivo deste artigo é mostrar uma técica que pode ser bastate útil a hora de resolver

Leia mais

Ou seja, em que o caso de igualdade é quando todos são iguais (ou semelhantes). n n n. a 1 a 2...a n. α M(α) = 1 + a α a α n n

Ou seja, em que o caso de igualdade é quando todos são iguais (ou semelhantes). n n n. a 1 a 2...a n. α M(α) = 1 + a α a α n n Desigualdades As desigualdades têm mudado um pouco de cara os últimos aos. O que eram aplicações aparetemete aleatórias das desigualdades cohecidas virou um mote de desigualdades com ovas ideias, para

Leia mais

Construção do anel de polinômios em uma indeterminada utilizando módulos

Construção do anel de polinômios em uma indeterminada utilizando módulos Costrução do ael de poliômios em uma idetermiada utilizado módulos Costructio of the rig of polyomials i oe idetermiate usig modules ISSN 2316-9664 Volume 12, jul. 2018 Christia José Satos Goçalves Uiversidade

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ao Versão Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para um resultado, ão

Leia mais

Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach

Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach Sobre a ecessidade das hipóteses o Teorema do Poto Fio de Baach Marcelo Lopes Vieira Valdair Bofim Itrodução: O Teorema do Poto Fio de Baach é crucial a demostração de vários resultados importates da Matemática

Leia mais