A Equação da Membrana

Tamanho: px
Começar a partir da página:

Download "A Equação da Membrana"

Transcrição

1 A Equação da Mebrana Biofísica II FFCLRP USP Prof. Antônio Roque Aula 17 Vaos considerar aqui ua aproxiação e que a célula nervosa é isopotencial, ou seja, e que o seu potencial de ebrana não varia ao longo da ebrana. Neste caso, podeos desprezar a estrutura espacial da célula e tratá-la coo u ponto. A ebrana coo u capacitor A ebrana neuronal é forada por duas caadas de lipídeos que separa os eios condutores intra e extracelular por ua fina caada isolante. Portanto, a ebrana neuronal atua coo u capacitor (veja a figura abaixo). A diferença de potencial entre as placas do capacitor é a voltage através da ebrana, V = V intra V extra. A relação entre a voltage V estabelecida entre as placas de u capacitor quando ua quantidade de carga Q é distribuída ao longo de suas placas é dada pela capacitância C: Q = CV. 1

2 Quando a voltage V varia no tepo, há ua variação na quantidade de carga Q arazenada dos dois lados da ebrana. Essa variação teporal de Q corresponde a ua corrente (I C = dq/dt) que flui para/ou das placas do capacitor, carregando-o ou descarregando-o. E teros da equação anterior, a corrente I C é dada por: I C dv ( t) = C. (1) dt É iportante notar que nunca existe u oviento de cargas através da ebrana isolante. O que ocorre é ua redistribuição de cargas nos dois lados da ebrana causada pela corrente I C que flui pelo resto do circuito. A Resistência da Mebrana: As proteínas que cruza a ebrana de u neurônio atua coo poros, ou canais iônicos, por onde corrente elétrica (íons) pode passar (íons entrando ou saindo). Ua ilustração disso é dada na figura abaixo: 2

3 Cada canal iônico (seletivo a ua dada espécie iônica) pode ser odelado por u resistor ôhico r colocado e paralelo co o capacitor que representa a ebrana (veja a figura abaixo). Segundo esta representação, a corrente iônica através de u canal pode ser escrita e teros da lei de Oh: I = V r. Esta equação pode ser reescrita e teros da condutância g do canal, coo é ais cou e neurofisiologia: I = gv. A condutância de u único canal iônico funciona coo u eleento binário, tendo valor nulo (g = 0) se o canal estiver fechado ou não nulo (= g) se o canal estiver aberto. Se o canal estiver aberto, os íons para os quais o canal é seletivo passarão através dele por difusão. Por exeplo, se o canal for u canal de K + haverá u fluxo de íons de potássio de dentro para fora da célula, pois há ua aior concentração de íons K + dentro da célula do que fora dela. 3

4 Por outro lado, se o canal for u canal de Na + haverá u fluxo de íons de sódio do exterior para o interior da célula, pois a concentração de íons de sódio é aior fora da célula do que dentro dela. Coo visto nas notas de aula sobre difusão, esse fluxo iônico irá gerar ua separação de cargas entre os dois lados da ebrana que produzirá ua diferença de potencial elétrico através dela. No equilíbrio, o valor dessa diferença de potencial é dado pelo potencial de Nernst do íon. Vaos passar a escrever esse potencial coo E íon, por exeplo, para o potássio teos E K, para o sódio teos E Na, etc: E = íon RT zf [ Íon] ln [ Íon] fora dentro. Pode-se odelar a existência de u potencial elétrico trans-ebrana provocado pelo fluxo iônico através de u canal iônico colocando-se ua bateria e série co a resistência que representa o canal iônico (lebre-se da aula 13). A voltage da bateria é o potencial de Nernst para a espécie iônica à qual o canal é seletivo (veja a figura abaixo). 4

5 Exercício: Observe na figura que o posicionaento das placas da bateria depende do íon específico. Explique porque isso é assi e porque cada bateria ostrada está co o posicionaento das suas placas indicado pela figura. As figuras acia representa u único canal iônico de u dado tipo (de sódio, potássio ou cloreto). Poré, a esa representação pode ser usada para representar todos os canais iônicos de u dado tipo e ua célula isopotencial. Para entender isto, suponha que a célula isopotencial tenha N canais iônicos para u dado tipo de íon. Então, o odelo ôhico para esse conjunto de canais iônicos é o ostrado na figura abaixo. Cada canal iônico é representado por ua resistência e série co ua bateria cuja voltage é o potencial de Nernst do íon e as N resistências estão arranjadas e paralelo na ebrana. O potencial E íon é o eso para cada resistor na figura acia porque o potencial de Nernst de u íon depende apenas da valência do íon, da teperatura e das concentrações do íon dentro e fora da célula. Ele não depende do núero N íon de canais iônicos na célula. 5

6 Coo E íon é o eso para todas as resistências e paralelo na figura acia, podeos representar o sistea de N resistores e paralelo da figura acia pelo sistea equivalente da figura abaixo. Nesta figura, o valor de R é dado pela conhecida fórula para a resistência equivalente para u conjunto de resistores e paralelo: 1 R = ! r 1 r 2 r N 1 r N Esta expressão pode ser reescrita e teros de condutâncias coo: G = g 1 + g 2 +!+ g N 1 + g N. (2) A condutância equivalente para o conjunto de N canais iônicos de u dado íon na ebrana de ua célula isopotencial é dada pela soa das condutâncias dos canais individuais. A partir de agora, vaos passar a usar condutâncias para representar canais iônicos, ao invés de resistências. Desta fora, o conjunto de N canais iônicos incrustados na ebrana de ua célula isopotencial será representado pelo eleento de circuito abaixo. 6

7 A cada instante de tepo t, ua parte dos N canais iônicos de ua dada espécie estará aberta e a outra parte estará fechada. Chaando de n a (t) o núero de canais abertos no tepo t (de aneira que o núero de canais fechados é N n a ), o valor de G íon na figura acia é dado por (note que a condutância de u canal fechado é zero): G íon (t) = g = n a (t)g, canais abertos e t onde 0 n a (t) N. O fato de que a condutância da população de N canais iônicos de ua dada espécie depende de t iplica que o odelo de circuito equivalente para essa população deve ser o da figura abaixo (a seta sobre o síbolo de resistência indica que ela é variável). 7

8 Coo visto na aula 13 (equação 2), só há corrente passando pelos canais iônicos de ua dada espécie se a voltage de ebrana V for diferente do potencial de Nernst dessa espécie iônica. Portanto, a corrente iônica passando pelos canais iônicos de ua dada espécie pode ser escrita coo: I R = V (t) E íon R íon (t) = G íon (t)( V (t) E íon ). (3) Se o potencial de ebrana V for aior que o potencial de Nernst E íon do íon, isto irá iplicar e ua corrente líquida do íon nua dada direção (para dentro ou para fora da célula, dependendo da carga do íon). Se o potencial de ebrana for enor que o potencial de Nernst, haverá ua corrente líquida do íon na direção oposta à do caso anterior. Desta fora, a direção da corrente do íon é invertida quando V passa por E íon. Por este otivo, E íon tabé é chaado de potencial de reversão do íon. Mebranas co canais iônicos cujas condutâncias varia no tepo são chaadas de ativas (por extensão, chaa-se os canais desse tipo de canais ativos e suas respectivas condutâncias de condutâncias ativas). Por outro lado, ebranas co canais iônicos cujas condutâncias não varia no tepo são chaadas de passivas (igualente, teos canais passivos e condutâncias passivas). 8

9 A aior parte das propriedades iportantes dos neurônios coo os potenciais de ação, por exeplo decorre dos efeitos não-lineares causados pelos canais ativos. Poré, vaos deixar o estudo de condutâncias ativas para aulas futuras e, nesta aula, vaos nos restringir ao estudo das propriedades de ua ebrana passiva. No caso de ua ebrana passiva, a equação (3) torna-se: I R = V (t) E íon = G íon ( V (t) E íon ). R (4) íon Cobinando os eleentos de circuito vistos até agora e u único odelo de circuito elétrico para ua ebrana neuronal passiva, teos o circuito abaixo (no caso do desenho, considerou-se apenas os canais de sódio e potássio): 9

10 A Corrente de Mebrana Quando ua corrente I passa pela ebrana, teos ua situação coo a da figura abaixo (vaos definir o sentido positivo de corrente coo sendo de dentro para fora da célula; vaos tabé considerar soente u canal iônico para não sobrecarregar a figura): Aplicando a lei das correntes de Kirchoff ao nó superior dessa figura: I dv ( t) = IC + I R = C + G( V ( t) E).. (5) dt Note que o odelo construído corresponde a u circuito RC. Podeos estiar o tepo característico τ desse circuito para u neurônio típico, coo feito a seguir: Propriedades ateriais da ebrana: 10

11 Desenrolando u pedaço de u neurônio cilíndrico de raio a, veos que a sua ebrana corresponde a u condutor de copriento b e seção reta de área A. Da figura, teos que A = 2πaL. A resistência desse pedaço de ebrana é: onde b R = ρ, A - ρ é a resistividade elétrica do aterial (unidades: Ω.c); - 1/ρ é a condutividade elétrica σ (unidades: S/c). Para ua dada ebrana de espessura b, define-se a sua resistência específica R por: R = ρb (unidades: Ω.c2), ou seja, para se saber a resistência da ebrana de ua célula de área A cuja ebrana te resistência específica R deve-se dividir R por A. Define-se a capacitância específica C de ua ebrana coo a capacitância de ua área unitária (unidades: µf/c2). Ou seja, para se saber a capacitância da ebrana de ua célula de área A deve-se ultiplicar C por A. Alguns valores típicos para essas variáveis são: C = 1 µf/c2; R = 10 kω.c2; G = 1/R = 100 µs/c2; b = 0,1 10 µ. 11

12 Exeplo: Para ua célula esférica co diâetro de 20 icrons, a sua capacitância total é: C = C.A = C.4πr 2 = ( F/c 2 )4π(10x10-4 c) 2 = 12,6 x F = 12,6 pf, e a sua resistência total é: R = R /A = (10x10 3 Ω/c 2 )/(4π.(10x10-4 c) 2 ) = 796 x 10 6 Ω = 796 MΩ. Nota: Cada ebrana possui suas propriedades ateriais, que são independentes da fora da célula. Poré, as propriedades elétricas de ua dada célula depende da sua geoetria. Co os valores de C e de R dados acia, podeos calcular a constante de tepo de ua ebrana neuronal típica: τ = R C = RC =10 s. (6) Note que a constante de tepo da ebrana neuronal não depende do taanho e da geoetria da célula. Injeção de Corrente Externa Vaos supor que se injeta corrente I inj através de u icroeletrodo diretaente dentro da nossa pequena célula isopotencial, coo na figura abaixo. Coo podeos descrever a dinâica do potencial de ebrana V (t) e resposta a essa corrente? 12

13 Usando o odelo de circuito elétrico construído acia, esta situação pode ser representada pela figura a seguir: Por conservação de corrente, a corrente de ebrana deve ser igual à corrente injetada: I = I inj : dv ( t) C G V = dt ( ( t) E) I ( t) + inj. Multiplicando abos os lados por R e usando τ = RC: dv ( t) τ = V ( t) + E RIinj( t). dt + (7) Esta é a chaada equação da ebrana. Ela descreve coo o potencial de ebrana varia no tepo e decorrência de injeção de corrente na célula para o caso de ua ebrana passiva. A equação da ebrana é ua equação diferencial ordinária de prieira orde co coeficientes constantes. Definindo-se ua condição inicial V (0), a solução da equação da ebrana nos dará ua única curva para V versus t. 13

14 Se a corrente injetada for nula, a solução da equação da ebrana é (tente ostrar coo exercício): V τ ( E V (0)) e t ( t) = E. (8) Qualquer que seja a condição inicial, o potencial de ebrana decai exponencialente para E co o tepo. Por isso, podeos chaar E de potencial de ebrana de repouso neste caso. Se V (0) = E, o potencial de ebrana peranece no valor de repouso indefinidaente. Vaos supor agora que a corrente injetada é do tipo degrau: e t = 0 injeta-se u valor de corrente I 0 que é antido constante por u longo tepo. A teoria das equações diferenciais nos ostra que a solução ais geral da equação da ebrana é do tipo: V t t) = v0 e + ( v τ, (9) onde ν 0 e ν 1 depende das condições iniciais. Substituindo esta fora geral de solução na equação da ebrana obteos a igualdade: v E + =. 1 RI 0 Vaos ipor a seguinte condição inicial: V (0) = E. Isto nos dá: E = v. 0 + v1 v0 = RI0 Substituindo ν 0 e ν 1 na solução geral (equação 9) teos: 1 V onde se definiu V = RI 0. t t ( t) = RI 0 1 τ e + E = V 1 τ e E, + (10) 14

15 U longo tepo após a aplicação do degrau de corrente (e antendo-se a corrente constante), o potencial de ebrana atinge o valor assintótico, V ( ) = V + E = RI 0 + V (0). É costue representar o potencial de ebrana de ua célula e relação ao seu potencial de repouso V rep (isto é, redefine-se o zero do potencial de aneira que ele coincida co o potencial de repouso da célula). Fazendo isso, pode-se definir ua nova variável: V = V t) V, (11) ( rep e notando que neste caso V rep = E, a solução da equação da ebrana para o degrau de corrente torna-se: V e = V t τ 1. (12) A constante V = RI 0 é chaada de potencial estacionário, pois é o valor estacionário para o qual a diferença (V (t) V rep ) tende assintóticaente e resposta ao degrau de corrente. E geral, ede-se a corrente injetada e ua célula e teros da área da ebrana que é estiulada, ou seja, ede-se a densidade de corrente (as unidades ais couns são µa/c 2 ). Para ua ebrana típica (R = 10 kω.c 2 ) estiulada co ua corrente de 5 µa/c 2, o potencial estacionário vale: V = RI 0 = (R /A)(J 0.A) = R J 0 = (10 4 Ω.c 2 ).(5 x 10-6 A/c 2 ) = 5 x 10-2 V. 15

16 E ilivolts (a unidade ais usada), deve-se ultiplicar o resultado acia por 10 3 : V = 50 V. Lebrando que V = V V rep, podeos agora escrever o valor do potencial estacionário edido e relação ao potencial externo coo (supondo, por exeplo, que V rep = 70 V): V = V + V rep = 50 V 70 V = 20 V. O gráfico abaixo ostra soluções nuéricas da equação da ebrana para diferentes valores do degrau de corrente injetado (R = 2 MΩ). O gráfico acia ostra as respostas do odelo de ebrana coo u circuito RC para quatro diferentes valores de J 0 (u negativo e três positivos). 16

17 Na escala arbitrária de tepo usada, o estíulo degrau é aplicado e t = 20 e desligado e t = 120. Note que se I 0 for positiva, V = RI 0 será positivo. Isto quer dizer que a célula foi despolarizada (V > V rep ). Já se I 0 for negativa, V será negativo, iplicando que a célula foi hiperpolarizada. Para entender isso, vejaos o diagraa da ebrana a seguir. Ua I 0 positiva corresponde a ua corrente de ebrana positiva, I > 0. Pela convenção adotada, ua corrente de ebrana positiva indica corrente saindo da célula e isto só ocorre quando a ebrana está despolarizada, isto é, o interior da célula está ais positivo do que no repouso. Isto está de acordo co o esperado, pois quando I 0 > 0 o icroeletrodo injeta corrente diretaente no interior da célula, provocando u auento de cargas positivas no interior e despolarizando a célula. Já ua I 0 negativa (I indo de fora para dentro da célula) corresponde a ua retirada de cargas positivas do interior da célula pelo icroeletrodo, hiperpolarizando a célula. 17

A Equação da Membrana

A Equação da Membrana A Equação da Mebrana 5910179 Biofísica II Tura de Biologia FFCLRP USP Prof. Antônio Roque Vaos considerar aqui ua aproxiação e que a célula nervosa é isopotencial, ou seja, e que o seu potencial de ebrana

Leia mais

= C. (1) dt. A Equação da Membrana

= C. (1) dt. A Equação da Membrana A Equação da Mebrana Vaos considerar aqui ua aproxiação e que a célula nervosa é isopotencial, ou seja, e que o seu potencial de ebrana não varia ao longo da ebrana. Neste caso, podeos desprezar a estrutura

Leia mais

Capa do programa da cerimônia de entrega do Prêmio Nobel de Medicina e Fisiologia de 1963.

Capa do programa da cerimônia de entrega do Prêmio Nobel de Medicina e Fisiologia de 1963. O Modelo de Hodgkin-Huxley 5910187 Biofísica II FFCLRP USP Prof. Antônio Roque Aula 18 Os ecanisos iônicos responsáveis pela geração de u potencial de ação fora elucidados pelos trabalhos de Hodgkin e

Leia mais

Elementos de Circuitos Elétricos

Elementos de Circuitos Elétricos Elementos de Circuitos Elétricos Corrente e Lei de Ohm Consideremos um condutor cilíndrico de seção reta de área S. Quando uma corrente flui pelo condutor, cargas se movem e existe um campo elétrico. A

Leia mais

Análise Qualitativa do Modelo de Hodgkin-Huxley

Análise Qualitativa do Modelo de Hodgkin-Huxley Introdução à Neurociência Coputacional (Graduação) Antonio Roque Aula 13 Análise Qualitativa do Modelo de Hodgkin-Huxley Revisão do Modelo de Hodgkin-Huxley O odelo de Hodgkin-Huxley para o potencial de

Leia mais

comprimento do fio: L; carga do fio: Q.

comprimento do fio: L; carga do fio: Q. www.fisicaexe.co.br Ua carga Q está distribuída uniforeente ao longo de u fio reto de copriento. Deterinar o vetor capo elétrico nos pontos situados sobre a reta perpendicular ao fio e que passa pelo eio

Leia mais

Escala na Biologia. Na natureza, há uma grande variação dos tamanhos dos seres vivos.

Escala na Biologia. Na natureza, há uma grande variação dos tamanhos dos seres vivos. Escala na Biologia Na natureza há ua grande variação dos taanhos dos seres vivos O copriento característico de u ser vivo é definido coo qualquer copriento conveniente para cálculos aproxiados Exeplos:

Leia mais

CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P

CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P 63 APÍTLO 7 DINÂMIA DO MOVIMENTO PLANO DE ORPOS RÍGIDOS - TRABALHO E ENERGIA Neste capítulo será analisada a lei de Newton apresentada na fora de ua integral sobre o deslocaento. Esta fora se baseia nos

Leia mais

Capítulo 15 Oscilações

Capítulo 15 Oscilações Capítulo 15 Oscilações Neste capítulo vaos abordar os seguintes tópicos: Velocidade de deslocaento e aceleração de u oscilador harônico siples Energia de u oscilador harônico siples Exeplos de osciladores

Leia mais

Segunda lista de exercícios

Segunda lista de exercícios Segunda lista de exercícios 3 de abril de 2017 Docente Responsável : Prof. Dr. Antônio C. Roque Monitor: Renan Oliveira Shioura Os exercícios desta lista deve ser resolvidos e Matlab. Para a criação dos

Leia mais

Capítulo 10. Excitação Senoidal e Fasores

Capítulo 10. Excitação Senoidal e Fasores Capítulo 0 Excitação Senoidal e Fasores 0. Propriedades das Senóides: Onda senoidal: ( t) sen( t) v ω Aplitude Freqüência angular ω [rad/s] - π/ω π/ω t Senóide é ua função periódica: Período: T π/ω Freqüência:

Leia mais

Transporte Iônico e o Potencial de Membrana

Transporte Iônico e o Potencial de Membrana Transporte Iônico e o Potencial de Membrana Até o momento, consideramos apenas o transporte de solutos neutros (sem carga elétrica) através da membrana celular. A partir de agora, vamos passar a estudar

Leia mais

Questão 37. Questão 39. Questão 38. Questão 40. alternativa D. alternativa C. alternativa A. a) 20N. d) 5N. b) 15N. e) 2,5N. c) 10N.

Questão 37. Questão 39. Questão 38. Questão 40. alternativa D. alternativa C. alternativa A. a) 20N. d) 5N. b) 15N. e) 2,5N. c) 10N. Questão 37 a) 0N. d) 5N. b) 15N. e),5n. c) 10N. U corpo parte do repouso e oviento uniforeente acelerado. Sua posição e função do tepo é registrada e ua fita a cada segundo, a partir do prieiro ponto à

Leia mais

PUC-RIO CB-CTC. P3 DE ELETROMAGNETISMO quarta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P3 DE ELETROMAGNETISMO quarta-feira. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P3 DE ELETROMAGNETISMO 7..0 quarta-feira Noe : Assinatura: Matrícula: Tura: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é peritido destacar folhas da prova

Leia mais

Gabarito - FÍSICA - Grupos H e I

Gabarito - FÍSICA - Grupos H e I a QUESTÃO: (,0 pontos) Avaliador Revisor As figuras aaixo ostra duas ondas eletroagnéticas que se propaga do ar para dois ateriais transparentes distintos, da esa espessura d, e continua a se propagar

Leia mais

Aplicações de Equações Diferenciais de Segunda Ordem

Aplicações de Equações Diferenciais de Segunda Ordem Aplicações de Equações Diferenciais de Segunda Orde Fernanda de Menezes Ulgui Filipi Daasceno Vianna Cálculo Diferencial e Integral B Professor Luiz Eduardo Ourique Porto Alegre, outubro de 2003. Escolha

Leia mais

Prof. A.F.Guimarães Questões Eletricidade 5 Corrente Elétrica

Prof. A.F.Guimarães Questões Eletricidade 5 Corrente Elétrica Questão Prof. A.F.Guiarães Questões etricidade 5 Corrente étrica (C MG) a carga +q ove se nua circunferência de raio co ua velocidade escalar v. A intensidade de corrente édia e u ponto da circunferência

Leia mais

Propagação do Potencial de Ação ao Longo do Axônio

Propagação do Potencial de Ação ao Longo do Axônio 5910187 Biofísica II FFCLRP USP Prof. Antônio Roque Aula 1 Propagação do Potencial de Ação ao Longo do Axônio Os experientos originais de Hodgkin e Huxley que os levara ao seu odelo era realizados e condições

Leia mais

Unidade II 3. Ondas mecânicas e

Unidade II 3. Ondas mecânicas e Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE - UERN Pró-Reitoria de Ensino de Graduação PROEG Hoe Page: http://www.uern.br

Leia mais

Valter B. Dantas. Geometria das massas

Valter B. Dantas. Geometria das massas Valter B. Dantas eoetria das assas 6.- Centro de assa s forças infinitesiais, resultantes da atracção da terra, dos eleentos infinitesiais,, 3, etc., são dirigidas para o centro da terra, as por siplificação

Leia mais

Força Magnética ( ) Gabarito: Página 1. F = -k x F = -k (C 0) F = -5 C. II. F tem o mesmo sentido do vetor campo

Força Magnética ( ) Gabarito:  Página 1. F = -k x F = -k (C 0) F = -5 C. II. F tem o mesmo sentido do vetor campo orça Magnética -k x -k (C ) -5 C II Gabarito: O gráfico registra essas forças, e função do deslocaento: Resposta da questão : Coo as partículas estão etrizadas positivaente, a força étrica te o eso sentido

Leia mais

Escoamento Cruzado sobre Cilindros e Tubos Circulares

Escoamento Cruzado sobre Cilindros e Tubos Circulares Exeplo resolvido (Holan 5-7) Ar a 0 o C e 1 at escoa sobre ua placa plana a 35 /s. A placa te 75 c de copriento e é antida a 60ºC. Calcule o fluxo de calor transferido da placa. opriedades avaliadas à

Leia mais

Bioeletrogênese-Origens do potencial de membrana. Prof. Ricardo M. Leão. FMRP-USP

Bioeletrogênese-Origens do potencial de membrana. Prof. Ricardo M. Leão. FMRP-USP Bioeletrogênese-Origens do potencial de membrana Prof. Ricardo M. Leão. FMRP-USP Origens do potencial de repouso Todas as células apresentam uma diferença de potencial elétrico (voltagem) através da membrana.

Leia mais

ANÁLISE DO LUGAR DAS RAÍZES

ANÁLISE DO LUGAR DAS RAÍZES VII- &$3Ì78/ 9,, ANÁLISE DO LUGAR DAS RAÍZES 7.- INTRODUÇÃO O étodo de localização e análise do lugar das raízes é ua fora de se representar graficaente os pólos da função de transferência de u sistea

Leia mais

BC 1519 Circuitos Elétricos e Fotônica

BC 1519 Circuitos Elétricos e Fotônica BC 1519 Circuitos Elétricos e Fotônica Capacitor / Circuito RC Indutor / Circuito RL 2015.1 1 Capacitância Capacitor: bipolo passivo que armazena energia em seu campo elétrico Propriedade: Capacitância

Leia mais

Docente Marília Silva Soares Ano letivo 2012/2013 1

Docente Marília Silva Soares Ano letivo 2012/2013 1 Ciências Físico-quíicas - 9º ano de Unidade 1 EM TRÂNSITO 1 Movientos e suas características 1.1. O que é o oviento 1.2. Grandezas físicas características do oviento 1.3. Tipos de Moviento COMPETÊNCIAS

Leia mais

Eletricidade Aplicada. Aulas Teóricas Prof. Jorge Andrés Cormane Angarita

Eletricidade Aplicada. Aulas Teóricas Prof. Jorge Andrés Cormane Angarita Eletricidade Aplicada Aulas Teóricas Prof. Jorge Andrés Cormane Angarita Conceitos Básicos Eletricidade Aplicada Função Na engenharia é usual que um fenômeno físico seja representado matematicamente através

Leia mais

FATO Medicina. Lista Complementar Física ( Prof.º Elizeu)

FATO Medicina. Lista Complementar Física ( Prof.º Elizeu) FATO Medicina Lista Copleentar Física ( Prof.º Elizeu) 0. (Uerj 07) Pela seção de u condutor etálico subetido a ua tensão elétrica, atravessa 4,0 x 0 8 elétrons e 0 segundos. A intensidade édia da corrente

Leia mais

Capítulo 3 Amperímetros e Voltímetros DC Prof. Fábio Bertequini Leão / Sérgio Kurokawa. Capítulo 3 Amperímetros e Voltímetros DC

Capítulo 3 Amperímetros e Voltímetros DC Prof. Fábio Bertequini Leão / Sérgio Kurokawa. Capítulo 3 Amperímetros e Voltímetros DC Capítulo 3 Aperíetros e Voltíetros DC Prof. Fábio Bertequini Leão / Sérgio Kurokawa Capítulo 3 Aperíetros e Voltíetros DC 3.. Aperíetros DC U galvanôetro, cuja lei de Deflexão Estática (relação entre a

Leia mais

Capacitância C = Q / V [F]

Capacitância C = Q / V [F] Capacitância Na figura abaixo, como exemplo, tem-se duas placas paralelas, feitas de um material condutor e separadas por um espaço vazio. Essas placas estão ligadas a uma fonte de tensão contínua através

Leia mais

A equação de Henri-Michaelis-Menten

A equação de Henri-Michaelis-Menten A equação de Henri-Michaelis-Menten Michaelis e Menten (93) refina a abordage de Henri e propõe u odelo uito seelhante: S cat E + A EA E + P passo lento considerando o prieiro passo suficienteente rápido

Leia mais

A Membrana Neuronal, o Potencial de Membrana e o Potencial de Ação

A Membrana Neuronal, o Potencial de Membrana e o Potencial de Ação A Membrana Neuronal, o Potencial de Membrana e o Potencial de Ação Nesta aula, vamos deixar de lado a abordagem histórica e fazer uma apresentação do ponto de vista moderno sobre a membrana neuronal e

Leia mais

Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema

Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema Um elemento pode ser ativo (capaz de gerar energia), passivo (apenas dissipam

Leia mais

UNISA MEDICINA 2014 UNIVERSIDADE DE SANTO AMARO

UNISA MEDICINA 2014 UNIVERSIDADE DE SANTO AMARO UNISA MEDIINA 2014 UNIVERSIDADE DE SANTO AMARO ONHEIMENTOS GERAIS 50. A vida no planeta Terra está baseada e dois eleentos essenciais. U deles está presente e todos os copostos orgânicos e é versátil,

Leia mais

UNISANTA FACULDADE DE ENGENHARIA QUÍMICA 1/5 DISCIPLINA TERMODINÂMICA QUÍMICA I 1 O Semestre de 2002 PROVA P1

UNISANTA FACULDADE DE ENGENHARIA QUÍMICA 1/5 DISCIPLINA TERMODINÂMICA QUÍMICA I 1 O Semestre de 2002 PROVA P1 UNISANTA FACULDADE DE ENGENHARIA QUÍMICA /5 DISCIPLINA TERMODINÂMICA QUÍMICA I O Seestre de 00 PROVA P Atenção:. Consultar apenas o caderno de Tabelas, Diagraas e Fórulas fornecido juntaente co a prova,

Leia mais

Centro de gravidade e centro de massa

Centro de gravidade e centro de massa FÍSI - INÂMI - ENTO E GVIE E ENTO E MSS entro de gravidade e centro de assa entro de gravidade de u sistea é o ponto onde o oento resultante é nulo. M + M 0 P d - P d 0 P d P d P ( - ) P ( - ) P - P P

Leia mais

O PROBLEMA DO MOVIMENTO

O PROBLEMA DO MOVIMENTO O PROBLEMA DO MOVIMENTO O problea do oiento pode se resuir na deterinação da elocidade e da direção de u objeto óel, nu deterinado instante. Você já está acostuado a deterinar a elocidade édia de u objeto

Leia mais

TRABALHO Nº 5 ANÉIS DE NEWTON

TRABALHO Nº 5 ANÉIS DE NEWTON TRABALHO Nº 5 ANÉIS DE NEWTON Neste trabalho vai procurar ilustrar-se u arranjo geoétrico usado para a obtenção de franjas de interferência que ficou conhecido por anéis de Newton. Pretende-se co esses

Leia mais

Teoria do Consumidor: Equilíbrio e demanda. Roberto Guena de Oliveira 18 de Março de 2017

Teoria do Consumidor: Equilíbrio e demanda. Roberto Guena de Oliveira 18 de Março de 2017 Teoria do Consuidor: Equilíbrio e deanda Roberto Guena de Oliveira 18 de Março de 2017 1 Estrutura geral da aula Parte 1: Restrição orçaentária Parte 2: Equilíbrio Parte 3: Deanda 2 Parte I Restrição orçaentária

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. Segunda Chamada (SC) 1/8/2016

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. Segunda Chamada (SC) 1/8/2016 UNIVESIDADE FEDEAL DO IO DE JANEIO INSTITUTO DE FÍSICA Fisica I 2016/1 Segunda Chaada (SC) 1/8/2016 VESÃO: SC As questões discursivas deve ser justificadas! Seja claro e organizado. Múltipla escolha (6

Leia mais

FORMAS DE ONDA E FREQÜÊNCIA

FORMAS DE ONDA E FREQÜÊNCIA A1 FORMAS DE ONDA E FREQÜÊNCIA Ua fora de onda periódica é ua fora de onda repetitiva, isto é, aquela que se repete após intervalos de tepo dados. A fora de onda não precisa ser senoidal para ser repetitiva;

Leia mais

Quantidade de movimento ou momento linear Sistemas materiais

Quantidade de movimento ou momento linear Sistemas materiais Quantidade de oiento ou oento linear Sisteas ateriais Nota: s fotografias assinaladas co fora retiradas do liro. ello, C. Portela e H. Caldeira Ritos e Mudança, Porto editora. s restantes são retiradas

Leia mais

Introdução à Neurociência Computacional

Introdução à Neurociência Computacional Introdução à Neurociência Computacional Antonio C. Roque USP, Ribeirão Preto, SP Aula 3 A base iônica do potencial de ação Qual o mecanismo responsável pela geração de um potencial de ação? O mecanismo

Leia mais

Secção 3. Aplicações das equações diferenciais de primeira ordem

Secção 3. Aplicações das equações diferenciais de primeira ordem 3 Aplicações das equações diferenciais de prieira orde Secção 3 Aplicações das equações diferenciais de prieira orde (Farlow: Sec 23 a 26) hegou a altura de ilustrar a utilidade prática das equações diferenciais

Leia mais

SISTEMAS BINÁRIOS ESTELARES

SISTEMAS BINÁRIOS ESTELARES SISTEMAS BINÁRIOS ESTELARES A aioria das estrelas encontra-se e sisteas duplos ou últiplos, estando fisicaente associadas entre si, sob influência de ua ação gravitacional útua. Através do estudo dos sisteas

Leia mais

Matemática Básica: Revisão 2014.1 www.damasceno.info Prof.: Luiz Gonzaga Damasceno

Matemática Básica: Revisão 2014.1 www.damasceno.info Prof.: Luiz Gonzaga Damasceno Aula 1. Introdução Hoje e dia teos a educação presencial, sei-presencial e educação a distância. A presencial é a dos cursos regulares, onde professores e alunos se encontra sepre nu local, chaado sala

Leia mais

ONDAS l. 3. Ondas de matéria Associadas a elétrons, prótons e outras partículas elementares, e mesmo com átomos e moléculas.

ONDAS l. 3. Ondas de matéria Associadas a elétrons, prótons e outras partículas elementares, e mesmo com átomos e moléculas. ONDAS I Cap 16: Ondas I - Prof. Wladiir 1 ONDAS l 16.1 Introdução Ondas são perturbações que se propaga transportando energia. Desta fora ua úsica a iage nua tela de tv a counicações utilizando celulares

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departaento de Estudos Básicos e Instruentais 5 Oscilações Física II Ferreira 1 ÍNDICE 1. Alguas Oscilações;. Moviento Harônico Siples (MHS); 3. Pendulo Siples;

Leia mais

Matemática D Extensivo V. 5

Matemática D Extensivo V. 5 ateática D Extensivo V. 5 Exercícios 01 B I. Falso. Pois duas retas deterina u plano quando são concorrentes ou paralelas e distintas. II. Falso. Pois duas retas pode ser perpendiculares ou paralelas a

Leia mais

Movimentos oscilatórios

Movimentos oscilatórios 30--00 Movientos oscilatórios Prof. Luís C. Perna Moviento Periódico U oviento periódico é u oviento e que u corpo: Percorre repetidaente a esa trajectória. Passa pela esa posição, co a esa velocidade

Leia mais

Escola Politécnica FGE GABARITO DA P2 17 de maio de 2007

Escola Politécnica FGE GABARITO DA P2 17 de maio de 2007 P2 Física III Escola Politécnica - 2007 FGE 2203 - GABARITO DA P2 17 de maio de 2007 Questão 1 Um capacitor plano é constituido por duas placas planas paralelas de área A, separadas por uma distância d.

Leia mais

F-128 Física Geral I. Aula Exploratória 06 Unicamp IFGW

F-128 Física Geral I. Aula Exploratória 06 Unicamp IFGW F-18 Física Geral I Aula Exploratória 06 Unicap IFGW Atrito estático e atrito cinético Ausência de forças horizontais f e F v = 0 F= fe A força de atrito estático é áxia na iinência de deslizaento. r v

Leia mais

Circuitos elétricos. Prof. Fábio de Oliveira Borges

Circuitos elétricos. Prof. Fábio de Oliveira Borges Circuitos elétricos Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php

Leia mais

Corrente e Resistência

Corrente e Resistência Capítulo 5 Corrente e Resistência 5.1 Corrente Elétrica A corrente elétrica i em um fio condutor é definida como a carga que atravessa a área do fio por unidade de tempo: Unidade de corrente: Ampere [A]

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geoetria Analítica e Álgebra Linear Ale Nogueira Brasil Faculdade de Engenharia Mecânica Universidade de Itaúna http://www.alebrasil.eng.br [email protected] 0 de fevereiro de 00 Geoetria Analítica e Álgebra

Leia mais

AULA 07 CORRENTE ELÉTRICA E LEI DE OHM. Eletromagnetismo - Instituto de Pesquisas Científicas

AULA 07 CORRENTE ELÉTRICA E LEI DE OHM. Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO AULA 07 CORRENTE ELÉTRICA E LEI DE OHM A corrente elétrica pode ser definida como o movimento ordenado de cargas elétricas. O caminho feito pelas cargas elétricas é chamado de circuito.

Leia mais

Física III Escola Politécnica GABARITO DA P2 17 de maio de 2012

Física III Escola Politécnica GABARITO DA P2 17 de maio de 2012 Física III - 4320301 Escola Politécnica - 2012 GABARITO DA P2 17 de maio de 2012 Questão 1 Um capacitor de placas paralelas e área A, possui o espaço entre as placas preenchido por materiaisdielétricos

Leia mais

Aula-6 Corrente e resistência. Curso de Física Geral F o semestre, 2008

Aula-6 Corrente e resistência. Curso de Física Geral F o semestre, 2008 Aula-6 Corrente e resistência Curso de Física Geral F-328 1 o semestre, 2008 Corrente elétrica e resistência a) A condição para que exista uma corrente elétrica através de um condutor é que se estabeleça

Leia mais

Teorema Chinês dos Restos

Teorema Chinês dos Restos Teorea Chinês dos Restos Sauel Barbosa 22 de arço de 2006 Teorea 1. (Bézout) Seja a e b inteiros não nulos e d seu dc. Então existe inteiros x e y tais que d = ax + by. Se a e b são positivos podeos escolher

Leia mais

Movimento oscilatório forçado

Movimento oscilatório forçado Moviento oscilatório forçado U otor vibra co ua frequência de ω ext 1 rad s 1 e está ontado nua platafora co u aortecedor. O otor te ua assa 5 kg e a ola do aortecedor te ua constante elástica k 1 4 N

Leia mais

Onde estão os doces? Soluções para o Problema da Rua Encantada

Onde estão os doces? Soluções para o Problema da Rua Encantada Onde estão os doces? Soluções para o Problea da Rua Encantada Rossana Baptista Queiroz 1 1 Pontifícia Universidade Católica do Rio Grande do Sul (PUC-RS) Prograa de Pós-Graduação e Ciência da Coputação

Leia mais

Os Números Racionais e Irracionais. Máximo divisor comum e mínimo múltiplo comum: Critérios de divisibilidade. n e n. m são ditas irredutíveis,

Os Números Racionais e Irracionais. Máximo divisor comum e mínimo múltiplo comum: Critérios de divisibilidade. n e n. m são ditas irredutíveis, 0/0/0 Máio divisor cou e ínio últiplo cou: Dados dois núeros naturais e n, chaareos de aior divisor cou entre n e o núero natural dc (,n) que é otido pelo produto dos fatores couns entre e n. Assi podeos

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS DE AULA Geoetria Analítica e Álgebra Linear Reta e Plano Professor: Lui Fernando Nunes, Dr. Índice Geoetria Analítica e Álgebra Linear ii Estudo da Reta e do Plano... -. A Reta no Espaço... -.. Equação

Leia mais

TD DE FÍSICA 1 Solução das Questões de Cinemática (MRU, MRUV, Queda livre) PROF.: João Vitor

TD DE FÍSICA 1 Solução das Questões de Cinemática (MRU, MRUV, Queda livre) PROF.: João Vitor Soluções Resposta da questão 1: Usando a equação de Torricelli co a = g = 10 /s e ΔS h 0. v v0 g h v 0 10 0 400 v 0 /s. Resposta da questão : a) Dados: d 1 = 1 k = 1.000 ; v = 7, k/h = /s; Δ t in 10s.

Leia mais

FÍSICA (ELETROMAGNETISMO) CORRENTE ELÉTRICA E RESISTÊNCIA

FÍSICA (ELETROMAGNETISMO) CORRENTE ELÉTRICA E RESISTÊNCIA FÍSICA (ELETROMAGNETISMO) CORRENTE ELÉTRICA E RESISTÊNCIA FÍSICA (Eletromagnetismo) Nos capítulos anteriores estudamos as propriedades de cargas em repouso, assunto da eletrostática. A partir deste capítulo

Leia mais

8.18 EXERCÍCIOS pg. 407

8.18 EXERCÍCIOS pg. 407 . EXERCÍCIOS pg.. Encontrar a assa total e o centro de assa de ua barra de c de copriento, se a densidade linear da barra nu ponto P, que dista c da kg b ρ a etreidade esquerda, é ( ) c ( ) d ( ) d.. kg

Leia mais

Reflexão e Refração da luz em superfícies planas

Reflexão e Refração da luz em superfícies planas Nesta prática serão estudados os fenôenos de reflexão e refração da luz e superfícies planas, verificando as leis da óptica geoétrica, que governa tais processos. Serão abordados os princípios fundaentais

Leia mais

Cap. 5 - Corrente, Resistência e Força Eletromotriz

Cap. 5 - Corrente, Resistência e Força Eletromotriz Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 5 - Corrente, Resistência e Força Eletromotriz Prof. Elvis Soares Nesse capítulo, estudaremos a definição de corrente,

Leia mais

Se no terminal b do circuito for conectado um terceiro componente, como na figura abaixo, os resistores R 1 e R 2 não estarão mais em série.

Se no terminal b do circuito for conectado um terceiro componente, como na figura abaixo, os resistores R 1 e R 2 não estarão mais em série. Circuitos em Série Um circuito consiste em um número qualquer de elementos unidos por seus terminais, com pelo menos um caminho fechado através do qual a carga possa fluir. Dois elementos de circuitos

Leia mais

Aula 1a As Leis de Kepler e a Gravitação Newtoniana

Aula 1a As Leis de Kepler e a Gravitação Newtoniana Aula a As Leis de Kepler e a Gravitação Newtoniana Profa. Jane Gregorio-Hete & Prof. Annibal Hete AGA05 Manobras Orbitais AGA05 - Aula a: As Leis de Kepler e gravitação Dinâica: As Três Leis de Newton

Leia mais

Física Geral I. 1º semestre /05. Indique na folha de teste o tipo de prova que está a realizar: A, B ou C

Física Geral I. 1º semestre /05. Indique na folha de teste o tipo de prova que está a realizar: A, B ou C Física Geral I 1º seestre - 2004/05 1 TESTE DE AVALIAÇÃO 2668 - ENSINO DE FÍSICA E QUÍMICA 1487 - OPTOMETRIA E OPTOTÉCNIA - FÍSICA APLICADA 8 de Novebro, 2004 Duração: 2 horas + 30 in tolerância Indique

Leia mais

LEAmb, LEMat, LQ, MEBiol, MEQ. Paulo Pinto ppinto/ 2 GENES LIGADOS AO SEXO 2

LEAmb, LEMat, LQ, MEBiol, MEQ. Paulo Pinto  ppinto/ 2 GENES LIGADOS AO SEXO 2 Instituto Superior Técnico Departaento de Mateática Secção de Álgebra e Análise Notas sobre alguas aplicações de o Seestre 007/008 Álgebra Linear LEAb, LEMat, LQ, MEBiol, MEQ Paulo Pinto http://www.ath.ist.utl.pt/

Leia mais

Respostas Finais Lista 6. Corrente Elétrica e Circuitos de Corrente Contínua ( DC )

Respostas Finais Lista 6. Corrente Elétrica e Circuitos de Corrente Contínua ( DC ) Respostas Finais Lista 6 Corrente Elétrica e Circuitos de Corrente Contínua ( DC ) Q 26.3) Essa diferença esta mais associada à energia entregue à corrente de um circuito por algum tipo de bateria e à

Leia mais

Estime, em MJ, a energia cinética do conjunto, no instante em que o navio se desloca com velocidade igual a 108 km h.

Estime, em MJ, a energia cinética do conjunto, no instante em que o navio se desloca com velocidade igual a 108 km h. Física nos Vestibulares Prof. Ricardo Bonaldo Daroz nálise Diensional 1. (Uerj 016) tualente, o navio ais rápido do undo pode navegar e velocidade superior a 0 k h. E ua de suas viagens, transporta ua

Leia mais

TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS

TE220 DINÂMICA DE FENÔMENOS ONDULATÓRIOS TE0 DINÂMICA DE FENÔMENOS ONDULATÓRIOS Bibliografia: 1. Fundaentos de Física. Vol : Gravitação, Ondas e Terodinâica. 8 va edição. Halliday D., Resnick R. e Walker J. Editora LTC (008). Capítulos 15, 16

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 2º PP - PROF. CARLINHOS - BONS ESTUDOS!

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 2º PP - PROF. CARLINHOS - BONS ESTUDOS! ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 2º PP - PROF. CARLINHOS - BONS ESTUDOS! ASSUNTO: PRISMAS 1) Calcule a área total e o volue de u prisa hexagonal

Leia mais

SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ CENTRO DE PROCESSOS SELETIVOS

SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ CENTRO DE PROCESSOS SELETIVOS SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ CENTRO DE PROCESSOS SELETIVOS CONCURSO PÚBLICO PARA CARGOS DE PROFESSOR DA CARREIRA DO MAGISTÉRIO DO ENSINO BÁSICO TÉCNICO E TECNOLÓGICO EDITAL Nº 295/2016-UFPA,

Leia mais

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como Lei de Gauss REVISÃO DE PRODUTO ESCALAR Antes de iniciarmos o estudo do nosso próximo assunto (lei de Gauss), consideramos importante uma revisão sobre o produto escalar entre dois vetores. O produto escalar

Leia mais

Afinação e Temperamento

Afinação e Temperamento Hidetoshi Arakawa Afinação e Teperaento Teoria e rática Hidetoshi Arakawa 00 Edição do Autor Capinas, Brasil upleento Hidetoshi Arakawa Caixa ostal 0 Capinas, 08-90 [email protected] 00 refácio

Leia mais

Modelagem Matemática de Sistemas

Modelagem Matemática de Sistemas Modelagem Matemática de Sistemas 1. de modelagem com Circuitos Elétricos 2. Sistemática para Obtenção de Equações de Estado pag.1 Teoria de Sistemas Lineares Aula 4 Descrição Matemática de Sistemas Exemplo

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 2º PP - PROF. CARLINHOS - BONS ESTUDOS! ASSUNTO: POLIEDROS

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 2º PP - PROF. CARLINHOS - BONS ESTUDOS! ASSUNTO: POLIEDROS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 2º PP - PROF. CARLINHOS - BONS ESTUDOS! ASSUNTO: POLIEDROS 1) Ache o núero de vértices de arestas e de faces dos

Leia mais