MATEMÁTICA Função do 2º grau

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA Função do 2º grau"

Transcrição

1 MATEMÁTICA Função do º grau Resolução dos eercícios 4, 5, 7, 17, 19 a 6 Série O Pensador Professor Marcelo Gonsalez Badin

2 4. (UFRJ) Oscar arremessa uma bola de basquete cujo centro segue uma trajetória plana 1 8 vertical de equação = + +, na qual os valores de e são dados em metros. 7 7 Oscar acerta o arremesso, e o centro da bola passa pelo centro da cesta, que está a 3 m de altura. Determine a distância do centro da cesta ao eio. 3 1 = = + + (multiplica por 7) = = 0 S = 8 P = 7 = 1 = 7 A distância é de 7 metros

3 5.(Cesgranrio) Uma conta perfurada de um colar é enfiada em um arame fino com o formato da parábola = 6. Do ponto P de coordenadas (4; 10) deia-se a conta deslizar no arame até chegar ao ponto Q de ordenada 6. A distância horizontal percorrida pela conta (diferença entre as abscissas de P e Q) é: a) 1 b) 4 c) 6 d) 3 e) 5 = 6 10 P Q

4 7.(IME) Seja f : IR IR uma função quadrática, tal que f () = a + b +c, com a 0, IR. Sabe-se que 1 = 1 e = 5 são as raízes e que f (1) = 8. a) Determinar a, b e c. b) Calcular f (0) f () = 4 5 As raízes da função são 1 e 5 f (0) = 0 b fi f (0) = = a c) Verificar se f () apresenta máimo ou mínimo, b justificando a resposta = fi b = 4a a f () apresenta mínimo pois sua representação gráfica é c 1 = uma parábola de concavidade voltada para cima (a > 0) a c d) Determinar as coordenadas do ponto etremo. 1 5 = fi c = 5a a O ponto etremo de f () é o vértice da parábola, logo, f () = a 4a 5a cujas coordenadas são: Como f (1) = 8, temos: b v = = a a.1 4a.1 5a = 8 v = f ( v ) = f () = 9 8a = b = 4 a = 1 V = (, 9) c = 5 5 a = 1, b = 4 e c = 5 9

5 17. (UFSCar) A figura representa, em sistemas coordenados com a mesma escala, os gráficos das funções reais f e g, com f() = e g() =. Sabendo que a região poligonal T demarca um trapézio de área igual a 10, o número real k é a) 0,5 Área de trapézio: b) 1 c) d) 1,5 e) (B + b)h 4k 4k k k k (k + 4k ).3k = 10 () 5k.3k = 40 15k 4 = 40 (:15) k 4 = 16 (k > 0) k = 4k

6 19. (Fuvest) Num terreno, na forma de triângulo retângulo com catetos de medidas 0 e 30 metros, deseja-se construir uma casa retangular de dimensões e, como indicado na figura A a) Eprima em função de. ADE ABC 30 30m D B 0m E C 0 = = 0(30 ) (Divide por 10) 3 = (30 ) 3 = 60 (Divide por 3) = 0 3

7 a) 30 A v = 0 A 30m D B v 3 0m vértice b) Para que valores de e de a área ocupada pela casa será máima? E O vértice é ponto de MÁXIMO A =. Usando o resultado do item a, temos: A = 0 A = A é máima para b 0 0 = v = = = = 15 a ( 3) 4 3 C = 15 fi v = para o qual a Área é má. v = Área máima = 0 15 fi = 10 3 Para que a área seja máima, devemos ter = 15m e = 10m

8 0. (FGV-SP) Uma parede de tijolos será usada como um dos lados de um curral retangular. Para os outros lados iremos usar 400 metros de tela de arame, de modo a produzir a área máima. Então, o quociente de um lado pelo outro é: a) 1 b) 0,5 c),5 d) 3 e) 1,5 A v v vértice O vértice é ponto de MÁXIMO + = 400 = 400 v = para o qual a Área é má. v = Área máima A =. A =.(400 ) A = 400 A é máima para = = b 400 = v a ( ) = 100 = 100 fi = 00 Os lados medem 100 e 00. O quociente de um lado pelo outro pode ser ou 0,5

9 1. (PUC-SP-005) Considere que o material usado na confecção de um certo tipo de tapete tem um custo de R$ 40,00. O fabricante pretende colocar cada tapete à venda por reais e, assim, conseguir vender (100 ) tapetes por mês. Nessas condições, para que, mensalmente, seja obtido um lucro máimo, cada tapete deverá ser vendido por A) R$ 55,00 B) R$ 60,00 C) R$ 70,00 D) R$ 75,00 E) R$ 80,00 Preço de custo de cada tapete = 40 Preço de venda de cada tapete = Nº de tapetes vendidos por mês = 100 L = V C L =.(100 ) 40. (100 ) L = L = L é máimo para = = b 140 = v a ( 1) = 70

10 . Ao fretar um ônibus, um grupo de romeiros e uma empresa de transportes combinaram que cada passageiro pagaria R$ 80,00 e mais uma taa de R$ 3,00 por cada lugar desocupado, sendo que no ônibus haveria 50 lugares. a) Quanto a empresa de ônibus receberia se houvesse 50 passageiros? Seja R a receita da empresa de ônibus R = Com 50 passageiros a empresa R = 4000 receberia R$ 4.000,00 b) E se houvesse 44? R = R = R = 431 Com 44 passageiros a empresa receberia R$ 4.31,00

11 c) Com que número de passageiros a companhia teria uma receita máima? Sendo o nº de passageiros, 50 é nº de lugares desocupados R() = (50 ) R() = R() = R é má. para b = v = = = = 38, a ( 3) 3 R , R v v vértice A companhia teria uma receita com 38 passageiros. Obs.: A receita máima seria O vértice é ponto de MÁXIMO v = para o qual R é má. v = valor máimo de R R(38) = = 4408 Com 38 passageiros a companhia receberia R$ 4.408,00

12 3. (Unicamp) Em um pomar em que eistiam 30 laranjeiras produzindo, cada uma, 600 laranjas por ano, foram plantadas n novas laranjeiras. Depois de um certo tempo, constatou-se que, devido à competição por nutrientes do solo, cada laranjeira (tanto nova como velha) estava produzindo 10 laranjas a menos, por ano, por cada nova laranjeira plantada no pomar. Se f(n) é a produção anual do pomar: a) determine a epressão algébrica de f(n); b) determine os valores de n para os quais f(n) = 0; c) quantas novas laranjeiras deveriam ter sido plantadas para que o pomar tenha produção máima? d) qual o valor dessa produção? a) f(n) = (30 + n).(600 10n) f(n) = 10n + 300n b) f(n) = 0 (30 + n).(600 10n) = 0 n = 30 (não convém) n = 60 (Nº de laranjeiras).(produção de cada laranjeira) c) f(n) = 10n + 300n f(n) é máima para n = = 15 ( 10) 15 novas laranjeiras d) A produção máima é f(15) ( ).( ) = = laranjas

13 4. (UFRJ) Um fabricante está lançando a série de mesas Super 4. Os tampos das mesas dessa série são retangulares e têm 4 metros de perímetro. A fórmica usada para revestir o tampo custa R$ 10,00 por metro quadrado. Cada metro de ripa usada para revestir as cabeceiras custa R$ 5,00 e as ripas para as outras duas laterais custam R$ 30,00 por metro. a) Sendo a medida da cabeceira e a medida da lateral, temos + = 4fi = g = g() = 10.( ) ( ) g() = a) Determine o gasto do fabricante para revestir uma mesa dessa série com cabeceira de medida. b) Determine as dimensões da mesa da série Super 4 para a qual o gasto com revestimento é o maior possível. b) g() = g() é máimo para = 10 = 0,5 fi = 0,5 = 1,5 ( 10) As dimensões são 0,5 m (cabeceira) e 1,5 m (lateral)

14 5. Um míssil é lançado do ponto A, a 3 km da origem O e descreve trajetória parabólica dada pela equação = + 6, com 3, como mostra a figura abaio. O teorema de Pitágoras permite calcular a distância de cada ponto da trajetória até a origem (Por eemplo, o ponto B encontra-se a 41 km da origem). A menor de todas as distâncias é de: a) 5 km b) 6 km c) 7 km d) 8 km e) 3 km A -3 (km) Todo ponto da curva é da forma (, + 6 ) d B. 5 d = 41 (km) Pit. d = + ( + 6) d = d = a é mínimo se é mín. se = = 1 1 d mín = ( 1) + ( 1) + 6 = 5 a é mínimo

15 6. (Fuvest) Suponha que um fio suspenso entre duas colunas de mesma altura h, situadas à distância d (ver figura), assuma a forma de uma parábola. Suponha também que: (i) a altura mínima do fio ao solo seja igual a ; d (ii) a altura do fio sobre um ponto no solo que dista de uma das colunas seja igual a Se h = 3 d, então d vale 4 8 a) 14 b) 16 c) 18 d) 0 e) a(d/) + h = h d a + = h ( 4) 4 a.d + 8 = 4h( I ) d/ = a + a(d/4) + = h/ d h a + = ( 16) 16 a.d + 3 = 8h( II ) ( II ) ( I ) 4h = 4 h = 6 3 d 6 8 = ( 8) d = 16 h

Exercícios Propostos

Exercícios Propostos Cursinho: Universidade para Todos Professor: Cirlei Xavier Lista: 5 a Lista de Matemática Aluno (a): Disciplina: Matemática Conteúdo: Equações e Funções Turma: A e B Data: Setembro de 016 01. Resolva 11

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 18 FUNÇÃO DO 2 O GRAU: GRÁFICOS

MATEMÁTICA - 1 o ANO MÓDULO 18 FUNÇÃO DO 2 O GRAU: GRÁFICOS MATEMÁTICA - 1 o ANO MÓDULO 18 FUNÇÃO DO 2 O GRAU: GRÁFICOS y 3 2-1 1 3 v -2 y 1 v -3-6 3 y = 2 + 2 3 = 3 y = -3 2 + 2(3) - 3 y = -6 Vamos precisar atribuir um valor para para encontrarmos um outro ponto.

Leia mais

Prof: Danilo Dacar

Prof: Danilo Dacar Parte A: 1. (Uece 014) Sejam f : R R a função definida por f(x) x x 1, P e Q pontos do gráfico de f tais que o segmento de reta PQ é horizontal e tem comprimento igual a 4 m. A medida da distância do segmento

Leia mais

Lista de Exercícios. a) f(x) = x 2-3x 10 b) f(x) = x 2 x + 12 c) f(x) = x 2 + 4x 4 d) f(x) = 36x x + 1

Lista de Exercícios. a) f(x) = x 2-3x 10 b) f(x) = x 2 x + 12 c) f(x) = x 2 + 4x 4 d) f(x) = 36x x + 1 Lista de Exercícios Calcular os zeros das seguintes funções: a) f(x) x - 3x 0 b) f(x) x x + c) f(x) x + 4x 4 d) f(x) 36x + x + Calcular m para que: a) a função f(x) (m 3)x + 4x 7 seja côncava para cima

Leia mais

Ou seja, D(f) = IR e Im(f) IR.

Ou seja, D(f) = IR e Im(f) IR. MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA-CAMPUS ITAJAÍ Profª Roberta Nara Sodré de Souza Função Quadrática

Leia mais

COLÉGIO MODELO LUIZ EDURADO MAGALHÃES CAMAÇARI BA MATEMÁTICA - 1ª SÉRIE - ENSINO MÉDIO - ANO : 2015 Data: / /2015 III Unidade. Aluno: 1.

COLÉGIO MODELO LUIZ EDURADO MAGALHÃES CAMAÇARI BA MATEMÁTICA - 1ª SÉRIE - ENSINO MÉDIO - ANO : 2015 Data: / /2015 III Unidade. Aluno: 1. COLÉGIO MODELO LUIZ EDURADO MAGALHÃES CAMAÇARI BA MATEMÁTICA - 1ª SÉRIE - ENSINO MÉDIO - ANO : 2015 Professor: Henrique Plínio Função Quadrática Lista 2 Data: / /2015 III Unidade Aluno: 1 Turma: 1º 1.Considere

Leia mais

LISTA 1. a) [57, 60] c) [60, 180[ b) ]58, 116] d) ]57, 178]

LISTA 1. a) [57, 60] c) [60, 180[ b) ]58, 116] d) ]57, 178] LISTA 1 1- Seja n N tal que n dividido por 5 deia resto 3, n dividido por 4 deia resto e n dividido por 3 deia resto 1. Os três primeiros números naturais que satisfazem as condições de n pertencem ao

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 101 - Fundamentos de Matemática I 2012/I 2 a Lista - Funções (Parte I) 1. Dados os conjuntos M = {1, 3, 5} e N

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A - 009. A LISTA DE EXERCÍCIOS a Questão:. Para cada uma das funções seguintes, determine as derivadas indicadas: a) f(u) = u, u() =,

Leia mais

PROFESSOR: JARBAS 4 2 5

PROFESSOR: JARBAS 4 2 5 PROFESSOR: JARBAS Função do 2.º grau Chama-se função quadrática ou função polinomial do 2.º grau, qualquer função f de R em R dada por uma lei da forma f() = a 2 + b + c onde a, b e c são números reais

Leia mais

FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO

FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO FUNÇÃO Introdução ao Cálculo Diferencial I /Mário DEFINIÇÃO Seja D um subconjunto dos reais, não vazio. Definir em D uma função f é eplicitar uma regra que a CADA elemento D associa-se a UM ÚNICO R. Notação

Leia mais

1 a LISTA DE EXERCÍCIOS DE MAT /02/2011 Professores: Rosane (Coordenadora), Allan e Cristiane. = 2x. , determine os valores de x tais que:

1 a LISTA DE EXERCÍCIOS DE MAT /02/2011 Professores: Rosane (Coordenadora), Allan e Cristiane. = 2x. , determine os valores de x tais que: MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 3657-000 - VIÇOSA - MG BRASIL. Resolva as equações: a) 3 7 + b) 5 3 a LISTA DE EXERCÍCIOS DE MAT 4 8/0/0 Professores: Rosane (Coordenadora),

Leia mais

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x. INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função

Leia mais

Colégio XIX de Março

Colégio XIX de Março Colégio XIX de Março Educação do jeito que deve ser 018 ª PROVA PARCIAL DE MATEMÁTICA Aluno(a): Nº Ano: 1º Turma: Data: 18/08/018 Nota: Professor(a): Luiz Gustavo Valor da Prova: 40 pontos Orientações

Leia mais

de R$100,00 a unidade. O custo total, em reais, da produção diária é igual a x2 + 20x

de R$100,00 a unidade. O custo total, em reais, da produção diária é igual a x2 + 20x Atividade extra Exercício 1 (FAAP-SP) Uma indústria produz, por dia, x unidades de determinado produto, e pode vender sua produção a um preço de R$100,00 a unidade. O custo total, em reais, da produção

Leia mais

1 a série E.M. Professores Tiago Miranda e Cleber Assis

1 a série E.M. Professores Tiago Miranda e Cleber Assis Módulo de Função Quadrática Gráfico de uma Função Quadrática a série E.M. Professores Tiago Miranda e Cleber Assis Função Quadrática Gráfico de uma Função Quadrática Eercícios Introdutórios Eercício. Determine

Leia mais

FUNÇÃO QUADRÁTICA PROFESSOR AUGUSTO CORRÊA ENEM 2016

FUNÇÃO QUADRÁTICA PROFESSOR AUGUSTO CORRÊA ENEM 2016 FUNÇÃO QUADRÁTICA PROFESSOR AUGUSTO CORRÊA ENEM 2016 FUNÇÃO QUADRÁTICA Definição: Chama-se função polinomial do 2 o grau ou função quadrática toda função f: do tipo 2 f ( x) ax bx c, com {a, b, c} e a

Leia mais

FUNÇÃO POLINOMIAL DO 2º GRAU

FUNÇÃO POLINOMIAL DO 2º GRAU FUNÇÃO POLINOMIAL DO 2º GRAU Observe os quadrados a seguir, cuja a medida do lado varia conforme está indicado Um arremesso de uma bola em um jogo de basquete Calculando a área de cada quadrado obtemos.

Leia mais

Escola de Civismo e Cidadania ATIVIDADE REFERENTE À FUNÇÕES: LISTA 05

Escola de Civismo e Cidadania ATIVIDADE REFERENTE À FUNÇÕES: LISTA 05 COLÉGIO ESTADUAL DA POLÍCIA MILITAR DE GOIÁS HUGO DE CARVALHO RAMOS ANO LETIVO 2018 1. Considere o gráfico abaio e responda: 2º BIMESTRE ATIVIDADE COMPLEMENTAR Série Turma (s) Turno 1ª do Ensino Médio

Leia mais

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2 Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Eatas e Tecnológicas 5ª Lista de Eercícios de MAT Cálculo / ) Resolva as integrais definidas abaio a) ( + )d c) (5 ) d e) +

Leia mais

FUNÇÕES QUADRÁTICAS. Mottola. 1) A lei da função do gráfico é 3/2 3

FUNÇÕES QUADRÁTICAS. Mottola. 1) A lei da função do gráfico é 3/2 3 FUNÇÕES QUADRÁTICAS 1) A lei da função do gráfico é y 3/ 3 9 (a) y = + 3-9 (b) y = - + 3-9 (c) y = - 3-9 (d) y = - - 3-9 (e) y = + 3 + 9 ) O vértice da parábola y = + b + 6 está no ponto (, k). O valor

Leia mais

Lista 1 de Matemática - Função Quadrática 1 a Série do Ensino Médio - 2 o Bimestre de 2011

Lista 1 de Matemática - Função Quadrática 1 a Série do Ensino Médio - 2 o Bimestre de 2011 CORPO DE BOMBEIRO MILITAR DO DISTRITO FEDERAL DIRETORIA DE ENSINO E INSTRUÇÃO CENTRO DE ORIENTAÇÃO E SUPERVISÃO DO ENSINO ASSISTENCIAL COLÉGIO MILITAR DOM PEDRO II Lista 1 de Matemática - Função Quadrática

Leia mais

FUNÇÃO DO 2º GRAU. Chama-se função de 2.º grau ou quadrática, toda função definida, de f:

FUNÇÃO DO 2º GRAU. Chama-se função de 2.º grau ou quadrática, toda função definida, de f: FUNÇÃO DO 2º GRAU 1. DEFINIÇÃO Chama-se função de 2.º grau ou quadrática, toda função definida, de f:, por f (x) = ax 2 + x + c com a,, c e a 0. Exemplos: a) f(x) = 3x 2 5x + 6 ( a = 3, = -5 e c = 6 )

Leia mais

6. Sendo A, B e C os respectivos domínios das

6. Sendo A, B e C os respectivos domínios das 1 FGV. Seja f uma função tal que f(xy) = f (x) y todos os números reais positivos x e y. Se f(300) = 5, então, f(700) é igual a: A) 15/7 B) 16/7 C) 17/7 D) 8/3 E) 11/4 para 5 Insper. O conjunto A = {1,,

Leia mais

9 ano E.F. Professores Cleber Assis e Tiago Miranda

9 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Função Quadrática Noções Básicas 9 ano E.F. Professores Cleber Assis e Tiago Miranda Função Quadrática Noções Básicas 1 Exercícios Introdutórios Exercício 1. Os coeficientes de x (a), de x (b) e

Leia mais

= 20x = 300 x = 15 Resposta: 15% QUESTÕES 01 E 02. Para responder a essas questões, analise a tabela abaixo.

= 20x = 300 x = 15 Resposta: 15% QUESTÕES 01 E 02. Para responder a essas questões, analise a tabela abaixo. QUESTÕES 01 E 0 Para responder a essas questões, analise a tabela abaio. Em um clube, cada um dos jogadores de um time de futebol tinha a seguinte idade (em anos): 17 0 0 16 18 19 17 16 18 17 16 17 0 16

Leia mais

FUNÇÃO DO 2º GRAU. Chama-se função de 2.º grau ou quadrática, toda função definida, de f:

FUNÇÃO DO 2º GRAU. Chama-se função de 2.º grau ou quadrática, toda função definida, de f: FUNÇÃO DO 2º GRAU 1. DEFINIÇÃO Chama-se função de 2.º grau ou quadrática, toda função definida, de f:, por f (x) = ax 2 + x + c com a,, c e a 0. Exemplos: a) f(x) = 3x 2 5x + 6 ) g(x) = x 2 5x c) h(x)

Leia mais

1. Verifique se as seguintes igualdades são válidas, seja por integração ou por. + (a + b)x3 3 + abx2 2 + c. + c. + c

1. Verifique se as seguintes igualdades são válidas, seja por integração ou por. + (a + b)x3 3 + abx2 2 + c. + c. + c Universidade Federal de Viçosa Centro de Ciências Eatas Departamento de Matemática a Lista MAT - Cálculo I 7/II. Verifique se as seguintes igualdades são válidas, seja por integração ou por derivação:

Leia mais

Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática. Apostila 5: Função do 2º grau

Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática. Apostila 5: Função do 2º grau Colégio Nossa Senhora de Lourdes Professor: Leonardo Maciel Matemática Apostila 5: Função do º grau 1. (Enem 016) Um túnel deve ser lacrado com uma tampa de concreto. A seção transversal do túnel e a tampa

Leia mais

( ) ( ) 3 a Lista de Exercícios MAT CÁLCULO I. d x. d t. x d x

( ) ( ) 3 a Lista de Exercícios MAT CÁLCULO I. d x. d t. x d x a Lista de Eercícios MAT 0 - CÁLCULO I ) Utilizando o Teorema Fundamental do Cálculo, determine as seguintes integrais definidas: ) I = 7 0 d 6 + 9 ) I = d ) I = ) I = d t t + d ( 8 ) 6 0 5 ( ) 5) I =

Leia mais

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) =

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) = EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO - ª ETAPA ============================================================================================== 0- Assunto: Função Polinomial do

Leia mais

C(h) = 3h + 84h 132 O maior número de clientes presentes no supermercado será dado pela ordenada máxima da função:

C(h) = 3h + 84h 132 O maior número de clientes presentes no supermercado será dado pela ordenada máxima da função: Resposta da questão : [D] Reescrevendo a lei de f sob a forma canônica, vem f(x) = (x x) + 0 = (x ) +. Portanto, segue que a temperatura máxima é atingida após horas, correspondendo a C. Resposta da questão

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 1º Ensino Médio Professor: João Ângelo Matemática Atividades para Estudos Autônomos Data: 4 / 9 / 2018 Aluno(a): Nº: Turma: Caro(a)

Leia mais

OITAVA LISTA DE EXERCÍCIOS DE INFORMÁTICA E BIOESTATÍSTICA CURSO: FARMACIA PROF.: Luiz Celoni

OITAVA LISTA DE EXERCÍCIOS DE INFORMÁTICA E BIOESTATÍSTICA CURSO: FARMACIA PROF.: Luiz Celoni OITAVA LISTA DE EXERCÍCIOS DE INFORMÁTICA E BIOESTATÍSTICA CURSO: FARMACIA PROF.: Luiz Celoni ASSUNTO: FUNÇÃO DO SEGUNDO GRAU ) As seguintes funções são definidas em R. Verifique quais delas são funções

Leia mais

Equações do 2º grau 21/08/2012

Equações do 2º grau 21/08/2012 MATEMÁTICA Revisão Geral Aula 5 Parte 1 Professor Me. Álvaro Emílio Leite Equações do º grau Toda epressão que possui a forma + + =0, onde, e são números reais e 0, é uma equação do grau na incógnita.

Leia mais

Questão 1. Questão 2. Questão 3. Lista de Exercícios - Função Quadrática - 1º ano Aluno: Série: Turma: Data:

Questão 1. Questão 2. Questão 3. Lista de Exercícios - Função Quadrática - 1º ano Aluno: Série: Turma: Data: Lista de Exercícios - Função Quadrática - 1º ano Aluno: Série: Turma: Data: Questão 1 Quantas soluções inteiras a inequação x 2 + x 20 0 admite? (A) 2 (B) 3 (C) 7 (D) 10 (E) 13 Questão 2 A função quadrática

Leia mais

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.

Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5. 1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis

Leia mais

Matemática A Semiextensivo V. 2

Matemática A Semiextensivo V. 2 Semietensivo V. Eercícios 0) R = {(0, ), (, ), (, ), (8, 9)} 0) B 0) D 0) B A = {0,,,, 8} e B = {,,, 9} R = {(, ) A. B/ = + } = 0 = 0 + = B = = + = B = = + = B = = + = 7 7 B = 8 = 8 + = 9 9 B Assim R =

Leia mais

3ª série EM - Lista de Questões para a EXAME FINAL - MATEMÁTICA

3ª série EM - Lista de Questões para a EXAME FINAL - MATEMÁTICA 3ª série EM - Lista de Questões para a EXAME FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2002/03 Função quadrática II 10.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2002/03 Função quadrática II 10.º Ano Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 00/03 Função quadrática II 0º Ano Nome: Nº: Turma: Lança-se uma flecha para o céu, num instante que se toma para origem dos

Leia mais

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

12)(UNIFESP/2008) A tabela mostra a distância s em centímetros que uma bola percorre descendo por um plano inclinado em t segundos.

12)(UNIFESP/2008) A tabela mostra a distância s em centímetros que uma bola percorre descendo por um plano inclinado em t segundos. 01)(UNESP/008)Segundo a Teoria da Relatividade de Einstein, se um astronauta viajar em uma nave espacial muito rapidamente em relação a um referencial na Terra, o tempo passará mais devagar para o astronauta

Leia mais

MATERIAL COMPLEMENTAR FUNÇÃO QUADRÁTICA

MATERIAL COMPLEMENTAR FUNÇÃO QUADRÁTICA MATERIAL COMPLEMENTAR FUNÇÃO QUADRÁTICA PROFESSOR SANDER 01. [FGV] João colocou para carregar seu celular que estava completamente descarregado e, em seguida, anotou diversas vezes o tempo decorrido de

Leia mais

gráfico de y ax bx c, então, a + b + c vale a) 6 b) 6 c) 0 d) 5 e) 5 d) e) y ax bx c, os valores de a, b e c são

gráfico de y ax bx c, então, a + b + c vale a) 6 b) 6 c) 0 d) 5 e) 5 d) e) y ax bx c, os valores de a, b e c são 1) O gráfico da função f : FUNÇÕES DO O GRAU definida por f ( ) m intercepta o eio OX em um único ponto. O valor de m é a) 0 1 ) A figura mostra o gráfico da função f definida por f ( ) a b c. Então, podemos

Leia mais

Mat.Semana 5. Alex Amaral (Rodrigo Molinari)

Mat.Semana 5. Alex Amaral (Rodrigo Molinari) Alex Amaral (Rodrigo Molinari) Semana 5 Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 09/03

Leia mais

MATEMÁTICA E SUAS TECNOLÓGIAS

MATEMÁTICA E SUAS TECNOLÓGIAS MTEMÁTIC E SUS TECNOLÓGIS Lista de Eercícios / º ano Professor(a): Data: //6. De sonhos e luno(a):. Dê as coordenadas cartesianas dos pontos assinalados na figura abaio: H C D E F I G J. Observe o diagrama

Leia mais

Problemas de Máximos e mínimos

Problemas de Máximos e mínimos roblemas de Máimos e mínimos rof. Me. Arton Barboni ) Obter dois números positivos cuja soma seja 60 e o produto o maior possível. * Supor, R + S = + = 60 (I) =. (II) De (I), segue que = 60 (III). Substituindo

Leia mais

Lista de exercícios do teorema de Tales &

Lista de exercícios do teorema de Tales & Valor 2,0 Componente Curricular: Professor(a): Turno: Data: Matemática Matutino / /2013 luno(a): Nº do luno: Série: Turma: 8ª (81)(82)(83) Sucesso! Lista de Exercícios Lista de exercícios do teorema de

Leia mais

a < 0 / > 0 a < 0 / = 0 a < 0 / < 0

a < 0 / > 0 a < 0 / = 0 a < 0 / < 0 FUNÇÃO DO 2 GRAU (QUADRÁTICA) a < 0 / > 0 a) Definição Denomina-se função do 2 grau toda função f : IR IR definida por f(x) = ax 2 + bx + c, com a, b, c IR e a O. b) Raízes ou zeros As raízes da função

Leia mais

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Disciplina: Ano: 1º Ensino Médio Professor: João Ângelo Atividades para Estudos Autônomos Data: 4 / 9 / 2017 Caro(a) aluno(a), Aluno(a): Nº: Turma: O momento de revisão deve

Leia mais

Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.

Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. 1 Prezado(a) candidato(a): Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome Q U E S T Ã

Leia mais

Exercícios de Aprofundamento Matemática Funções Quadráticas

Exercícios de Aprofundamento Matemática Funções Quadráticas 1. (Espcex (Aman) 015) Um fabricante de poltronas pode produzir cada peça ao custo de R$ 00,00. Se cada uma for vendida por x reais, este fabricante venderá por mês (600 x) unidades, em que 0 x 600. Assinale

Leia mais

Plano de Recuperação 1º Semestre EF2-2011

Plano de Recuperação 1º Semestre EF2-2011 Professor: Marcelo, Cebola e Natália Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Matemática nos quais apresentou defasagens e os quais lhe servirão como

Leia mais

Exercícios Extras de Função Quadrática Extensivo Alfa Professor: Leandro (Pinda)

Exercícios Extras de Função Quadrática Extensivo Alfa Professor: Leandro (Pinda) Exercícios Extras de Função Quadrática Extensivo Alfa Professor: Leandro (Pinda) 1. (Enem (Libras) 017) Suponha que para um trem trafegar de uma cidade à outra seja necessária a construção de um túnel

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Derivadas º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Derivadas º Ano Escola Secundária/ da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo /4 Derivadas - º Ano Nome: Nº: Turma: Uma bola desce um plano inclinado A distância d, em centímetros, percorrida pela bola em

Leia mais

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES 01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores

Leia mais

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A):

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A): INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A): 1. (Unisinos-RS) Suponha que o número de carteiros necessários

Leia mais

1 a série E.M. Professores Tiago Miranda e Cleber Assis

1 a série E.M. Professores Tiago Miranda e Cleber Assis Módulo de Função Quadrática Resolução de Exercícios 1 a série E.M. Professores Tiago Miranda e Cleber Assis Função Quadrática Exercícios de Função Quadrática 1 Exercícios Introdutórios Exercício 1. Considere

Leia mais

Assunto: Função do 2º grau

Assunto: Função do 2º grau Assunto: Função do 2º grau 1) Dada a função f(x) = x 2-4x+3.Determine: a) A suas raízes; resp: 1 e 3 b) As coordenadas do vértice da parábola; resp: V(2;-1) c) O gráfico d) Se a função admite valor máximo

Leia mais

Material Teórico - Módulo Função Quadrática. Funcão Quadrática: Exercícios. Primeiro Ano do Ensino Médio

Material Teórico - Módulo Função Quadrática. Funcão Quadrática: Exercícios. Primeiro Ano do Ensino Médio Material Teórico - Módulo Função Quadrática Funcão Quadrática: Eercícios Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Eercícios f() Eemplo

Leia mais

EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - 2ª PARTE

EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - 2ª PARTE EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - ª PARTE. (Enem (Libras) 07) A única fonte de renda de um cabeleireiro é proveniente de seu salão. Ele cobra R$ 0,00 por cada serviço realizado e atende 00 clientes

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

Ciências da Natureza e Matemática

Ciências da Natureza e Matemática 1 CEDAE Acompanhamento Escolar 2 CEDAE Acompanhamento Escolar 3 CEDAE Acompanhamento Escolar 4 CEDAE Acompanhamento Escolar 1. (UFRJ) Hortência arremessa uma bola de basquete cujo centro segue uma trajetória

Leia mais

Lista de exercícios sobre função quadrática Prof. Márcio Prieto

Lista de exercícios sobre função quadrática Prof. Márcio Prieto 1. (Fgv) O preço de ingresso numa peça de teatro (p) relaciona-se com a quantidade de frequentadores (x) por sessão através da relação; p = - 0,2x + 100 a) Qual a receita arrecadada por sessão, se o preço

Leia mais

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2?

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2? TRABALHO CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: Questão 0 Ache a derivada das seguintes funções: 0 y 0 y 5 5 y e) y y Questão 0 Qual é a derivada da função, no ponto? Questão 0 Se, calcule () f Questão

Leia mais

Aulas particulares. Conteúdo

Aulas particulares. Conteúdo Conteúdo Capítulo 3...2 Funções...2 Função de 1º grau...2 Exercícios...6 Gabarito... 13 Função quadrática ou função do 2º grau... 15 Exercícios... 22 Gabarito... 29 Capítulo 3 Funções Função de 1º grau

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 12 EXERCÍCIOS 1) Um táxi começa uma corrida com o taxímetro marcando R$ 4,00. Cada quilômetro rodado custa

Leia mais

Matemática. Exercícios de Revisão II. Eldimar. 1 a. 1) (CFTMG-2008) Na figura, está representado o gráfico da função f(x).

Matemática. Exercícios de Revisão II. Eldimar. 1 a. 1) (CFTMG-2008) Na figura, está representado o gráfico da função f(x). Nome: n o : E nsino: Médio S érie: T urma: Data: Prof(a): Eldimar 1 a Matemática Exercícios de Revisão II 1) (CFTMG-2008) Na figura, está representado o gráfico da função f(x). Com relação a f(x) pode-se

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 02 RESOLUÇÕES

COLEÇÃO DARLAN MOUTINHO VOL. 02 RESOLUÇÕES COLEÇÃO DARLAN MOUTINHO VOL. 0 RESOLUÇÕES Me ta 0 RESPOSTA 0 + 0 + 0 [Resposta do ponto de vista da disciplina de Matemática] [0] Falsa Nas etremidades das artérias o valor de 0, logo: V0 C. 0 R - 0 0

Leia mais

( ) = 0. ( ) = 30t 3t 2 é

( ) = 0. ( ) = 30t 3t 2 é QUESTÃO 01 t = 0 t +10t =1600 t 10t+1600 = 0 $ ou & t = 40 Portanto o primeiro momento em que o número de infectados é 1.600 é o 0 dia. QUESTÃO 0 9 Como D( x) = x + 18x+ 30, o valor de x que maximiza essa

Leia mais

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas. Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados

Leia mais

SIMULADO DA ETAPA III - (9º Anos) Professor: Rivaildo (Matemática Básica)

SIMULADO DA ETAPA III - (9º Anos) Professor: Rivaildo (Matemática Básica) SIMULADO DA ETAPA III - (9º Anos) Professor: Rivaildo (Matemática Básica) 1ª) As três figuras sobrepostas parcialmente, representam a cobertura de um Shopping de certa cidade. Deseja-se colocar a parte

Leia mais

2 LISTA DE MATEMÁTICA

2 LISTA DE MATEMÁTICA LISTA DE MATEMÁTICA SÉRIE: º ANO TURMA: º BIMESTRE DATA: / / 011 PROFESSOR: ALUNO(A): Nº: NOTA: POLINÔMIOS I 01. (ITA-1995) A divisão de um polinômio P() por - resulta no quociente 6 + 5 + 3 e resto -7.

Leia mais

Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015)

Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Engenharia Civil/Mecânica Cálculo Profa Olga (º sem de 05) Conteúdo: Função do º grau (Função Afim) Definição Chama-se função polinomial do o grau, ou função afim, a qualquer função f: dada por uma lei

Leia mais

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é: EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial

Leia mais

para: (a) f(x) = 3 (b) f(x) = c, c

para: (a) f(x) = 3 (b) f(x) = c, c MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DESEMPENHO CÂMPUS PATO BRANCO Atividades Práticas Supervisionadas (APS) de Cálculo Diferencial e Integral Prof a. Dayse Batistus, Dr a.

Leia mais

Lista de Exercícios do capítulo 4

Lista de Exercícios do capítulo 4 Lista de Eercícios do capítulo 4 1. Eplique a diferença entre um mínimo local e um mínimo absoluto. 2. Nos gráficos abaio, diga se a função tem um máimo local, um mínimo local, um máimo absoluto, um mínimo

Leia mais

Mat.Semana 7. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari)

Mat.Semana 7. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Semana 7 PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos

Leia mais

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra. Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

MAT Cálculo para Ciências Biológicas - Farmácia Prof. Gláucio Terra. 3 a Lista de Exercícios

MAT Cálculo para Ciências Biológicas - Farmácia Prof. Gláucio Terra. 3 a Lista de Exercícios MAT0143 - Cálculo para Ciências Biológicas - Farmácia - 006 Prof. Gláucio Terra 3 a Lista de Eercícios 1-) Dois corredores iniciam uma corrida ao mesmo tempo e terminam empatados. Prove que em algum momento

Leia mais

Objetivos. Expressar o vértice da parábola em termos do discriminante e dos

Objetivos. Expressar o vértice da parábola em termos do discriminante e dos MÓDULO 1 - AULA 17 Aula 17 Parábola - aplicações Objetivos Expressar o vértice da parábola em termos do discriminante e dos coeficientes da equação quadrática Expressar as raízes das equações quadráticas

Leia mais

1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e :

1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e : Matemática 2 Pedro Paulo GEOMETRIA PLANA XIII 1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS Seja um triângulo retângulo, com ângulos agudos e. Traçando a altura relativa à hipotenusa, formamos os triângulos retângulos

Leia mais

PLANO DE AULA. Universidade Federal do Pampa. Campus Caçapava do Sul

PLANO DE AULA. Universidade Federal do Pampa. Campus Caçapava do Sul PLANO DE AULA Universidade Federal do Pampa Campus Caçapava do Sul Disciplina: Matemática Nome: Misael Forma Data da aula: 07/07/2017 Duração: 45 minutos Local: Dinarte Ribeiro Conteúdo: Funções. Conteúdo

Leia mais

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria Nome: nº 1º no Ensino Médio Professor Fernando Lista de Recuperação de Geometria Trigonometria 1 ) Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º

Leia mais

x + 2 com o eixo dos x, respectivamente.

x + 2 com o eixo dos x, respectivamente. PASES 1 a ETAPA TRIÊNIO 004-006 1 o DIA GABARITO 1 1 MATEMÁTICA QUESTÕES DE 01 A 10 01. Sejam A e B os pontos de interseção dos gráficos das funções f ( x) = 1 x + e g ( x) = 1 x + com o eixo dos x, respectivamente.

Leia mais

LISTA DE EXERCÍCIOS DE MATEMÁTICA PROFESSORA ANDRÉIA

LISTA DE EXERCÍCIOS DE MATEMÁTICA PROFESSORA ANDRÉIA LISTA DE EXERCÍCIOS DE MATEMÁTICA PROFESSORA ANDRÉIA Conteúdo da P: Função do 1º grau e do º grau, Probabilidade e Situações Problemas de funções. Função de 1º Grau 1. Observe o quadro abaio e responda:

Leia mais

MATEMÁTICA Módulo em IR 2. Professor Marcelo Gonzalez Badin

MATEMÁTICA Módulo em IR 2. Professor Marcelo Gonzalez Badin MATEMÁTICA Módulo em IR Professor Marcelo Gonzalez Badin Módulo de um número real Chama-se módulo (ou valor absoluto) de um número real a distância da imagem desse número, na reta orientada, até a origem

Leia mais

Função Quadrática. Objetivos. Metodologia. Público alvo

Função Quadrática. Objetivos. Metodologia. Público alvo Função Quadrática Objetivos Os objetivos deste Objeto de Aprendizagem (OA) são: -Determinar a Concavidade da Parábola; -Determinar as Coordenadas do Vértice; -Determinar os zeros da Função Quadrática;

Leia mais

Lista de função quadrática

Lista de função quadrática COLÉGIO PEDRO II CAMPUS REALENGO II LISTA DE APROFUNDAMENTO - ENEM MATEMÁTICA PROFESSOR: ANTÔNIO ANDRADE COORDENADOR: DIEGO VIUG Lista de função quadrática QUESTÃO 01 Assinale a ÚNICA proposição CORRETA.

Leia mais

Lista de Exercícios 3 1

Lista de Exercícios 3 1 Universidade Federal de Ouro Preto Departamento de Matemática MTM122 - CÁLCULO DIFERENCIAL E INTEGRAL I 1 Encontre os pontos críticos das funções a seguir: Lista de Eercícios 1 a f = + 7 2 5 b g = 7/ +

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e

Leia mais

Matemática Aplicada em C. Contábeis/Mário FUNÇÃO QUADRÁTICA

Matemática Aplicada em C. Contábeis/Mário FUNÇÃO QUADRÁTICA FUNÇÃO QUADRÁTICA Definição A função f: R R dada por f(x) = ax² + bx + c, com a, b, c reais e a 0, denomina-se função quadrática. Exemplos: f(x) = x² - 4x 3 (a = 1, b = -4, c = -3) f(x) = x² - 9 (a = 1,

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Teste de avaliação Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Teste de avaliação Grupo I ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A 0 05 007 Teste de avaliação Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,

Leia mais