MATEMÁTICA Função do 2º grau
|
|
|
- Isadora Salgado Palmeira
- 8 Há anos
- Visualizações:
Transcrição
1 MATEMÁTICA Função do º grau Resolução dos eercícios 4, 5, 7, 17, 19 a 6 Série O Pensador Professor Marcelo Gonsalez Badin
2 4. (UFRJ) Oscar arremessa uma bola de basquete cujo centro segue uma trajetória plana 1 8 vertical de equação = + +, na qual os valores de e são dados em metros. 7 7 Oscar acerta o arremesso, e o centro da bola passa pelo centro da cesta, que está a 3 m de altura. Determine a distância do centro da cesta ao eio. 3 1 = = + + (multiplica por 7) = = 0 S = 8 P = 7 = 1 = 7 A distância é de 7 metros
3 5.(Cesgranrio) Uma conta perfurada de um colar é enfiada em um arame fino com o formato da parábola = 6. Do ponto P de coordenadas (4; 10) deia-se a conta deslizar no arame até chegar ao ponto Q de ordenada 6. A distância horizontal percorrida pela conta (diferença entre as abscissas de P e Q) é: a) 1 b) 4 c) 6 d) 3 e) 5 = 6 10 P Q
4 7.(IME) Seja f : IR IR uma função quadrática, tal que f () = a + b +c, com a 0, IR. Sabe-se que 1 = 1 e = 5 são as raízes e que f (1) = 8. a) Determinar a, b e c. b) Calcular f (0) f () = 4 5 As raízes da função são 1 e 5 f (0) = 0 b fi f (0) = = a c) Verificar se f () apresenta máimo ou mínimo, b justificando a resposta = fi b = 4a a f () apresenta mínimo pois sua representação gráfica é c 1 = uma parábola de concavidade voltada para cima (a > 0) a c d) Determinar as coordenadas do ponto etremo. 1 5 = fi c = 5a a O ponto etremo de f () é o vértice da parábola, logo, f () = a 4a 5a cujas coordenadas são: Como f (1) = 8, temos: b v = = a a.1 4a.1 5a = 8 v = f ( v ) = f () = 9 8a = b = 4 a = 1 V = (, 9) c = 5 5 a = 1, b = 4 e c = 5 9
5 17. (UFSCar) A figura representa, em sistemas coordenados com a mesma escala, os gráficos das funções reais f e g, com f() = e g() =. Sabendo que a região poligonal T demarca um trapézio de área igual a 10, o número real k é a) 0,5 Área de trapézio: b) 1 c) d) 1,5 e) (B + b)h 4k 4k k k k (k + 4k ).3k = 10 () 5k.3k = 40 15k 4 = 40 (:15) k 4 = 16 (k > 0) k = 4k
6 19. (Fuvest) Num terreno, na forma de triângulo retângulo com catetos de medidas 0 e 30 metros, deseja-se construir uma casa retangular de dimensões e, como indicado na figura A a) Eprima em função de. ADE ABC 30 30m D B 0m E C 0 = = 0(30 ) (Divide por 10) 3 = (30 ) 3 = 60 (Divide por 3) = 0 3
7 a) 30 A v = 0 A 30m D B v 3 0m vértice b) Para que valores de e de a área ocupada pela casa será máima? E O vértice é ponto de MÁXIMO A =. Usando o resultado do item a, temos: A = 0 A = A é máima para b 0 0 = v = = = = 15 a ( 3) 4 3 C = 15 fi v = para o qual a Área é má. v = Área máima = 0 15 fi = 10 3 Para que a área seja máima, devemos ter = 15m e = 10m
8 0. (FGV-SP) Uma parede de tijolos será usada como um dos lados de um curral retangular. Para os outros lados iremos usar 400 metros de tela de arame, de modo a produzir a área máima. Então, o quociente de um lado pelo outro é: a) 1 b) 0,5 c),5 d) 3 e) 1,5 A v v vértice O vértice é ponto de MÁXIMO + = 400 = 400 v = para o qual a Área é má. v = Área máima A =. A =.(400 ) A = 400 A é máima para = = b 400 = v a ( ) = 100 = 100 fi = 00 Os lados medem 100 e 00. O quociente de um lado pelo outro pode ser ou 0,5
9 1. (PUC-SP-005) Considere que o material usado na confecção de um certo tipo de tapete tem um custo de R$ 40,00. O fabricante pretende colocar cada tapete à venda por reais e, assim, conseguir vender (100 ) tapetes por mês. Nessas condições, para que, mensalmente, seja obtido um lucro máimo, cada tapete deverá ser vendido por A) R$ 55,00 B) R$ 60,00 C) R$ 70,00 D) R$ 75,00 E) R$ 80,00 Preço de custo de cada tapete = 40 Preço de venda de cada tapete = Nº de tapetes vendidos por mês = 100 L = V C L =.(100 ) 40. (100 ) L = L = L é máimo para = = b 140 = v a ( 1) = 70
10 . Ao fretar um ônibus, um grupo de romeiros e uma empresa de transportes combinaram que cada passageiro pagaria R$ 80,00 e mais uma taa de R$ 3,00 por cada lugar desocupado, sendo que no ônibus haveria 50 lugares. a) Quanto a empresa de ônibus receberia se houvesse 50 passageiros? Seja R a receita da empresa de ônibus R = Com 50 passageiros a empresa R = 4000 receberia R$ 4.000,00 b) E se houvesse 44? R = R = R = 431 Com 44 passageiros a empresa receberia R$ 4.31,00
11 c) Com que número de passageiros a companhia teria uma receita máima? Sendo o nº de passageiros, 50 é nº de lugares desocupados R() = (50 ) R() = R() = R é má. para b = v = = = = 38, a ( 3) 3 R , R v v vértice A companhia teria uma receita com 38 passageiros. Obs.: A receita máima seria O vértice é ponto de MÁXIMO v = para o qual R é má. v = valor máimo de R R(38) = = 4408 Com 38 passageiros a companhia receberia R$ 4.408,00
12 3. (Unicamp) Em um pomar em que eistiam 30 laranjeiras produzindo, cada uma, 600 laranjas por ano, foram plantadas n novas laranjeiras. Depois de um certo tempo, constatou-se que, devido à competição por nutrientes do solo, cada laranjeira (tanto nova como velha) estava produzindo 10 laranjas a menos, por ano, por cada nova laranjeira plantada no pomar. Se f(n) é a produção anual do pomar: a) determine a epressão algébrica de f(n); b) determine os valores de n para os quais f(n) = 0; c) quantas novas laranjeiras deveriam ter sido plantadas para que o pomar tenha produção máima? d) qual o valor dessa produção? a) f(n) = (30 + n).(600 10n) f(n) = 10n + 300n b) f(n) = 0 (30 + n).(600 10n) = 0 n = 30 (não convém) n = 60 (Nº de laranjeiras).(produção de cada laranjeira) c) f(n) = 10n + 300n f(n) é máima para n = = 15 ( 10) 15 novas laranjeiras d) A produção máima é f(15) ( ).( ) = = laranjas
13 4. (UFRJ) Um fabricante está lançando a série de mesas Super 4. Os tampos das mesas dessa série são retangulares e têm 4 metros de perímetro. A fórmica usada para revestir o tampo custa R$ 10,00 por metro quadrado. Cada metro de ripa usada para revestir as cabeceiras custa R$ 5,00 e as ripas para as outras duas laterais custam R$ 30,00 por metro. a) Sendo a medida da cabeceira e a medida da lateral, temos + = 4fi = g = g() = 10.( ) ( ) g() = a) Determine o gasto do fabricante para revestir uma mesa dessa série com cabeceira de medida. b) Determine as dimensões da mesa da série Super 4 para a qual o gasto com revestimento é o maior possível. b) g() = g() é máimo para = 10 = 0,5 fi = 0,5 = 1,5 ( 10) As dimensões são 0,5 m (cabeceira) e 1,5 m (lateral)
14 5. Um míssil é lançado do ponto A, a 3 km da origem O e descreve trajetória parabólica dada pela equação = + 6, com 3, como mostra a figura abaio. O teorema de Pitágoras permite calcular a distância de cada ponto da trajetória até a origem (Por eemplo, o ponto B encontra-se a 41 km da origem). A menor de todas as distâncias é de: a) 5 km b) 6 km c) 7 km d) 8 km e) 3 km A -3 (km) Todo ponto da curva é da forma (, + 6 ) d B. 5 d = 41 (km) Pit. d = + ( + 6) d = d = a é mínimo se é mín. se = = 1 1 d mín = ( 1) + ( 1) + 6 = 5 a é mínimo
15 6. (Fuvest) Suponha que um fio suspenso entre duas colunas de mesma altura h, situadas à distância d (ver figura), assuma a forma de uma parábola. Suponha também que: (i) a altura mínima do fio ao solo seja igual a ; d (ii) a altura do fio sobre um ponto no solo que dista de uma das colunas seja igual a Se h = 3 d, então d vale 4 8 a) 14 b) 16 c) 18 d) 0 e) a(d/) + h = h d a + = h ( 4) 4 a.d + 8 = 4h( I ) d/ = a + a(d/4) + = h/ d h a + = ( 16) 16 a.d + 3 = 8h( II ) ( II ) ( I ) 4h = 4 h = 6 3 d 6 8 = ( 8) d = 16 h
Exercícios Propostos
Cursinho: Universidade para Todos Professor: Cirlei Xavier Lista: 5 a Lista de Matemática Aluno (a): Disciplina: Matemática Conteúdo: Equações e Funções Turma: A e B Data: Setembro de 016 01. Resolva 11
MATEMÁTICA - 1 o ANO MÓDULO 18 FUNÇÃO DO 2 O GRAU: GRÁFICOS
MATEMÁTICA - 1 o ANO MÓDULO 18 FUNÇÃO DO 2 O GRAU: GRÁFICOS y 3 2-1 1 3 v -2 y 1 v -3-6 3 y = 2 + 2 3 = 3 y = -3 2 + 2(3) - 3 y = -6 Vamos precisar atribuir um valor para para encontrarmos um outro ponto.
Prof: Danilo Dacar
Parte A: 1. (Uece 014) Sejam f : R R a função definida por f(x) x x 1, P e Q pontos do gráfico de f tais que o segmento de reta PQ é horizontal e tem comprimento igual a 4 m. A medida da distância do segmento
Lista de Exercícios. a) f(x) = x 2-3x 10 b) f(x) = x 2 x + 12 c) f(x) = x 2 + 4x 4 d) f(x) = 36x x + 1
Lista de Exercícios Calcular os zeros das seguintes funções: a) f(x) x - 3x 0 b) f(x) x x + c) f(x) x + 4x 4 d) f(x) 36x + x + Calcular m para que: a) a função f(x) (m 3)x + 4x 7 seja côncava para cima
Ou seja, D(f) = IR e Im(f) IR.
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA-CAMPUS ITAJAÍ Profª Roberta Nara Sodré de Souza Função Quadrática
COLÉGIO MODELO LUIZ EDURADO MAGALHÃES CAMAÇARI BA MATEMÁTICA - 1ª SÉRIE - ENSINO MÉDIO - ANO : 2015 Data: / /2015 III Unidade. Aluno: 1.
COLÉGIO MODELO LUIZ EDURADO MAGALHÃES CAMAÇARI BA MATEMÁTICA - 1ª SÉRIE - ENSINO MÉDIO - ANO : 2015 Professor: Henrique Plínio Função Quadrática Lista 2 Data: / /2015 III Unidade Aluno: 1 Turma: 1º 1.Considere
LISTA 1. a) [57, 60] c) [60, 180[ b) ]58, 116] d) ]57, 178]
LISTA 1 1- Seja n N tal que n dividido por 5 deia resto 3, n dividido por 4 deia resto e n dividido por 3 deia resto 1. Os três primeiros números naturais que satisfazem as condições de n pertencem ao
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 101 - Fundamentos de Matemática I 2012/I 2 a Lista - Funções (Parte I) 1. Dados os conjuntos M = {1, 3, 5} e N
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A
INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A - 009. A LISTA DE EXERCÍCIOS a Questão:. Para cada uma das funções seguintes, determine as derivadas indicadas: a) f(u) = u, u() =,
PROFESSOR: JARBAS 4 2 5
PROFESSOR: JARBAS Função do 2.º grau Chama-se função quadrática ou função polinomial do 2.º grau, qualquer função f de R em R dada por uma lei da forma f() = a 2 + b + c onde a, b e c são números reais
FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO
FUNÇÃO Introdução ao Cálculo Diferencial I /Mário DEFINIÇÃO Seja D um subconjunto dos reais, não vazio. Definir em D uma função f é eplicitar uma regra que a CADA elemento D associa-se a UM ÚNICO R. Notação
1 a LISTA DE EXERCÍCIOS DE MAT /02/2011 Professores: Rosane (Coordenadora), Allan e Cristiane. = 2x. , determine os valores de x tais que:
MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 3657-000 - VIÇOSA - MG BRASIL. Resolva as equações: a) 3 7 + b) 5 3 a LISTA DE EXERCÍCIOS DE MAT 4 8/0/0 Professores: Rosane (Coordenadora),
= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.
INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função
Colégio XIX de Março
Colégio XIX de Março Educação do jeito que deve ser 018 ª PROVA PARCIAL DE MATEMÁTICA Aluno(a): Nº Ano: 1º Turma: Data: 18/08/018 Nota: Professor(a): Luiz Gustavo Valor da Prova: 40 pontos Orientações
de R$100,00 a unidade. O custo total, em reais, da produção diária é igual a x2 + 20x
Atividade extra Exercício 1 (FAAP-SP) Uma indústria produz, por dia, x unidades de determinado produto, e pode vender sua produção a um preço de R$100,00 a unidade. O custo total, em reais, da produção
1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Função Quadrática Gráfico de uma Função Quadrática a série E.M. Professores Tiago Miranda e Cleber Assis Função Quadrática Gráfico de uma Função Quadrática Eercícios Introdutórios Eercício. Determine
FUNÇÃO QUADRÁTICA PROFESSOR AUGUSTO CORRÊA ENEM 2016
FUNÇÃO QUADRÁTICA PROFESSOR AUGUSTO CORRÊA ENEM 2016 FUNÇÃO QUADRÁTICA Definição: Chama-se função polinomial do 2 o grau ou função quadrática toda função f: do tipo 2 f ( x) ax bx c, com {a, b, c} e a
FUNÇÃO POLINOMIAL DO 2º GRAU
FUNÇÃO POLINOMIAL DO 2º GRAU Observe os quadrados a seguir, cuja a medida do lado varia conforme está indicado Um arremesso de uma bola em um jogo de basquete Calculando a área de cada quadrado obtemos.
Escola de Civismo e Cidadania ATIVIDADE REFERENTE À FUNÇÕES: LISTA 05
COLÉGIO ESTADUAL DA POLÍCIA MILITAR DE GOIÁS HUGO DE CARVALHO RAMOS ANO LETIVO 2018 1. Considere o gráfico abaio e responda: 2º BIMESTRE ATIVIDADE COMPLEMENTAR Série Turma (s) Turno 1ª do Ensino Médio
Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2
Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Eatas e Tecnológicas 5ª Lista de Eercícios de MAT Cálculo / ) Resolva as integrais definidas abaio a) ( + )d c) (5 ) d e) +
FUNÇÕES QUADRÁTICAS. Mottola. 1) A lei da função do gráfico é 3/2 3
FUNÇÕES QUADRÁTICAS 1) A lei da função do gráfico é y 3/ 3 9 (a) y = + 3-9 (b) y = - + 3-9 (c) y = - 3-9 (d) y = - - 3-9 (e) y = + 3 + 9 ) O vértice da parábola y = + b + 6 está no ponto (, k). O valor
Lista 1 de Matemática - Função Quadrática 1 a Série do Ensino Médio - 2 o Bimestre de 2011
CORPO DE BOMBEIRO MILITAR DO DISTRITO FEDERAL DIRETORIA DE ENSINO E INSTRUÇÃO CENTRO DE ORIENTAÇÃO E SUPERVISÃO DO ENSINO ASSISTENCIAL COLÉGIO MILITAR DOM PEDRO II Lista 1 de Matemática - Função Quadrática
FUNÇÃO DO 2º GRAU. Chama-se função de 2.º grau ou quadrática, toda função definida, de f:
FUNÇÃO DO 2º GRAU 1. DEFINIÇÃO Chama-se função de 2.º grau ou quadrática, toda função definida, de f:, por f (x) = ax 2 + x + c com a,, c e a 0. Exemplos: a) f(x) = 3x 2 5x + 6 ( a = 3, = -5 e c = 6 )
6. Sendo A, B e C os respectivos domínios das
1 FGV. Seja f uma função tal que f(xy) = f (x) y todos os números reais positivos x e y. Se f(300) = 5, então, f(700) é igual a: A) 15/7 B) 16/7 C) 17/7 D) 8/3 E) 11/4 para 5 Insper. O conjunto A = {1,,
9 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Função Quadrática Noções Básicas 9 ano E.F. Professores Cleber Assis e Tiago Miranda Função Quadrática Noções Básicas 1 Exercícios Introdutórios Exercício 1. Os coeficientes de x (a), de x (b) e
= 20x = 300 x = 15 Resposta: 15% QUESTÕES 01 E 02. Para responder a essas questões, analise a tabela abaixo.
QUESTÕES 01 E 0 Para responder a essas questões, analise a tabela abaio. Em um clube, cada um dos jogadores de um time de futebol tinha a seguinte idade (em anos): 17 0 0 16 18 19 17 16 18 17 16 17 0 16
FUNÇÃO DO 2º GRAU. Chama-se função de 2.º grau ou quadrática, toda função definida, de f:
FUNÇÃO DO 2º GRAU 1. DEFINIÇÃO Chama-se função de 2.º grau ou quadrática, toda função definida, de f:, por f (x) = ax 2 + x + c com a,, c e a 0. Exemplos: a) f(x) = 3x 2 5x + 6 ) g(x) = x 2 5x c) h(x)
1. Verifique se as seguintes igualdades são válidas, seja por integração ou por. + (a + b)x3 3 + abx2 2 + c. + c. + c
Universidade Federal de Viçosa Centro de Ciências Eatas Departamento de Matemática a Lista MAT - Cálculo I 7/II. Verifique se as seguintes igualdades são válidas, seja por integração ou por derivação:
Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática. Apostila 5: Função do 2º grau
Colégio Nossa Senhora de Lourdes Professor: Leonardo Maciel Matemática Apostila 5: Função do º grau 1. (Enem 016) Um túnel deve ser lacrado com uma tampa de concreto. A seção transversal do túnel e a tampa
( ) ( ) 3 a Lista de Exercícios MAT CÁLCULO I. d x. d t. x d x
a Lista de Eercícios MAT 0 - CÁLCULO I ) Utilizando o Teorema Fundamental do Cálculo, determine as seguintes integrais definidas: ) I = 7 0 d 6 + 9 ) I = d ) I = ) I = d t t + d ( 8 ) 6 0 5 ( ) 5) I =
01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) =
EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO - ª ETAPA ============================================================================================== 0- Assunto: Função Polinomial do
C(h) = 3h + 84h 132 O maior número de clientes presentes no supermercado será dado pela ordenada máxima da função:
Resposta da questão : [D] Reescrevendo a lei de f sob a forma canônica, vem f(x) = (x x) + 0 = (x ) +. Portanto, segue que a temperatura máxima é atingida após horas, correspondendo a C. Resposta da questão
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 1º Ensino Médio Professor: João Ângelo Matemática Atividades para Estudos Autônomos Data: 4 / 9 / 2018 Aluno(a): Nº: Turma: Caro(a)
OITAVA LISTA DE EXERCÍCIOS DE INFORMÁTICA E BIOESTATÍSTICA CURSO: FARMACIA PROF.: Luiz Celoni
OITAVA LISTA DE EXERCÍCIOS DE INFORMÁTICA E BIOESTATÍSTICA CURSO: FARMACIA PROF.: Luiz Celoni ASSUNTO: FUNÇÃO DO SEGUNDO GRAU ) As seguintes funções são definidas em R. Verifique quais delas são funções
Equações do 2º grau 21/08/2012
MATEMÁTICA Revisão Geral Aula 5 Parte 1 Professor Me. Álvaro Emílio Leite Equações do º grau Toda epressão que possui a forma + + =0, onde, e são números reais e 0, é uma equação do grau na incógnita.
Questão 1. Questão 2. Questão 3. Lista de Exercícios - Função Quadrática - 1º ano Aluno: Série: Turma: Data:
Lista de Exercícios - Função Quadrática - 1º ano Aluno: Série: Turma: Data: Questão 1 Quantas soluções inteiras a inequação x 2 + x 20 0 admite? (A) 2 (B) 3 (C) 7 (D) 10 (E) 13 Questão 2 A função quadrática
Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.
1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis
Matemática A Semiextensivo V. 2
Semietensivo V. Eercícios 0) R = {(0, ), (, ), (, ), (8, 9)} 0) B 0) D 0) B A = {0,,,, 8} e B = {,,, 9} R = {(, ) A. B/ = + } = 0 = 0 + = B = = + = B = = + = B = = + = 7 7 B = 8 = 8 + = 9 9 B Assim R =
3ª série EM - Lista de Questões para a EXAME FINAL - MATEMÁTICA
3ª série EM - Lista de Questões para a EXAME FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência
Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2002/03 Função quadrática II 10.º Ano
Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 00/03 Função quadrática II 0º Ano Nome: Nº: Turma: Lança-se uma flecha para o céu, num instante que se toma para origem dos
01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.
Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.
9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel
12)(UNIFESP/2008) A tabela mostra a distância s em centímetros que uma bola percorre descendo por um plano inclinado em t segundos.
01)(UNESP/008)Segundo a Teoria da Relatividade de Einstein, se um astronauta viajar em uma nave espacial muito rapidamente em relação a um referencial na Terra, o tempo passará mais devagar para o astronauta
MATERIAL COMPLEMENTAR FUNÇÃO QUADRÁTICA
MATERIAL COMPLEMENTAR FUNÇÃO QUADRÁTICA PROFESSOR SANDER 01. [FGV] João colocou para carregar seu celular que estava completamente descarregado e, em seguida, anotou diversas vezes o tempo decorrido de
gráfico de y ax bx c, então, a + b + c vale a) 6 b) 6 c) 0 d) 5 e) 5 d) e) y ax bx c, os valores de a, b e c são
1) O gráfico da função f : FUNÇÕES DO O GRAU definida por f ( ) m intercepta o eio OX em um único ponto. O valor de m é a) 0 1 ) A figura mostra o gráfico da função f definida por f ( ) a b c. Então, podemos
Mat.Semana 5. Alex Amaral (Rodrigo Molinari)
Alex Amaral (Rodrigo Molinari) Semana 5 Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 09/03
MATEMÁTICA E SUAS TECNOLÓGIAS
MTEMÁTIC E SUS TECNOLÓGIS Lista de Eercícios / º ano Professor(a): Data: //6. De sonhos e luno(a):. Dê as coordenadas cartesianas dos pontos assinalados na figura abaio: H C D E F I G J. Observe o diagrama
Problemas de Máximos e mínimos
roblemas de Máimos e mínimos rof. Me. Arton Barboni ) Obter dois números positivos cuja soma seja 60 e o produto o maior possível. * Supor, R + S = + = 60 (I) =. (II) De (I), segue que = 60 (III). Substituindo
Lista de exercícios do teorema de Tales &
Valor 2,0 Componente Curricular: Professor(a): Turno: Data: Matemática Matutino / /2013 luno(a): Nº do luno: Série: Turma: 8ª (81)(82)(83) Sucesso! Lista de Exercícios Lista de exercícios do teorema de
a < 0 / > 0 a < 0 / = 0 a < 0 / < 0
FUNÇÃO DO 2 GRAU (QUADRÁTICA) a < 0 / > 0 a) Definição Denomina-se função do 2 grau toda função f : IR IR definida por f(x) = ax 2 + bx + c, com a, b, c IR e a O. b) Raízes ou zeros As raízes da função
3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA
3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Disciplina: Ano: 1º Ensino Médio Professor: João Ângelo Atividades para Estudos Autônomos Data: 4 / 9 / 2017 Caro(a) aluno(a), Aluno(a): Nº: Turma: O momento de revisão deve
Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.
1 Prezado(a) candidato(a): Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome Q U E S T Ã
Exercícios de Aprofundamento Matemática Funções Quadráticas
1. (Espcex (Aman) 015) Um fabricante de poltronas pode produzir cada peça ao custo de R$ 00,00. Se cada uma for vendida por x reais, este fabricante venderá por mês (600 x) unidades, em que 0 x 600. Assinale
Plano de Recuperação 1º Semestre EF2-2011
Professor: Marcelo, Cebola e Natália Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Matemática nos quais apresentou defasagens e os quais lhe servirão como
Exercícios Extras de Função Quadrática Extensivo Alfa Professor: Leandro (Pinda)
Exercícios Extras de Função Quadrática Extensivo Alfa Professor: Leandro (Pinda) 1. (Enem (Libras) 017) Suponha que para um trem trafegar de uma cidade à outra seja necessária a construção de um túnel
Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Derivadas º Ano
Escola Secundária/ da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo /4 Derivadas - º Ano Nome: Nº: Turma: Uma bola desce um plano inclinado A distância d, em centímetros, percorrida pela bola em
BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES
01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores
INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A):
INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA CURSO TÉCNICO EM INFORMÁTICA LISTA DE EXERCÍCIOS FUNÇÃO AFIM E FUNÇÃO QUADRÁTICA ALUNO(A): 1. (Unisinos-RS) Suponha que o número de carteiros necessários
1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Função Quadrática Resolução de Exercícios 1 a série E.M. Professores Tiago Miranda e Cleber Assis Função Quadrática Exercícios de Função Quadrática 1 Exercícios Introdutórios Exercício 1. Considere
Assunto: Função do 2º grau
Assunto: Função do 2º grau 1) Dada a função f(x) = x 2-4x+3.Determine: a) A suas raízes; resp: 1 e 3 b) As coordenadas do vértice da parábola; resp: V(2;-1) c) O gráfico d) Se a função admite valor máximo
Material Teórico - Módulo Função Quadrática. Funcão Quadrática: Exercícios. Primeiro Ano do Ensino Médio
Material Teórico - Módulo Função Quadrática Funcão Quadrática: Eercícios Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Eercícios f() Eemplo
EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - 2ª PARTE
EXERCÍCIOS REVISIONAIS SOBRE FUNÇÕES - ª PARTE. (Enem (Libras) 07) A única fonte de renda de um cabeleireiro é proveniente de seu salão. Ele cobra R$ 0,00 por cada serviço realizado e atende 00 clientes
Resolução dos Exercícios sobre Derivadas
Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos
Ciências da Natureza e Matemática
1 CEDAE Acompanhamento Escolar 2 CEDAE Acompanhamento Escolar 3 CEDAE Acompanhamento Escolar 4 CEDAE Acompanhamento Escolar 1. (UFRJ) Hortência arremessa uma bola de basquete cujo centro segue uma trajetória
Lista de exercícios sobre função quadrática Prof. Márcio Prieto
1. (Fgv) O preço de ingresso numa peça de teatro (p) relaciona-se com a quantidade de frequentadores (x) por sessão através da relação; p = - 0,2x + 100 a) Qual a receita arrecadada por sessão, se o preço
TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2?
TRABALHO CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: Questão 0 Ache a derivada das seguintes funções: 0 y 0 y 5 5 y e) y y Questão 0 Qual é a derivada da função, no ponto? Questão 0 Se, calcule () f Questão
Aulas particulares. Conteúdo
Conteúdo Capítulo 3...2 Funções...2 Função de 1º grau...2 Exercícios...6 Gabarito... 13 Função quadrática ou função do 2º grau... 15 Exercícios... 22 Gabarito... 29 Capítulo 3 Funções Função de 1º grau
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 12 EXERCÍCIOS 1) Um táxi começa uma corrida com o taxímetro marcando R$ 4,00. Cada quilômetro rodado custa
Matemática. Exercícios de Revisão II. Eldimar. 1 a. 1) (CFTMG-2008) Na figura, está representado o gráfico da função f(x).
Nome: n o : E nsino: Médio S érie: T urma: Data: Prof(a): Eldimar 1 a Matemática Exercícios de Revisão II 1) (CFTMG-2008) Na figura, está representado o gráfico da função f(x). Com relação a f(x) pode-se
COLEÇÃO DARLAN MOUTINHO VOL. 02 RESOLUÇÕES
COLEÇÃO DARLAN MOUTINHO VOL. 0 RESOLUÇÕES Me ta 0 RESPOSTA 0 + 0 + 0 [Resposta do ponto de vista da disciplina de Matemática] [0] Falsa Nas etremidades das artérias o valor de 0, logo: V0 C. 0 R - 0 0
( ) = 0. ( ) = 30t 3t 2 é
QUESTÃO 01 t = 0 t +10t =1600 t 10t+1600 = 0 $ ou & t = 40 Portanto o primeiro momento em que o número de infectados é 1.600 é o 0 dia. QUESTÃO 0 9 Como D( x) = x + 18x+ 30, o valor de x que maximiza essa
2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.
Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados
SIMULADO DA ETAPA III - (9º Anos) Professor: Rivaildo (Matemática Básica)
SIMULADO DA ETAPA III - (9º Anos) Professor: Rivaildo (Matemática Básica) 1ª) As três figuras sobrepostas parcialmente, representam a cobertura de um Shopping de certa cidade. Deseja-se colocar a parte
2 LISTA DE MATEMÁTICA
LISTA DE MATEMÁTICA SÉRIE: º ANO TURMA: º BIMESTRE DATA: / / 011 PROFESSOR: ALUNO(A): Nº: NOTA: POLINÔMIOS I 01. (ITA-1995) A divisão de um polinômio P() por - resulta no quociente 6 + 5 + 3 e resto -7.
Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015)
Engenharia Civil/Mecânica Cálculo Profa Olga (º sem de 05) Conteúdo: Função do º grau (Função Afim) Definição Chama-se função polinomial do o grau, ou função afim, a qualquer função f: dada por uma lei
Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial
para: (a) f(x) = 3 (b) f(x) = c, c
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DESEMPENHO CÂMPUS PATO BRANCO Atividades Práticas Supervisionadas (APS) de Cálculo Diferencial e Integral Prof a. Dayse Batistus, Dr a.
Lista de Exercícios do capítulo 4
Lista de Eercícios do capítulo 4 1. Eplique a diferença entre um mínimo local e um mínimo absoluto. 2. Nos gráficos abaio, diga se a função tem um máimo local, um mínimo local, um máimo absoluto, um mínimo
Mat.Semana 7. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari)
Semana 7 PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos
O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.
Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são
Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?
X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões
MAT Cálculo para Ciências Biológicas - Farmácia Prof. Gláucio Terra. 3 a Lista de Exercícios
MAT0143 - Cálculo para Ciências Biológicas - Farmácia - 006 Prof. Gláucio Terra 3 a Lista de Eercícios 1-) Dois corredores iniciam uma corrida ao mesmo tempo e terminam empatados. Prove que em algum momento
Objetivos. Expressar o vértice da parábola em termos do discriminante e dos
MÓDULO 1 - AULA 17 Aula 17 Parábola - aplicações Objetivos Expressar o vértice da parábola em termos do discriminante e dos coeficientes da equação quadrática Expressar as raízes das equações quadráticas
1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e :
Matemática 2 Pedro Paulo GEOMETRIA PLANA XIII 1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS Seja um triângulo retângulo, com ângulos agudos e. Traçando a altura relativa à hipotenusa, formamos os triângulos retângulos
PLANO DE AULA. Universidade Federal do Pampa. Campus Caçapava do Sul
PLANO DE AULA Universidade Federal do Pampa Campus Caçapava do Sul Disciplina: Matemática Nome: Misael Forma Data da aula: 07/07/2017 Duração: 45 minutos Local: Dinarte Ribeiro Conteúdo: Funções. Conteúdo
Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria
Nome: nº 1º no Ensino Médio Professor Fernando Lista de Recuperação de Geometria Trigonometria 1 ) Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º
x + 2 com o eixo dos x, respectivamente.
PASES 1 a ETAPA TRIÊNIO 004-006 1 o DIA GABARITO 1 1 MATEMÁTICA QUESTÕES DE 01 A 10 01. Sejam A e B os pontos de interseção dos gráficos das funções f ( x) = 1 x + e g ( x) = 1 x + com o eixo dos x, respectivamente.
LISTA DE EXERCÍCIOS DE MATEMÁTICA PROFESSORA ANDRÉIA
LISTA DE EXERCÍCIOS DE MATEMÁTICA PROFESSORA ANDRÉIA Conteúdo da P: Função do 1º grau e do º grau, Probabilidade e Situações Problemas de funções. Função de 1º Grau 1. Observe o quadro abaio e responda:
MATEMÁTICA Módulo em IR 2. Professor Marcelo Gonzalez Badin
MATEMÁTICA Módulo em IR Professor Marcelo Gonzalez Badin Módulo de um número real Chama-se módulo (ou valor absoluto) de um número real a distância da imagem desse número, na reta orientada, até a origem
Função Quadrática. Objetivos. Metodologia. Público alvo
Função Quadrática Objetivos Os objetivos deste Objeto de Aprendizagem (OA) são: -Determinar a Concavidade da Parábola; -Determinar as Coordenadas do Vértice; -Determinar os zeros da Função Quadrática;
Lista de função quadrática
COLÉGIO PEDRO II CAMPUS REALENGO II LISTA DE APROFUNDAMENTO - ENEM MATEMÁTICA PROFESSOR: ANTÔNIO ANDRADE COORDENADOR: DIEGO VIUG Lista de função quadrática QUESTÃO 01 Assinale a ÚNICA proposição CORRETA.
Lista de Exercícios 3 1
Universidade Federal de Ouro Preto Departamento de Matemática MTM122 - CÁLCULO DIFERENCIAL E INTEGRAL I 1 Encontre os pontos críticos das funções a seguir: Lista de Eercícios 1 a f = + 7 2 5 b g = 7/ +
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e
Matemática Aplicada em C. Contábeis/Mário FUNÇÃO QUADRÁTICA
FUNÇÃO QUADRÁTICA Definição A função f: R R dada por f(x) = ax² + bx + c, com a, b, c reais e a 0, denomina-se função quadrática. Exemplos: f(x) = x² - 4x 3 (a = 1, b = -4, c = -3) f(x) = x² - 9 (a = 1,
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Teste de avaliação Grupo I
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A 0 05 007 Teste de avaliação Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,
