POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016
|
|
|
- David Sousa Paixão
- 9 Há anos
- Visualizações:
Transcrição
1 POLINÕMIOS E EQUAÇÕES POLINOMIAIS 06. (Unicamp 06) Considere o polinômio cúbico p() a, onde a é um número real. a) No caso em que p() 0, determine os valores de para os quais a matriz A abaio não é invertível. 0 A 0 a b) Seja b um número real não nulo e i a unidade imaginária, isto é, i. Se o número compleo z bi é uma raiz de p(), determine o valor de z.. (Unicamp 06) Considere o polinômio cúbico p() a, onde a é um número real. Sabendo que r e r são raízes reais de p(), podemos afirmar que p() é igual a a). b). c). d) 4.. (Epcar (Afa) 06) Considere os polinômios Q() e P() a b, sendo a e b números reais tais que a b 8. Se os gráficos de Q() e P() têm um ponto comum que pertence ao eio das abscissas, então é INCORRETO afirmar sobre as raízes de P() que a) podem formar uma progressão aritmética. b) são todas números naturais. c) duas são os números a e b d) duas são números simétricos. 4. (Aman 06) Considere os polinômios p() e b(). Sendo r() o resto da divisão de p() por b(), o valor de r é igual a a) 0 b) c) d) e) 5 5. (Mackenzie 06) A equação n m é igual a a) ou 0 b) ou c) ou d) ou e) ou 0 tem como raízes, m e n. Então, Página de 9
2 POLINÕMIOS E EQUAÇÕES POLINOMIAIS (Ita 06) Seja p o polinômio dado por 8 m n p(), em que os epoentes 8, m, n formam, nesta ordem, uma progressão geométrica cuja soma dos termos é igual a 4. Considere as seguintes afirmações: I. 0 é uma raiz dupla de p. II. é uma raiz dupla de p. III. p tem quatro raízes com parte imaginária não nula. Destas, é(são) verdadeira(s) a) apenas I. b) apenas I e II. c) apenas I e III. d) apenas II e III. e) I, II e III. 7. (Espce 06) Considere o polinômio de p() 0, podemos afirmar que a) quatro raízes são reais distintas. b) quatro raízes são reais, sendo duas iguais. c) apenas uma raiz é real. d) apenas duas raízes são reais e iguais. e) apenas duas raízes são reais distintas p() 4. Sobre as raízes 8. (Ita 06) Determine o termo constante do resto da divisão do polinômio ( ). 40 ( ) por 9. (Pucsp 06) Se é a única raiz da equação , então, relativamente às demais raízes dessa equação, é verdade que são números compleos a) cujas imagens pertencem ao primeiro e quarto quadrantes do plano compleo. b) que têm módulos iguais a. c) cujos argumentos principais são 45 e 5. d) cuja soma é igual a i. 0. (Mackenzie 06) Na equação a) b) 8 c) 9 d) 0 e) 40. (Ita 06) Sejam a, b, c números reais com a 0. a) Mostre que a mudança z transforma a equação equação de segundo grau. b) Determine todas as raízes da equação 0 ( ) 0, a multiplicidade da raiz é a b c b a 0 numa Página de 9
3 POLINÕMIOS E EQUAÇÕES POLINOMIAIS 06. (Aman 06) Sendo R a maior das raízes da equação R é a) b) 4 c) 6 d) 8 e) 0 6, 4 então o valor de Página de 9
4 POLINÕMIOS E EQUAÇÕES POLINOMIAIS 06 Gabarito: Resposta da questão : a) Se p() 0, pode-se escrever: p() a 0 a Para que a matriz A não seja invertível, seu determinante deve ser igual a zero. Assim, pode-se escrever: 0 det A a b) Supondo como raízes do polinômio os números bi; bi ; r, pode-se escrever: bi ( bi) r 0 r 4 Considerando 4 como raiz, pode-se deduzir o valor de a: 64 a 0 a 5 Fazendo o produto das três raízes (Relações de Girard), pode-se escrever: bi ( bi) ( 4) 5 4 b Assim, z será: z bi 4 b z Resposta da questão : [D] Se r e r são raízes de p, então p(r) p( r) 0. Logo, segue que r r ar 0 e r r ar 0. Somando essas equações, obtemos r 6 0, ou seja, r. Por outro lado, sendo α a outra raiz real de p, pelas Relações de Girard, vem r ( r) α α. Em consequência, tem-se p() ( r )( α) ( )( ) e, portanto, podemos afirmar que p() é igual a p() ( )( ) 4. Resposta da questão : [B] Se Q() e P() têm um ponto comum que pertence ao eio das abscissas, então ao menos uma raiz de Q() é também raiz de P(). Calculando: 0 Página 4 de 9
5 POLINÕMIOS E EQUAÇÕES POLINOMIAIS 06 Substituindo essa raiz em P(), tem-se: a b 0 a b 0 a b 0 b a Substituindo o valor de b na equação dada a b 8 a a 8 a 4 4a a 8 a 4 4a a 8 4a 8 4 a a b 8, tem-se: Substituindo novamente o valor de a na equação dada a b 8 b 8 b 9 b a b 8, tem-se: Assim, P(). Pode-se perceber daí que, se é raiz da equação, também será raiz. Assim sendo, o conjunto de raízes de P() é,,. Analisando então as afirmativas da questão, temos: [A] Correto (podem formar uma P.A. de razão ). [B] Incorreto (números negativos não são números naturais). [C] Correto. [D] Correto. Resposta da questão 4: [A] De acordo com a divisão euclidiana, podemos escrever que: ( ) Q() a b As raízes de 0 são ou. Fazendo, temos: a b a b Fazendo, temos: ( ) ( ) ( ) ( ) a b a b 7 Resolvendo o sistema a b a b 7, temos: a e b. Logo, o resto da divisão será dado por: r() Página 5 de 9
6 POLINÕMIOS E EQUAÇÕES POLINOMIAIS 06 Portanto, r 0. Resposta da questão 5: [E] Dividindo a equação por, temos: Determinando as raízes m e n, temos: ou. Portanto, n m poderá ser Resposta da questão 6: [C] ( ) ou. Considerando que (8, m, n) é uma PG, podemos escrever que: m 8n m 8 n e m n 8 4 Aubstituindo a primeira equação na segunda, temos: 8n 6 ( n) n 0n 6 0 Resolvendo a equação temos n ou n 8. Se n, então m 4. Se n 8, então m (não convém). Adotando n e m 4, temos o seguinte polinômio: 8 4 P() Para determinarmos as raízes de P() devemos considerar Temos então a seguinte equação na incógnita t. 4 t t t 0 t (t t ) 0 Resolvendo a equação na incógnita t, temos: t 0 ou t t 0. t. Página 6 de 9
7 POLINÕMIOS E EQUAÇÕES POLINOMIAIS 06 Sabemos que é raiz de t t 0, utilizaremos o dispositivo de Briot-Ruffini para determinar as demais raízes. ou seja, t t 0 (t ) (t t ) 0 t t 0 terá duas raízes compleas, pois seu discriminante é menor que zero. Portanto, as raízes reais de P() serão: 0 0 (raíz dupla) E as outras quatro raízes continuarão sendo números compleos não reais. Portanto, a alternativa [C] é a correta. Resposta da questão 7: [E] p() p() ( 4 ) 4 p() ( ( ) ( ) ( ) ) 4 p() ( ) ( ) p() ( ) ( ) Portanto, as raízes são 0,, i, i, i e i. Apenas duas raízes (0 e ) são reais e distintas. Resposta da questão 8: Desenvolvendo o Binômio de Newton notamos que as parcelas que não são divisíveis por ( ) formam o polinômio S() S() ( ) ( ) S() 780 ( ) 40 ( ) 4 S() Portanto, o resto da divisão de ( ) por ( ). ( ) é igual ao resto da divisão de S() por Página 7 de 9
8 POLINÕMIOS E EQUAÇÕES POLINOMIAIS Portanto, o termo constante do resto da divisão do polinômio Resposta da questão 9: [A] Aplicando o dispositivo de Briot-Ruffini, temos: 40 ( ) por ( ) é 78. Ou seja, ( ) ( ) 0 Determinando as demais raízes através da equação: i i 0 i Estas raízes possuem afios localizados no primeiro e quarto quadrantes. Portanto, a alternativa [A] está correta. Resposta da questão 0: [D] ( ) ( ) ( ) ( ) ( ) Como o fator aparece 0 vezes na fatoração desse polinômio, podemos afirmar que é uma raiz de multiplicidade 0. Resposta da questão : a) z z 4 a b c b a 0 Dividindo a equação toda por, temos: Página 8 de 9
9 POLINÕMIOS E EQUAÇÕES POLINOMIAIS 06 b a a b c 0 a b c 0 a z b z c 0 b) De acordo com a epressão demonstrada no item acima, podemos escrever: 4 0. z z 0 z z 4 0 z 4 ou z Como z, podemos escrever que: ou ou i i 0 ou Portanto, as raízes são: ou ou i ou i. Resposta da questão : [E] 6, admitindo 4, A partir do Teorema das raízes racionais, podemos notar que as possíveis raízes racionais desta equação são,,, 6,,, e 6. Notemos que é raiz desta equação, pois Aplicando o dispositivo prático de Briot-Ruffini, obtemos: ( ) 4 ( ) ( ) 6 0. Portanto, a equação poderá ser escrita na forma: ( )( 5 6) 0. Resolvendo a equação produto acima, temos: ou Portanto, a maior raiz será R 6 e R 0. Página 9 de 9
POLINÔMIOS. Nível Básico
POLINÔMIOS Nível Básico. (Eear 07) Considere P(x) x bx cx, tal que P() e P() 6. Assim, os valores de b e c são, respectivamente, a) e b) e c) e d) e. (Epcar (Afa) 05) Considere o polinômio a) x 0 não é
Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação
Polinômios 1. (Ufsc 015) Em relação à(s) proposição(ões) abaixo, é CORRETO afirmar ue: 01) Se o gráfico abaixo representa a função polinomial f, definida em por f(x) ax bx cx d, com a, b e c coeficientes
Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões:
Lista de eercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho Questões: 0.(GV) Num polinômio P() do terceiro grau, o coeficiente de P() = 0, calcule o valor de P( ). é. Sabendo-se
NÚMEROS COMPLEXOS
NÚMEROS COMPLEXOS - 016 1. (EFOMM 016) O número complexo, z z (cos θ i sen θ), sendo i a unidade imaginária e 0 θ π, que satisfaz a inequação z i e que possui o menor argumento θ, é a) b) c) d) 5 5 z i
Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x
EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a
Números Complexos. é igual a a) 2 3 b) 3. d) 2 2 2
Números Complexos 1. (Epcar (Afa) 01) Considerando os números complexos z 1 e z, tais que: z 1 é a raiz cúbica de 8i que tem afixo no segundo quadrante z é raiz da equação x x 1 0 Pode-se afirmar que z1
Exercícios de Aprofundamento 2015 Mat - Polinômios
Exercícios de Aprofundamento 05 Mat - Polinômios. (Espcex (Aman) 05) O polinômio (x) x x deixa resto r(x). Sabendo disso, o valor numérico de r( ) é a) 0. b) 4. c) 0. d) 4. e) 0. 5 f(x) x x x, uando dividido
Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2
Polinômios. (ITA 2005) No desenvolvimento de (ax 2 2bx + c + ) 5 obtém-se um polinômio p(x) cujos coeficientes somam 32. Se 0 e são raízes de p(x), então a soma a + b + c é igual a (A) 2 (B) 4 (C) 2 (D)
POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:
POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes
Interbits SuperPro Web
1 (Ita 018) Uma progressão aritmética (a 1, a,, a n) satisfaz a propriedade: para cada n, a soma da progressão é igual a n 5n Nessas condições, o determinante da matriz a1 a a a4 a5 a 6 a a a 7 8 9 a)
Matemática E Extensivo V. 6
Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. a) P() = ³ + 7. ² 7. P() = + 7 7
Lista de Módulo Extensivo Alfa Professor: Leandro (Pinda)
Lista de Módulo Etensivo Alfa Professor: Leandro (Pinda). (Pucpr 08) Considere os seguintes dados. Pode-se dizer que quando duas variáveis e y são tais que a cada valor de corresponde um único valor de
Matemática Matrizes e Determinantes
. (Unesp) Um ponto P, de coordenadas (x, y) do a plano cartesiano ortogonal, é representado pela matriz 5. (Unicamp) Considere a matriz M b a, onde coluna assim como a matriz coluna b a e b são números
Matemática E Extensivo V. 6
Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +
Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:
EQUAÇÕES POLINOMIAIS. EQUAÇÃO POLINOMIAL OU ALGÉBRICA Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: p(x) = a n x n + a n x n +a n x n +... + a x + a 0 = 0 onde
Funções Polinomiais com Coeficientes Complexos. Teorema do Resto. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Teorema do Resto 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Teorema do Resto 1 Exercícios Introdutórios
1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3
Complexos 06. (Espcex 0) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 b) 6 c) 5 d) e) x 8 0 tem área igual a. (Unicamp 0) Chamamos de unidade imaginária e denotamos por
ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C
Questão 01 EB EA = EC ED. 6 x = 3. x =
Questão 0 Seja E um ponto eterno a uma circunferência. Os segmentos EA e ED interceptam essa circunferência nos pontos B e A, e, C e D, respectivamente. A corda AF da circunferência intercepta o segmento
MATRIZES E SISTEMAS LINEARES 2016
1. (Fuvest 016) Uma dieta de emagrecimento atribui a cada alimento um certo número de pontos, que equivale ao valor calórico do alimento ao ser ingerido. Assim, por exemplo, as combinações abaixo somam,
Matemática E Extensivo V. 8
Matemática E Etensivo V. 8 Eercícios ) 5 Sejam r, r e r 3 as raizes da equação 3 + 3 7 =. Logo r + r + r 3 = b a = ( ) = 5 ) Sejam r, r, r 3 e r as raizes da equação 3 5 3 + 8 = Logo r. r. r = c a = 3
CEM Centro De Estudos Matemáticos
1. (Udesc ) Sejam A = (a ij ) e B = (b ij ) matrizes quadradas de ordem 3 de tal forma que: a ij = i + j b ij = j e os elementos de cada coluna, de cima para baixo, formam uma progressão geométrica de
LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS 2º TRIMESTRE
LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS º TRIMESTRE ÁLGEBRA 1) O valor de z sabendo que 64 z é: z A) 64 B) 64 C) 8 + i D) 8 i E) 8 ) Considere as raízes complexas w 0, w, 1 w, w 3 e
RREGUOJMatemática Régis Cortes. Matemática Régis Cor POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD
POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD 1 Propriedades importantes: P1 - Toda equação algébrica de grau n possui exatamente n raízes. Exemplo: a equação x 3 - x = 0 possui 3 raízes a saber: x = 0
ITA 2004 MATEMÁTICA. Você na elite das universidades! ELITE
www.elitecampinas.com.br Fone: () -7 O ELITE RESOLVE IME PORTUGUÊS/INGLÊS Você na elite das universidades! ITA MATEMÁTICA www.elitecampinas.com.br Fone: () -7 O ELITE RESOLVE ITA MATEMÁTICA GABARITO ITA
Lista de Função Inversa, Bijeção e Paridade Extensivo Alfa Professor: Leandro (Pinda)
Lista de Função Inversa, Bijeção e Paridade Etensivo Alfa Professor: Leandro (Pinda). (Udesc 0) A função f definida por f() é uma função bijetora, se os conjuntos que representam o domínio (D(f)) e a imagem
EQUAÇÕES POLINOMIAIS
EQUAÇÕES POLINOMIAIS Prof. Patricia Caldana Denominamos equações polinomiais ou algébricas, as equações da forma: P(x)=0, onde P(x) é um polinômio de grau n > 0. As raízes da equação algébrica, são as
Funções Polinomiais com Coeficientes Complexos. Dispositivo de Briot-Ruffini. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini
Matemática 1 INTRODUÇÃO 1 TEOREMA DAS RAÍZES COMPLEXAS 3 TEOREMA DAS RAÍZES RACIONAIS 2 TEOREMA DAS RAÍZES IRRACIONAIS. Exercício Resolvido 2
Matemática Frente II CAPÍTULO 22 EQUAÇÕES POLINOMIAIS 1 INTRODUÇÃO Nos capítulos anteriores, durante o estudo de polinômios, já estudamos alguns teoremas que nos ajudam a encontrar as raízes de polinômios.
Lista de Revisão para Substitutiva e A.P.E. Matrizes Determinantes Sistemas Lineares Números Complexos Polinômios
Nome: nº Data: / _ / 017 Professor: Gustavo Bueno Silva - Ensino Médio - 3º ano Lista de Revisão para Substitutiva e A.P.E. Matrizes Determinantes Sistemas Lineares Números Complexos Polinômios 3 3 a a
LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO
LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO. (Espce (Aman)) O domínio da função real f A), B), 6 C),6 D), E), 8 é. (Unicamp) Seja f() uma função tal que para todo número real temos que f( ) ( )f(). Então, f() é
2. (Ufrj 2003) Os números reais a, b, c e d formam, nesta ordem, uma progressão aritmética. Calcule o determinante da matriz
1 Projeto Jovem Nota 10 1. (Uff 2000) Numa progressão aritmética, de termo geral aš e razão r, tem-se a=r=1/2. Calcule o determinante da matriz mostrada na figura adiante. 2. (Ufrj 2003) Os números reais
Funções Polinomiais com Coeficientes Complexos. Quantidade de Raízes e Consequências. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Quantidade de Raízes e Consequências 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Quantidade de Raízes
Matemática E Extensivo V. 7
Matemática E Etensivo V. 7 Eercícios ) B ) A P() = ³ + a² + b é divisivel por. Pelo teorema do resto, = é raiz de P(). P() = ³ + a. ² + b a + b = Da mesma maneira, P() é divisível por. Pelo teorema do
Matemática capítulo 1
Matemática capítulo Eercícios propostos 0. Escreva as raízes abaio em função da unidade imaginária: = b) = 4 = 0. Resolva as equações abaio: 7 + = 0 b) + 0 = 0 4 = 0 0. Resolva as equações abaio: 7 = 0
Álgebra. Polinômios.
Polinômios 1) Diga qual é o grau dos polinômios a seguir: a) p(x) = x³ + x - 1 b) p(x) = x c) p(x) = x 7 - x² + 1 d) p(x) = 4 ) Discuta o grau dos polinômios em função de k R: a) p(x) = (k + 1)x² + x +
Exercícios de Aprofundamento Mat Sistemas Lineares
1. (Unesp 013) Uma coleção de artrópodes é formada por 36 exemplares, todos eles íntegros e que somam, no total da coleção, 113 pares de patas articuladas. Na coleção não há exemplares das classes às quais
(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é:
APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado
Interbits SuperPro Web
Lista ita eponencial e modulo Carlos Peioto. (Ita 07) Esboce o gráfico da função f: dada por f().. (Ita 07) Sejam S {(, y) : y } e área da região S S é S {(, y) : (y ) 5}. A a) 5. 4 π b) 5. 4 π c) 5. 4
NOTAÇÕES. Obs.: São cartesianos ortogonais os sistemas de coordenadas considerados
ITA006 NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais i: unidade imaginária; i z = x+ iy, x, y = 1 : conjunto dos números reais : conjunto dos números inteiros = {0, 1,, 3,...
RACIOCÍNIO LÓGICO ÁLGEBRA LINEAR
RACIOCÍNIO LÓGICO AULA 11 ÁLGEBRA LINEAR I - POLINÔMIOS POLINÔMIOS E EQUAÇÕES ALGÉBRICAS 1 Definição Seja C o conjunto dos números complexos ( números da forma a + bi, onde a e b são números reais e i
Resolução prova de matemática UDESC
Resolução prova de matemática UDESC 009. Prof. Guilherme Sada Ramos Guiba 1. O enunciado da questão omite a palavra, mas quer dizer que 0% dos aprovados passaram somente na disciplina A, 50% passaram somente
SUMÁRIO. Unidade 1 Matemática Básica
SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...
Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.
Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)
Equações Algébricas - Propriedades das Raízes. Teorema da Decomposição. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 3 ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 1 Exercícios
GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2).
01) a) P (1) = 1 + 7 1 17 1 P (1) = 1 + 7 17 P (1) = 11 P (1) é sempre igual a soma dos coeficientes de P (x) b) P (0) = 0 + 7 0 17 0 P (0) = 0 + 0 0 P (0) = P (0) é sempre igual ao termo independente
AO VIVO MATEMÁTICA Professor Haroldo Filho 3 de maio, 2016 EQUAÇÕES IRRACIONAIS
MATEMÁTICA Professor Haroldo Filho de maio, 016 EQUAÇÕES IRRACIONAIS Na resolução das equações irracionais, onde a incógnita se encontra sob um radical de índice dois, seremos obrigados a elevar ao quadrado
GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).
GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos
PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL
PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx
f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2,
Ensino Aluno (: Nº: Turma: ª série Bimestre: º Disciplina: Espanhol Atividade Complementar Funções Compostas e Inversas Professor (: Cleber Costa Data: / /. (Eear 07) Sabe-se que a função invertível. Assim,
1 INTRODUÇÃO 3 RELAÇÕES DE GIRARD 2 SOMAS DE GIRARD. Exercício Resolvido 1. Matemática Polinômios CAPÍTULO 04 RELAÇÕES DE GIRARD
Matemática Polinômios CAPÍTULO 04 RELAÇÕES DE GIRARD 1 INTRODUÇÃO Aprendemos, até agora, a resolver equações do primeiro e do segundo grau. Nossa meta, agora, é encontrar maneiras de resolver equações
m 1 Grupo A é 3, então ( P + Q R) Como o maior expoente da variável x do polinômio P + Q R Analogamente ao item a, (PQ) = 3.
Grupo A. Seja x o grau do divisor, então p x + q x p q. Sendo r o grau do resto, então r
EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS
EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS - 06. (Unicamp 06) Considere a função f() 5, definida para todo número real. a) Esboce o gráfico de y f() no plano cartesiano para. b) Determine os valores
RETA E CIRCUNFERÊNCIA
RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine
2. (Ita 2002) Com base no gráfico da função polinomial y = f(x) esboçado a seguir, responda qual é o resto da divisão de f(x) por (x - 1/2) (x 1).
1 Projeto Jovem Nota 10 Polinômios Lista B Professor Marco Costa 1. (Fuvest 2002) As raízes do polinômio p(x) = x - 3x + m, onde m é um número real, estão em progressão aritmética. Determine a) o valor
Solução Comentada Prova de Matemática
18. Se f é uma função real de variável real definida por f() = a + b + c, onde a, b e c são números reais negativos, então o gráfico que melhor representa a derivada de f é: A) y B) y C) y D) y E) y Questão
Função Modular. 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7
Função Modular 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7 2. (Pucrj 2016) Qual dos gráficos abaixo representa a função
... Onde usar os conhecimentos os sobre...
IX NÚMEROS COMPLEXOS E POLINÔMIOS Por que aprender sobre Números Complexos?... Ao estudar os Números Complexos percebemos que sua ligação à geometria nos dá uma perspectiva mais rica dos métodos geométricos
{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2
NOTAÇÕES : conjunto dos números complexos. : conjunto dos números racionais. : conjunto dos números reais. : conjunto dos números inteiros. = 0,,,,.... { } { } * =,,,.... i : unidade imaginária; i =. z=x+iy,
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba Professor Gilmar Bornatto
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba 1. Para fazer uma caixa sem tampa com um único pedaço de papelão, utilizou-se um retângulo de 16 cm de largura por 30 cm
Matemática. Resolução das atividades complementares. M3 Determinantes. 1 O valor do determinante da matriz A 5
Resolução das atividades complementares Matemática M Determinantes p. 6 O valor do determinante da matriz A é: a) 7 c) 7 e) 0 b) 7 d) 7 A 7 Se a 7, b e c, determine A a b c. a 7 ; b ; c A a 8 () b () c
O problema proposto possui alguma solução? Se sim, quantas e quais são elas?
PROVA PARA OS ALUNOS DE 3º ANO DO ENSINO MÉDIO 1) Considere o seguinte problema: Vitor ganhou R$ 3,20 de seu pai em moedas de 5 centavos, 10 centavos e 25 centavos. Se recebeu um total de 50 moedas, quantas
Prova de Matemática ( ) Questão 01 Gabarito A + = Portanto, a expressão é divisível por n 1. Questão 02 Gabarito C
Prova de Matemática Questão Gabarito A n! + n n( n )( n! ) ( n ) ( n ) n( n! ) + + Portanto, a epressão é divisível por n. Questão Gabarito C Consideremos uma situação inicial de paridade dólar-real, em
A matriz das incógnitas é uma matriz coluna formada pelas incógnitas do sistema.
MATEMÁTICA MÓDULO 1 SISTEMA LINEAR Um sistema linear de m equações a n incógnitas é um conjunto de m (m 1) equações lineares a n incógnitas e pode ser escrito como segue: a a a b a a a b 11 1 1 1n n 1
LISTA DE RECUPERAÇÃO ÁLGEBRA 3º ANO
LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO. (Espce (Aman)) O domínio da função real f A), B), 6 C),6 D), E), 8 é. (Unicamp) Seja f() uma função tal que para todo número real temos que f( ) ( )f(). Então, f() é
TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA
TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação
o anglo resolve a prova de Matemática do ITA dezembro de 2005
o anglo resolve a prova de Matemática do ITA dezembro de 005 Código: 858006 É trabalho pioneiro. Prestação de serviços com tradição de confiabilidade. Construtivo, procura colaborar com as Bancas Examinadoras
POLINÔMIOS. 1. Função polinomial. 2. Valor numérico. 3. Grau de um polinômio. 4. Polinômios idênticos
POLINÔMIOS 1. Função polinomial É a função P() = a 0 + a 1 + a + a +... + a n n, onde a 0, a 1, a,..., a n são os coeficientes e os termos do polinômio são : a 0 ; a 1 ; a ; a ;... ; a n n. Valor numérico
DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x)
DETERMINANTE 2016 1. (Uerj 2016) Considere uma matriz A com 3 linhas e 1 coluna, na qual foram escritos os valores 1, 2 e 13, nesta ordem, de cima para baixo. Considere, também, uma matriz B com 1 linha
SE18 - Matemática. LMAT 6B2-1- Polinômios (Operações com polinômios) Questão 1
SE18 - Matemática LMAT 6B2-1- Polinômios (Operações com polinômios) Questão 1 (Eear 2017) Considere P(x) = 2x 3 + bx 2 + cx, tal que P(1) = -2 e P(2) = 6. Assim, os valores de b e c são, respectivamente,
ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998
PROVA DE MATEMÁTICA 998 Se a seqüência de inteiros positivos (,, y) é uma Progressão Geométrica e (+, y, ) uma Progressão Aritmética, então, o valor de + y é a) b) c) d) A soma das raízes da equação log
PAESPE. Equação do 2º grau
PAESPE Equação do º grau Equação Uma equação é uma igualdade entre duas epressões onde aparece pelo menos uma letra designada por incógnita ou variável. Eemplo: 3 4 1 34 7 5 y1 é equação não são equações
UFSC. Matemática (Amarela) Resposta: = , se x < fx ( ) 2x 3, se 7 x < 8. x + 16x 51, se x. 01. Correta.
Resposta: 01 + 08 + 16 = 5 7 4, se x < fx ( ) x 3, se 7 x < 8 x + 16x 51, se x 8 01. Correta. 0. Incorreta. A imagem da função é Im = ( ; 13]. 3 04. Incorreta. f( 16) f( 6) 4 08. Correta. 16. Correta.
EXERCÍCIOS AULÃO ITA PROF. RENATO MADEIRA
EXERCÍCIOS AULÃO ITA PROF. RENATO MADEIRA ) (EN 0) Um observador, de altura desprezível, situado a m de um prédio, observa-o sob um certo ângulo de elevação. Afastando-se mais 0 m em linha reta, nota que
8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau
8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau 9. Quais das seguintes funções são polinomiais? Justifique. a) ( ) b) ( ) c) ( ) d) ( ) e) ( ) 10. Sendo ( ), calcule:
Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n
POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:
LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA 3º ANO
LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA º ANO. (Espce (Aman)) O domínio da função real f A),, 6 C),6 D),, 8 é. (Unicamp) Seja f() uma função tal que para todo número real temos que f( ) ( )f(). Então,
Conjunto dos Números Complexos
Conjunto dos Unidade Imaginária Seja a equação: x + 0 Como sabemos, no domínio dos números reais, esta equação não possui solução, criou-se então um número cujo quadrado é. Esse número, representado pela
Projeto Jovem Nota 10 Polinômios Lista A Professor Marco Costa
1 Projeto Jovem Nota 10 1. (Ufv 2000) Sabendo-se que o número complexo z=1+i é raiz do polinômio p(x)=2x +2x +x+a,calcule o valor de a. 2. (Ita 2003) Sejam a, b, c e d constantes reais. Sabendo que a divisão
FGV ADM 04/JUNHO/2017
FGV ADM 0/JUNHO/017 MATEMÁTICA 01. Habitualmente, dois supermercados A e B vendem garrafas de certa marca de vinho por p reais a unidade. Em determinada semana, o supermercado A anunciou uma promoção para
Matemática C Semiextensivo v. 4
Semietensivo v Eercícios ), aplicando o teorema de Laplace na ª coluna, temos que: A + A + A + A + + ( ) + ( ) ( + + + + ) + ( + + + 9 + ) + ) para qualquer valor de A + A + A + A + ( ) ( ) + ( ), ou seja,
Exercícios de Aprofundamento 2015 Mat Log/Exp/Teo. Num.
Eercícios de Aprofundamento 05 Mat Log/Ep/Teo. Num.. (Ita 05) Considere as seguintes afirmações sobre números reais: I. Se a epansão decimal de é infinita e periódica, então é um número racional. II..
MATEMÁTICA Professores: Andrey, Cristiano e Julio
MATEMÁTICA Professores: Andrey, Cristiano e Julio Questões Substituindo os valores dados na fórmula teremos: x 1 = x 0+1 = (x 0 )2 +a 2.x 0 = (2)2 +5 = 9 2.2 4 e x 2 = x 1+1 = (x 1 )2 +a = ( 9 4 )2 +5
1 0 para todo x, multiplicando-se os dois membros por. 2x 1 0 x 1 2. b a x. ba 2. e b 2 c
CAPÍTULO 1 Exercícios 1..n) Como x 0 para todo x, o sinal de x(x ) é o mesmo que o de x; logo, x(x ) 0 para x 0; x(x ) 0 para x 0; x(x ) 0 para x 0.. n) Como x 1 1 0 para todo x, multiplicando-se os dois
G3 de Álgebra Linear I
G3 de Álgebra Linear I 2.2 Gabarito ) Considere a matriz 4 N = 4. 4 Observe que os vetores (,, ) e (,, ) são dois autovetores de N. a) Determine uma forma diagonal D de N. b) Determine uma matriz P tal
DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /.
DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /. 1. (Ufjf-pism 017) Qual é o polinômio que ao ser multiplicado por g(x) 3 x 2x 5x 4 tem como resultado o polinômio 6 5 4 h(x)
MONÔMIOS E POLINÔMIOS
MONÔMIOS E POLINÔMIOS Problema: Observa as figuras. 6-9 6 4 Sabendo que as figuras são equivalentes, determina as dimensões do retângulo. Resolução: Se as figuras são equivalentes significa que têm a mesma
1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0
Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A
Erivaldo. Polinômios
Erivaldo Polinômios Polinômio ou Função Polinomial Definição: P(x) = a o + a 1.x + a 2.x 2 + a 3.x 3 +... + a n.x n a o, a 1, a 2, a 3,..., a n : Números complexos Exemplos: 1) f(x) = x 2 + 3x 7 2) P(x)
Soluções Comentadas Matemática Processo Seletivo da Escola de Formação de Oficiais da Marinha Mercante
CURSO MENTOR Soluções Comentadas Matemática Processo Seletivo da Escola de Formação de Oficiais da Marinha Mercante Versão.8 05/0/0 Este material contém soluções comentadas das questões de matemática do
EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA
EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),
Matemática 7. Capítulo 1. Complexos, Polinômios e Equações Algébricas
Matemática 7 Complexos, Polinômios e Equações Algébricas Capítulo 1 PVD-07-MA74 01. Dados z 1 = 1 + i; z = i e z 3 = i, então: a) z 1 + z = z 3 b) z 1 z = z 3 c) z 1 z = z 3 d) z 1 z z 3 = + 6i e) z 1
Matemática E Extensivo V. 8
Matemática E Extensivo V. 8 Resolva Aula 9 9.) D x + x 7x 6 = x = é raiz. Aula.) x + px + = Se + i é raiz, então i também é. 5 7 6 Soma = b a = p p = + i + i p = p = Q(x) = x + 5x + Resolvendo Q(x) =,
Assinale as proposições verdadeiras some os resultados e marque na Folha de Respostas.
PROVA DE MATEMÁTICA a AVALIAÇÃO UNIDADE 8 a SÉRIE E M _ COLÉGIO ANCHIETA-A ELAORAÇÃO DA PROVA: PROF OCTAMAR MARQUES PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÕES DE A 8 Assinale as proposições verdadeiras
Exercícios de Aprofundamento Mat Polinômios e Matrizes
. (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto
FUNÇÕES EXPONENCIAIS
FUNÇÕES EXPONENCIAIS ) Uma possível lei para a função eponencial do gráfico é (a) = 0,7. (b) =. 0,7 (c) = -. 0,7 (d) = -.,7 (e) = - 0,7. ) Os gráficos de = e = - (a) têm dois pontos em comum. (b) são coincidentes.
Retas Tangentes à Circunferência
Retas Tangentes à Circunferência 1. (Fuvest 01) São dados, no plano cartesiano, o ponto P de coordenadas (,6) e a circunferência C de equação um ponto Q. Então a distância de P a Q é a) 15 b) 17 c) 18
