Erivaldo. Polinômios
|
|
|
- Derek Silva Ribas
- 8 Há anos
- Visualizações:
Transcrição
1 Erivaldo Polinômios
2 Polinômio ou Função Polinomial Definição: P(x) = a o + a 1.x + a 2.x 2 + a 3.x a n.x n a o, a 1, a 2, a 3,..., a n : Números complexos Exemplos: 1) f(x) = x 2 + 3x 7 2) P(x) = 7x 6 + 3x 4 7x 2 5
3 Polinômios Variável, Grau, Coeficientes e Termo Independente Exemplos: 1) P(x) = 5x 3 + 9x 2 7x + 6 Variável: x Grau: 3º Coeficientes: 5, 9, - 7, 6 Termo Independente: 6 2) P(x) = 7x 5 + 2x 4 5x Variável: x Grau: 5º Coeficientes: 7, 2, 0, - 5, 0, 4 Termo Independente: 4
4 Polinômios Valor Numérico Exemplo: P(x) = x 3 + 3x 2 2x + 1 P(2) = (2) (2) 2 2.(2) + 1 P(2) = 17 P(0) = (0) (0) 2 2.(0) + 1 P(0) = 1 P(1) = (1) (1) 2 2.(1) + 1 P(0) = = 3 P(0) = termo independente P(1) = soma dos coeficientes
5 Polinômios Raiz P(x) = x 3 + 3x 2 + x 2 P(-2) = (-2) (-2) 2 + (-2) 2 P(-2) = P(-2) = 0-2 é raiz de P(x) α é raiz de P(x) se, e somente se, P(α) = 0
6 Polinômios Complete: Q(3) = 0 3 é raiz de Q(x) 4 é raiz de R(x) R(4) = 0 Soma dos coeficientes é nula P(1) = 0 1 é raiz de P(x)
7 Exemplo 01 Sendo P(x) = Q(x) + x 2 + x + 1 e sabendo que 2 é raiz de P(x) e 1 é raiz de Q(x), então P(1) Q(2) vale: Resolução: P(2) = 0 Q(1) = 0 P(x) = Q(x) + x 2 + x + 1 P(2) = Q(2) + (2) = Q(2) Q(2) = 7 P(1) Q(2) 3 ( 7) = 10 P(1) = Q(1) + (1) P(1) = P(1) = 3 Gabarito: 10
8 Polinômios Igualdade de Polinômos Dois polinômios são iguais se, e somente se, seus coeficientes forem ordenadamente iguais Exemplo: P(x) = 3x 3 + 5x 2 4x + 9 Q(x) = ax 3 + 2x 2 cx + 4x 3 + bx x + d Q(x) = ( a + 4 ).x 3 + ( b + 2 ).x 2 + ( 7 c ).x + ( d 5 ) a + 4 = 3 a = 1 b + 2 = 5 b = 3 P(x) = Q(x) 7 c = 4 c = 11 d 5 = 9 d = 14
9 Polinômios Polinômo Identicamente Nulo Um polinômio é nulo se, e somente se, seus coeficientes forem nulos Exemplo: Q(x) = ax 3 + 2x 2 cx + 4x 3 + bx x + d Q(x) = ( a + 4 ).x 3 + ( b + 2 ).x 2 + ( 7 c ).x + ( d 5 ) Q(x) é nulo a + 4 = 0 a = 4 b + 2 = 0 b = 2 7 c = 0 c = 7 d 5 = 0 d = 5
10 Polinômios Divisão Nomes: 1 : resto 2 : quociente 4 : divisor 9 : dividendo Prova real: 9 = P(x) D(x) R(x) Q(x) Nomes: R(x) : resto Q(x) : quociente D(x) : divisor P(x): dividendo Prova real: P(x) = D(x).Q(x) + R(x) Grau de Q(x): G Q = G P G D Grau de R(x): G R < G D G R = G D 1
11 Polinômios Exemplo: Grau de Q(x): x 6 x 4 R(x) Q(x) Grau de R(x): Maior Grau de R(x): G Q = G P G D G Q = 6 4 G Q = 2 G R < G D G R = G D 1 G R = 4 1 R(x) = ax 3 + bx 2 + cx + d Q(x) = ax 2 + bx + c
12 Exemplo 02 Encontre o quociente e o resto da divisão de P(x) = 2x 4 3x 3 + 2x 2 5x + 1 por D(x) = x 2 2x x 4 3x 3 + 2x 2 5x + 1 x 2 2x + 3 2x 4 + 4x 3 6x 2 2x 2 + x x 3 4x 2 5x x 3 + 2x 2 3x Q(x) = 2x 2 + x 2 0 2x 2 8x x 2 4x + 6 R(x) = 12x x + 7
13 Exemplo 03 Encontre o quociente e o resto da divisão de P(x) = 5x 3 + x 2 3x + 2 por D(x) = x 2 x x 3 + x 2 3x + 2 x 2 x + 2 5x 3 + 5x 2 10x 5x x 2 13x + 2 6x 2 + 6x 12 Q(x) = 5x x 10 R(x) = 7x 10
14 Exemplo 04 Encontre os valores de a e b para que o polinômio P(x) = x 3 3x 2 + ax + b seja divisível por D(x) = x 2 2x + 3. x 3 3x 2 + ax + b x 2 2x + 3 x 3 + 2x 2 3x 0 x 2 + (a 3)x + b + x 2 2x + 3 x 0 + (a 5)x + (b + 3) 1 Resto nulo R(x) = (a 5).x + (b + 3) zero a 5 = 0 a = 5 zero b + 3 = 0 b = 3
15 Exemplo 05 Encontre os valores de a e b para que o polinômio P(x) = x 3 3x 2 + ax + b quando dividido por D(x) = x 2 2x + 3 deixe resto 7 x 3 3x 2 + ax + b x 2 2x + 3 x 3 + 2x 2 3x 0 x 2 + (a 3)x + b + x 2 2x + 3 x 0 + (a 5)x + (b + 3) 1 R(x) = 0.x + 7 R(x) = (a 5).x + (b + 3) zero a 5 = 0 a = 5 sete b + 3 = 7 b = 4
16 Exemplo 06 Encontre o quociente e o resto da divisão de P(x) = x 3 4x 2 + 5x 7 por D(x) = x 2. Resolução: x 3 4x 2 + 5x 7 x 2 x 3 + 2x 2 x 2 2x x 2 + 5x + 2x 2 4x 0 + x 7 Q(x) = x 2 2x + 1 x + 2 R(x) = 5 0 5
17 Exemplo 07 Encontre o resto da divisão de P(x) = x 3 4x 2 + 5x 7 por D(x) = x 2. Resolução: Teorema do resto Q(x) = x 2 2x + 1 P(x) = x 3 4x 2 + 5x 7 D(x) = x 2 R(x) = 5 P( 2 ) = ( 2 ) 3 4( 2 ) 2 + 5( 2 ) 7 P(2) = P(2) = 5 R(x) = 5 Raiz: x 2 = 0 x = 2 P(raiz do divisor) = resto divisor de primeiro grau
18 Exemplo 08 Encontre o quociente e o resto da divisão de P(x) = x 3 4x 2 + 5x 7 por D(x) = x 2. Resolução: Briot - Ruffini P(x) = 1x 3 4x 2 + 5x 7 D(x) = x quociente Q(x) = x 2 2x + 1 resto R(x) = 5 divisor de primeiro grau Raiz: x 2 = 0 x = Q(x) = x 2 2x + 1 R(x) = x ó descer x 1
19 Exemplo 09 Encontre o quociente da divisão de P(x) = 4x 3 2x 2 + 2x 1 por D(x) = 2x 6. Resolução: Briott-Ruffini: Raiz do divisor: 2x 6 = 0 x = 3 : 2 Q(x) = 2x 2 + 5x + 16 R(x) = 95
20 Exemplo 10 (UDESC) A relação entre a e b, para que o polinômio P(x) = x 5 2x 4 + 4x 3 8x 2 + ax b tenha resto R(x) = 3, quando dividido por D(x) = x 2, é: a) 2a b = 3 b) 2a 2b = 3 c) 2a + b = 3 d) 2a + 2b = 3 e) a b = 0 Resolução: Raiz do divisor: x 2 = 0 x = 2 Resto da divisão: P(x) = x 5 2x 4 + 4x 3 8x 2 + ax b P(2) = (2) 5 2.(2) (2) 3 8.(2) 2 + a.(2) b Gabarito: a R = a b 3 = 2a b
21 Polinômio Complete: P(x) é divisível por (x 4) P( 4 ) = 0 P(x) dividido por (x 2) dá resto 7 P( 2 ) = 7 P(x) é divisível por (x + 5) P( -5 ) = 0 P(x) dividido por (x + 1) dá resto 3 P( -1 ) = 3
22 Polinômio Complete: P(x) é divisível por (x 3) e por (x + 1) P( 3 ) = 0 e P( -1) = 0 P(x) é divisível por (x 1).(x + 4) P( 1 ) = 0 e P( -4) = 0 P(x) é divisível por (x 2 5x + 6) P( 2 ) = 0 e P( 3 ) = 0 As raízes do divisor são raízes do dividendo quando o resto for zero (divisível) P(k) = 0 se, e somente se, P(x) é divisível por x k
23 Exemplo 11 Determine b e c de modo que o polinômio P(x) = x 4 + x 2 + bx + c seja divisível por (x 2), mas quando dividido por (x + 2) deixe resto 4. Resolução: P(x) dividido por (x 2) deixa resto zero P( 2 ) = 0 P(x) dividido por (x + 2) deixa resto quatro P( -2 ) = 4 P(x) = x 4 + x 2 + bx + c P(2) = 0 P(2) = (2) 4 + (2) 2 + b(2) + c = 0 2b + c = 20 P(-2) = 4 P(-2) = (-2) 4 + (-2) 2 + b(-2) + c = 4 2b + c = 16 b = -1 e c = -18
24 Exemplo 12 Determine a e b para que o polinômio P(x) = x 3 + ax 2 x + b seja divisível por D(x) = x 2 3x + 2. Resolução: Raízes do divisor: x 2 3x + 2 = 0 P(x) = x 3 + ax 2 x + b x 1 = 1 ou x 2 = 2 P(1) = 0 P(2) = 0 P(1) = 0 P(1) = (1) 3 + a(1) 2 (1) + b = 0 a + b = 0 P(2) = 0 P(2) = (2) 3 + a(2) 2 (2) + b = 0 4a + b = 6 a = -2 e b = 2
25 Exemplo 13 Determine a e b para que o polinômio P(x) = x 3 + 2x 2 + ax + b seja divisível por D(x) = x 2 4x + 4. Resolução: Raízes do divisor: x 2 4x + 4 = a b a + 8 2a + b + 16 x 1 = 2 ou x 2 = 2 2 é raiz dupla de P(x) a + 20 resto a + 20 = 0 a = 20 resto 2a + b + 16 = 0 2.(-20) + b + 16 = 0 b = 24
26 Exemplo 14 (PUC) O polinômio P(x) dividido por (x 1) dá resto 4 e dividido por (x 2) dá resto + 4. O resto da divisão de P(x) por (x 1).(x 2) é: Resolução: P(x) dividido por (x 1) deixa resto 4 P( 1 ) = 4 P(x) dividido por (x 2) deixa resto + 4 P( 2 ) = 4 P(x) (x 1).(x 2) R(x) Q(x) P(x) = (x 1).(x 2).Q(x) + (ax + b) Maior grau do resto: 1º R(x) = a.x + b
27 Exemplo 14 (PUC) O polinômio P(x) dividido por (x 1) dá resto 4 e dividido por (x 2) dá resto + 4. O resto da divisão de P(x) por (x 1).(x 2) é: Resolução: P( 1 ) = 4 P( 2 ) = 4 P(x) = (x 1).(x 2).Q(x) + (ax + b) P(1) = (1 1).(1 2).Q(1) + (a.1 + b) = 4 a + b = 4 zero P(2) = (2 1).(2 2).Q(2) + (a.2 + b) = 4 2a + b = 4 zero
28 Exemplo 14 (PUC) O polinômio P(x) dividido por (x 1) dá resto 4 e dividido por (x 2) dá resto + 4. O resto da divisão de P(x) por (x 1).(x 2) é: Resolução: P( 1 ) = 4 P( 2 ) = 4 P(x) = (x 1).(x 2).Q(x) + (ax + b) a + b = 4 2a + b = 4 a = 8 e b = 12 R(x) = a.x + b R(x) = 8x 12 Gabarito: e
29 Tópico 03 - Erivaldo FIM
POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:
POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes
Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n
POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:
GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2).
01) a) P (1) = 1 + 7 1 17 1 P (1) = 1 + 7 17 P (1) = 11 P (1) é sempre igual a soma dos coeficientes de P (x) b) P (0) = 0 + 7 0 17 0 P (0) = 0 + 0 0 P (0) = P (0) é sempre igual ao termo independente
POLINÔMIOS. Nível Básico
POLINÔMIOS Nível Básico. (Eear 07) Considere P(x) x bx cx, tal que P() e P() 6. Assim, os valores de b e c são, respectivamente, a) e b) e c) e d) e. (Epcar (Afa) 05) Considere o polinômio a) x 0 não é
Funções Polinomiais com Coeficientes Complexos. Teorema do Resto. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Teorema do Resto 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Teorema do Resto 1 Exercícios Introdutórios
Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2
Polinômios. (ITA 2005) No desenvolvimento de (ax 2 2bx + c + ) 5 obtém-se um polinômio p(x) cujos coeficientes somam 32. Se 0 e são raízes de p(x), então a soma a + b + c é igual a (A) 2 (B) 4 (C) 2 (D)
Funções Polinomiais com Coeficientes Complexos. Dispositivo de Briot-Ruffini. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini
m 1 Grupo A é 3, então ( P + Q R) Como o maior expoente da variável x do polinômio P + Q R Analogamente ao item a, (PQ) = 3.
Grupo A. Seja x o grau do divisor, então p x + q x p q. Sendo r o grau do resto, então r
Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa
1 1. (Fuvest 97) Suponha que o polinômio do 3 grau P(x) = x + x + mx + n, onde m e n são números reais, seja divisível por x - 1. a) Determine n em função de m. b) Determine m para que P(x) admita raiz
Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =
Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de
AULA 01 (A) 9. (B) 1. (C) 0. (D) 7. (E) 10. (E) Se k 5 então axterá ( ) grau 1. (D) d(3) 4. (E) d(4) 12.
AULA 01 Observe cada um dos polinômios a seguir: x p( x) x 9x 4x x x 7 3 (I) 7 6 5 3 x 3x (II) mx ( ) 5 4 3 (III) n( x) 8x 3x 10x 3 6 Se organizarmos estes polinômios em ordem crescente de grau teremos
QUESTÕES DE VESTIBULARES
QUESTÕES DE VESTIBULARES 01- (ACAFE) Dados os polinômios: p(x) = 5-2x + 3x 2, q(x) = 7 + x + x 2 - x 3 e r(x) = 1-3x + x 4. O valor de p(x) + r (x) - q(x) para x = 2 é: A) 5 B) 13 C) 11 D) 24 E) 19 02-
Matemática. Questão 1. 3 a série do Ensino Médio Turma. 2 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO
EM AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3 a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 2 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Dada a equação
Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Função polinomial Parte 6 Parte 6 Pré-Cálculo 1 Parte 6 Pré-Cálculo 2 Função polinomial Função polinomial:
3 + =. resp: A=5/4 e B=11/4
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 3º ENSINO MÉDIO - PROF. CARLINHOS BONS ESTUDOS! ASSUNTO : POLINÔMIOS 1) Identifique as expressões abaixo que são
Visite : e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180
) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, então temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d) P(0) = e) N.D.A. ) (UFC) Seja P(x) um
Primeira Lista de Exercícios
Primeira Lista de Exercícios disciplina: Introdução à Teoria dos Números (ITN) curso: Licenciatura em Matemática professores: Marnei L. Mandler, Viviane M. Beuter Primeiro semestre de 2012 1. Determine
Álgebra. Polinômios.
Polinômios 1) Diga qual é o grau dos polinômios a seguir: a) p(x) = x³ + x - 1 b) p(x) = x c) p(x) = x 7 - x² + 1 d) p(x) = 4 ) Discuta o grau dos polinômios em função de k R: a) p(x) = (k + 1)x² + x +
Funções Polinomiais com Coeficientes Complexos. Divisão de Funções Polinomiais. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Divisão de Funções Polinomiais 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Divisão de Funções Polinomiais
Funções Polinomiais com Coeficientes Complexos. Quantidade de Raízes e Consequências. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Quantidade de Raízes e Consequências 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Quantidade de Raízes
Fácil e Poderoso. Dinâmica 1. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Algébrico-Simbólico
Fácil e Reforço escolar M ate mática Poderoso Dinâmica 1 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 3ª do Ensino Médio Algébrico-Simbólico Polinômios e Equações Algébricas. Primeira
Exercícios de Aprofundamento 2015 Mat - Polinômios
Exercícios de Aprofundamento 05 Mat - Polinômios. (Espcex (Aman) 05) O polinômio (x) x x deixa resto r(x). Sabendo disso, o valor numérico de r( ) é a) 0. b) 4. c) 0. d) 4. e) 0. 5 f(x) x x x, uando dividido
1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios
Matemática Polinômios CAPÍTULO 02 OPERAÇÕES COM POLINÔMIOS 1 INTRODUÇÃO Como com qualquer outra função, podemos fazer operações de adição, subtração, multiplicação e divisão com polinômios. A soma e a
Polinômios. Acadêmica: Vanessa da Silva Pires
Polinômios Acadêmica: Vanessa da Silva Pires Situação 01: Se você somar 1 ao produto de quatro inteiros consecutivos, o resultado sempre será um quadrado perfeito. Situação 02: Na resolução de problemas,
Matemática 1 INTRODUÇÃO 1 TEOREMA DAS RAÍZES COMPLEXAS 3 TEOREMA DAS RAÍZES RACIONAIS 2 TEOREMA DAS RAÍZES IRRACIONAIS. Exercício Resolvido 2
Matemática Frente II CAPÍTULO 22 EQUAÇÕES POLINOMIAIS 1 INTRODUÇÃO Nos capítulos anteriores, durante o estudo de polinômios, já estudamos alguns teoremas que nos ajudam a encontrar as raízes de polinômios.
Matemática A - 10 o Ano Ficha de Trabalho
Matemática A - 10 o Ano Ficha de Trabalho Álgebra - Divisão Inteira de Polinómios Grupo I 1. Tendo em conta que n N; a n, a n 1,..., a 1, a 0 R e a n 0; b n, b n 1,..., b 1, b 0 R e b n 0, considere os
Projeto Jovem Nota 10 Polinômios Lista A Professor Marco Costa
1 Projeto Jovem Nota 10 1. (Ufv 2000) Sabendo-se que o número complexo z=1+i é raiz do polinômio p(x)=2x +2x +x+a,calcule o valor de a. 2. (Ita 2003) Sejam a, b, c e d constantes reais. Sabendo que a divisão
Matemática A - 10 o Ano
Matemática A - 10 o Ano Resolução da Ficha de Trabalho Álgebra - Divisão Inteira de Polinómios Grupo I 1. Considerando os polinómios p e b no enunciado temos que o termo de maior grau de p b é a nx n b
Apostila adaptada e editada da intenert pelo Professor Luiz
Definição POLINÔMIOS Uma função polinomial ou simplesmente polinômio, é toda função definida pela relação P(=a n x n + a n-1.x n-1 + a n-.x n- +... + a x + a 1 x + a 0. Onde: a n, a n-1, a n-,..., a, a
3ª série do Ensino Médio Turma. 2º Bimestre de 2018 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª série do Ensino Médio Turma 2º Bimestre de 2018 Data / / Escola Aluno 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Avaliação da Aprendizagem em Processo
Matemática E Extensivo V. 8
Matemática E Extensivo V. 8 Resolva Aula 9 9.) D x + x 7x 6 = x = é raiz. Aula.) x + px + = Se + i é raiz, então i também é. 5 7 6 Soma = b a = p p = + i + i p = p = Q(x) = x + 5x + Resolvendo Q(x) =,
(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é:
APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado
Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação
Polinômios 1. (Ufsc 015) Em relação à(s) proposição(ões) abaixo, é CORRETO afirmar ue: 01) Se o gráfico abaixo representa a função polinomial f, definida em por f(x) ax bx cx d, com a, b e c coeficientes
Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:
EQUAÇÕES POLINOMIAIS. EQUAÇÃO POLINOMIAL OU ALGÉBRICA Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: p(x) = a n x n + a n x n +a n x n +... + a x + a 0 = 0 onde
2. (Ita 2002) Com base no gráfico da função polinomial y = f(x) esboçado a seguir, responda qual é o resto da divisão de f(x) por (x - 1/2) (x 1).
1 Projeto Jovem Nota 10 Polinômios Lista B Professor Marco Costa 1. (Fuvest 2002) As raízes do polinômio p(x) = x - 3x + m, onde m é um número real, estão em progressão aritmética. Determine a) o valor
FICHA DE TRABALHO N.º 4 MATEMÁTICA A - 10.º ANO POLINÓMIOS
FICHA DE TRABALHO N.º 4 MATEMÁTICA A - 10.º ANO POLINÓMIOS Conhece a Matemática e dominarás o Mundo. Galileu Galilei GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Na figura está representado um paralelepípedo ABCDEFGH.
8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau
8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau 9. Quais das seguintes funções são polinomiais? Justifique. a) ( ) b) ( ) c) ( ) d) ( ) e) ( ) 10. Sendo ( ), calcule:
DIVISÃO DE POLINÔMIOS
DIVISÃO DE POLINÔMIOS Prof. Patricia Caldana A divisão de polinômios estrutura-se em um algoritmo, podemos enuncia-lo como sendo: A divisão de um polinômio D(x) por um polinômio não nulo E(x), de modo
SE18 - Matemática. LMAT 6B2-1- Polinômios (Operações com polinômios) Questão 1
SE18 - Matemática LMAT 6B2-1- Polinômios (Operações com polinômios) Questão 1 (Eear 2017) Considere P(x) = 2x 3 + bx 2 + cx, tal que P(1) = -2 e P(2) = 6. Assim, os valores de b e c são, respectivamente,
Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner
Cálculo Numérico / Métodos Numéricos Solução de equações polinomiais Briot-Ruffini-Horner Equações Polinomiais p = x + + a ( x) ao + a1 n x n Com a i R, i = 0,1,, n e a n 0 para garantir que o polinômio
POLINÔMIOS. 1. Função polinomial. 2. Valor numérico. 3. Grau de um polinômio. 4. Polinômios idênticos
POLINÔMIOS 1. Função polinomial É a função P() = a 0 + a 1 + a + a +... + a n n, onde a 0, a 1, a,..., a n são os coeficientes e os termos do polinômio são : a 0 ; a 1 ; a ; a ;... ; a n n. Valor numérico
Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais
Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais 1. Verifique, recorrendo ao algoritmo da divisão, que: 6 4 0x 54x + 3x + é divisível por x 1.. De um modo geral, que relação
Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x
EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a
Polinômios. 2) (ITA-1962) Se x³+px+q é divisível por x²+ax+b e x²+rx+s, demonstrar que:
Material by: Caio Guimarães Polinômios A seguir, apresento uma lista de vários exercícios propostos (com gabarito) sobre polinômios. Os exercícios são para complementar a vídeo-aula a respeito de polinômios
DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /.
DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /. 1. (Ufjf-pism 017) Qual é o polinômio que ao ser multiplicado por g(x) 3 x 2x 5x 4 tem como resultado o polinômio 6 5 4 h(x)
... Onde usar os conhecimentos os sobre...
IX NÚMEROS COMPLEXOS E POLINÔMIOS Por que aprender sobre Números Complexos?... Ao estudar os Números Complexos percebemos que sua ligação à geometria nos dá uma perspectiva mais rica dos métodos geométricos
FICHA DE TRABALHO DE MATEMÁTICA A 10.º ANO FUNÇÕES POLINOMIAIS
FICHA DE TRABALHO DE MATEMÁTICA A 10.º ANO FUNÇÕES POLINOMIAIS Conhece a Matemática e dominarás o Mundo. Galileu Galilei 1. Para que valores reais de m, GRUPO I ITENS DE ESCOLHA MÚLTIPLA p x x mx 0 dividido
RREGUOJMatemática Régis Cortes. Matemática Régis Cor POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD
POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD 1 Propriedades importantes: P1 - Toda equação algébrica de grau n possui exatamente n raízes. Exemplo: a equação x 3 - x = 0 possui 3 raízes a saber: x = 0
EQUAÇÕES POLINOMIAIS
EQUAÇÕES POLINOMIAIS Prof. Patricia Caldana Denominamos equações polinomiais ou algébricas, as equações da forma: P(x)=0, onde P(x) é um polinômio de grau n > 0. As raízes da equação algébrica, são as
ASSUNTO:POLINÔMIOS. a) Do 3º grau resp: m ±6 b) Do 2º grau resp: m=6 c) do 1 º grau m=-6
ASSUNTO:POLINÔMIOS 1) Identifique as expressões abaixo que são polinômios: a) 3x 3-5x 2 +x-4 b) 5x -4 -x -2 +x-9 c) x 4-16 d)x 2 3 +2x+6 e) x 2 4 resp: a, c,d 2) Dado o polinômio P(x)= 2x 3-5x 2 +x-3.
LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS 2º TRIMESTRE
LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS º TRIMESTRE ÁLGEBRA 1) O valor de z sabendo que 64 z é: z A) 64 B) 64 C) 8 + i D) 8 i E) 8 ) Considere as raízes complexas w 0, w, 1 w, w 3 e
O espião que me amava
Reforço escolar M ate mática O espião que me amava Dinâmica 2 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 3ª Algébrico-Simbólico. Polinômios e Equações Algébricas. Aluno
Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução:
EXERCÍCIOS 01. Calcule o valor numérico de P(x) = 2x 4 x 3 3x 2 + x + 5 para x = i. P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i 02. Dado o polinômio P(x) = x 3 + kx 2 2x + 5, determine
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Tema II Funções e Gráficos. Funções polinomiais. Função módulo.
ESCOLA SECUNDÁRIA COM º CICLO D. DINIS 0º ANO DE MATEMÁTICA A Ponto três do plano de trabalho nº 5 Tarefa nº 4. Considere a família de funções polinomiais: f(x) = a(x + )(x )(x + 5), a \ {0}.. Represente
Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é
Questão 01) O polinômio p(x) = x 3 + x 2 3ax 4a é divisível pelo polinômio q(x) = x 2 x 4. Qual o valor de a? a) a = 2 b) a = 1 c) a = 0 d) a = 1 e) a = 2 TEXTO: 1 Para fazer um estudo sobre certo polinômio
Polinómios. Integração de Funções Racionais
Polinómios. Integração de Funções Racionais Escola Superior de Tecnologia e de Gestão, Instituto Politécnico de Bragança. Mário Abrantes 2016 1 / 17 Índice de Matérias 1. Polinómios Denição Factorização
Equações Algébricas - Propriedades das Raízes. Teorema da Decomposição. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 3 ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 1 Exercícios
Polinómios. Integração de Fracções Racionais
Polinómios. Integração de Fracções Racionais Escola Superior de Tecnologia e de Gestão, Instituto Politécnico de Bragança. Mário Abrantes 2016 1 / 17 Índice de Matérias 1. Polinómios Denição Factorização
Matemática E Intensivo V. 2
Matemática E Intensivo V. Exercícios 0) a) b) c) 8 8 8 a) 8 = =!! C = = ( 8 )!!!! b) 0 0 0 0 = =!! C = = ( 0 )!! 8!! n 0 n n c) Cn 0 = =!! = = ( n 0)! 0! n! 0) 0x O terceiro termo é dado por: T r + = n
Polinômios e equações algébricas 2. Fascículo 12. Unidade 38
Polinômios e equações algébricas 2 Fascículo 12 Unidade 38 Polinômios e equações algébricas 2 Para início de conversa... Conforme vimos na unidade Geometria Espacial: pirâmides e cones, que tratava das
Matemática E Extensivo V. 6
Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. a) P() = ³ + 7. ² 7. P() = + 7 7
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba Professor Gilmar Bornatto
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba 1. Para fazer uma caixa sem tampa com um único pedaço de papelão, utilizou-se um retângulo de 16 cm de largura por 30 cm
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: C.E.
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: C.E. Cardeal Arcoverde PROFESSORA: Janete Maria Jesus de Sá MATRÍCULA: 0825192-8 SÉRIE: 3ª série do Ensino Médio
RACIOCÍNIO LÓGICO ÁLGEBRA LINEAR
RACIOCÍNIO LÓGICO AULA 11 ÁLGEBRA LINEAR I - POLINÔMIOS POLINÔMIOS E EQUAÇÕES ALGÉBRICAS 1 Definição Seja C o conjunto dos números complexos ( números da forma a + bi, onde a e b são números reais e i
PLANO DE AULA POLINÔMIOS
Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense - Campus avançado Sombrio Curso de Licenciatura em Matemática PLANO DE AULA POLINÔMIOS 1 Identificação
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Funções polinomiais Logaritmo Aula 03 Funções Polinomiais Introdução: Polinômio Para a sucessão de termos comcom, um polinômio de grau n possui a seguinte forma : Ex : Funções
POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3
POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz
Polinômios e Equações Polinomiais
Formação Continuada em MATEMÁTICA Fundação Cecierj/Consórcio CEDERJ Matemática 3 ano - 4 Bimestre/ 2012 Avaliação da Implementação do Plano de Trabalho I Polinômios e Equações Polinomiais Tarefa 3: Avaliação
Matemática 7. Capítulo 1. Complexos, Polinômios e Equações Algébricas
Matemática 7 Complexos, Polinômios e Equações Algébricas Capítulo 1 PVD-07-MA74 01. Dados z 1 = 1 + i; z = i e z 3 = i, então: a) z 1 + z = z 3 b) z 1 z = z 3 c) z 1 z = z 3 d) z 1 z z 3 = + 6i e) z 1
Técnicas de Integração
Técnicas de Integração INTEGRAÇÃO DE FUNÇÕES RACIONAIS Prof. Dr. José Ricardo de Rezende Zeni UNESP, FEG, Depto de Matemática Guaratinguetá, agosto de 2017 Direitos reservados. Reprodução autorizada desde
Conteúdo. 2 Polinômios Introdução Operações... 13
Conteúdo 1 Conjunto dos números complexos 1 1.1 Introdução.......................................... 1 1.2 Operações (na forma algébrica).............................. 2 1.3 Conjugado..........................................
Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais
Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Parte 1 Exercícios do Livro A Matemática do Ensino Médio Volume 3. Autores: Elon Lages Lima, Paulo Cezar Pinto Carvalho, Eduardo Wagner, Augusto
Matemática E Extensivo V. 7
Matemática E Etensivo V. 7 Eercícios ) B ) A P() = ³ + a² + b é divisivel por. Pelo teorema do resto, = é raiz de P(). P() = ³ + a. ² + b a + b = Da mesma maneira, P() é divisível por. Pelo teorema do
CEM Centro De Estudos Matemáticos
1. (Udesc ) Sejam A = (a ij ) e B = (b ij ) matrizes quadradas de ordem 3 de tal forma que: a ij = i + j b ij = j e os elementos de cada coluna, de cima para baixo, formam uma progressão geométrica de
Apostila de Matemática 16 Polinômios
Apostila de Matemática 16 Polinômios 1.0 Definições Expressão polinomial ou polinômio Expressão que obedece a esta forma: a n, a n-1, a n-2, a 2, a 1, a 0 Números complexos chamados de coeficientes. n
POLINÔMIOS E EQUAÇÕES ALGÉBRICAS ANA CRISTINA DA SILVA FERREIRA
FORMAÇÃO CONTINUADA POLINÔMIOS E EQUAÇÕES ALGÉBRICAS ANA CRISTINA DA SILVA FERREIRA FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO ESTADUAL PADRE MANUEL DA NÓBREGA
Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões:
Lista de eercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho Questões: 0.(GV) Num polinômio P() do terceiro grau, o coeficiente de P() = 0, calcule o valor de P( ). é. Sabendo-se
TAREFA 3. AVALIAÇÃO DA EXECUÇÃO DO PLANO DE TRABALHO 1 POLINÔMIOS e EQUAÇÕES ALGÉBRICAS
TAREFA 3 AVALIAÇÃO DA EXECUÇÃO DO PLANO DE TRABALHO 1 POLINÔMIOS e EQUAÇÕES ALGÉBRICAS Cursista: Selma Figueiredo Pontes Matemática - 3ª série Ensino Médio Grupo: 5 Tutora: Andréa Silva de Lima Pontos
. Determine os valores de P(1) e P(22).
Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja
Continuidade e Limite
Continuidade e Limite Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 20 de maio de 2013 1 Remoção da indeterminação 0 0 2 3 Propriedades da derivada Derivada
Matemática E Intensivo V. 2
Matemática E Intensivo V. Exercícios 0) E P 6 6! 70 0) motorista possibilidades p. p. p. p. p 8 possibilidades 0) motorista P 6. P 0 0) E P 0 68800 Então precisam de 68800 dias. Aproximadamente 99,9 anos
Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Integração por Frações Parciais
MAT146 - Cálculo I - Integração por Frações Parciais Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Iremos agora desenvolver um método para resolver integrais de funções racionais,
Disciplina: FÍSICA Série: 3º ANO ATIVIDADES DE REVISÃO PARA A BIMESTRAL (4º BIMESTRE) ENSINO MÉDIO
Professor (a): Estefânio Franco Maciel Aluno (a): Disciplina: FÍSICA Série: 3º ANO ATIVIDADES DE REVISÃO PARA A BIMESTRAL (4º BIMESTRE) ENSINO MÉDIO Data: /11/2017. 1. Considerando que p(x) = 2x³ kx² +
POLINÔMIOS AVALIAÇÃO DO PLANO DE TRABALHO 1
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA COLÉGIO: CIEP BRIZOLÃO 998 SÃO JOSÉ DE SUMIDOURO PROFESSOR: RAFAEL SANCHES BORGES MATRÍCULA: 09154410 SÉRIE: 3º ANO GRUPO : 2 TUTOR : PAULO ROBERTO CASTOR
Nome: nº Professor(a): Série : Turma: Data: / /2012 Desconto Ortográfico: Nota: Bateria de Exercícios 3º ano Ensino Médio
Sem limite para crescer Nome: nº Professor(a): Série : Turma: Data: / /2012 Desconto Ortográfico: Nota: Bateria de Exercícios 3º ano Ensino Médio 1- Resolva a equação: 2- (EEM-SP) Resolva a equação: 3-
Método de Newton para polinômios
Método de Newton para polinômios Alan Costa de Souza 26 de Agosto de 2017 Alan Costa de Souza Método de Newton para polinômios 26 de Agosto de 2017 1 / 31 Seja f(x) uma função polinomial de grau n. A princípio.
Matemática Utilizando o dispositivo de Briot-Ruffini temos: a)
Coleção NEM ª Série Volume Matemática Matemática Aula 7 Série A 0 Utilizando o dispositivo de Briot-Ruffini temos: a) 0 0 0 Q(x) x x + x R(x) b) 0 0 0 0 0 Q(x) x x + x x + R(x) 0 c) Para n par: 0 0 0 0
Exercícios de Aprofundamento Mat Polinômios e Matrizes
. (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto
Pre-calculo 2013/2014
. Números reais, regras básicas de cálculo com fracções, expoentes e radicais Sumário: Número reais, regras básicas de cálculo com fracções, expoentes e radicais. Ler secções. e. do livro adoptado.. Pre-calculo
4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais
MAT140 - Cálculo I - Método de integração: Frações Parciais 4 de outubro de 2015 Iremos agora desenvolver técnicas para resolver integrais de funções racionais, conhecido como método de integração por
TAREFA 3. AVALIAÇÃO DA IMPLEMENTAÇÃO DO PLANO DE TRABALHO 1 POLINÔMIOS E EQUAÇÕES ALGÉBRICAS Maria de Fátima Cabral de Souza
TAREFA 3 AVALIAÇÃO DA IMPLEMENTAÇÃO DO PLANO DE TRABALHO 1 POLINÔMIOS E EQUAÇÕES ALGÉBRICAS Maria de Fátima Cabral de Souza [email protected] PONTOS POSITIVOS Os textos fornecidos pelo curso e a troca
Universidade Federal do Espírito Santo Prova de Álgebra II Prof. Lúcio Fassarella DMA/CEUNES/UFES Data: 07/05/2015
Universidade Federal do Espírito Santo Prova de Álgebra II Prof. Lúcio Fassarella DMA/CEUNES/UFES Data: 07/05/2015 Aluno: Matrícula. Nota: : :.Observações: I A prova tem duração de 100 min; não é permitido
Uma abordagem voltada para o ensino médio
Universidade Federal Rural de Pernambuco Departamento de Matemática Mestrado Profissional em Matemática Métodos para Determinação de Raízes de Equações Polinomiais Uma abordagem voltada para o ensino médio
obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero.
Lista 1 - Teoria de Anéis - 2013 Professor: Marcelo M.S. Alves Data: 03/09/2013 obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero. 1. Os conjuntos
Polinômios irredutíveis
Polinômios irredutíveis Sérgio Tadao Martins 23 de janeiro de 2009 1 Introdução: polinômios em uma variável Um polinômio de grau n em uma variável x é uma expressão da forma p(x) = a 0 + a 1 x + a 2 x
O espião que me amava
Reforço escolar M ate mática O espião que me amava Dinâmica 2 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Professor Matemática Ensino Médio 3ª Algébrico-Simbólico. DINÂMICA O espião que me amava.
Polinômios e Equações Algébricas
Polinômios e Equações Algébricas FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC - RJ Tutora: MARIA CLÁUDIA PADILHA TOSTES Cursista: Marta Cristina de Oliveira Matrículas:
