Apostila adaptada e editada da intenert pelo Professor Luiz
|
|
|
- Aurélia Estrela Ramires
- 7 Há anos
- Visualizações:
Transcrição
1 Definição POLINÔMIOS Uma função polinomial ou simplesmente polinômio, é toda função definida pela relação P(=a n x n + a n-1.x n-1 + a n-.x n a x + a 1 x + a 0. Onde: a n, a n-1, a n-,..., a, a 1, a 0 são números reais chamados coeficientes. n IN x C (n os complexos) é a variável. GRAU DE UM POLINÔMIO: Grau de um polinômio é o expoente máximo que ele possui. Se o coeficiente a n 0, então o expoente máximo n é dito grau do polinômio e indicamos gr(p)=n. Exemplos: a) P(=5 ou P(=5.x 0 é um polinômio constante, ou seja, gr(p)=0. ) P(=x+5 é um polinômio do 1º grau, isto é, gr(p)=1. c) P(=4x 5 +7x 4 é um polinômio do 5º grau, ou seja, gr(p)=5. Os: Se P(=0, não se define o grau do polinômio. Valor numérico O valor numérico de um polinômio P( para x=a, é o número que se otém sustituindo x por a e efetuando todas as operações indicadas pela relação que define o polinômio. Exemplo: Se P(=x +x +x-4, o valor numérico de P(, para x=, é: P(= x +x +x-4 P()= P()= 14 Oservação: Se P(a)=0, o número a chamado raiz ou zero de P(. Por exemplo, no polinômio P(=x -x+ temos P(1)=0; logo, 1 é raiz ou zero desse polinômio.
2 Alguns exercícios resolvidos: 1º) Saendo-se que é raiz de P(=x +4x -ax+1, calcular o valor de a. Resolução: Se é raiz de P(, então P(-)=0. P(-)=0 => (-) +4(-) -a.(-)+1 = 0 a = -10 => a=-10/ Resposta: a=-10/ º) Calcular m IR para que o polinômio P(=(m -1)x +(m+1)x -x+4 seja: a) do ºgrau ) do º grau c) do 1º grau Resposta: a) para o polinômio ser do º grau, os coeficientes de x e x devem ser diferentes de zero. Então: m -10 => m 1 => m1 m+10 => m-1 Portanto, o polinômio é do º grau se m1 e m-1. ) para o polinômio ser do º grau, o coeficiente de x deve ser igual a zero e o coeficiente de x diferente de zero. Então: m -1=0 => m =1 => m=1 m+10 => m-1 Portanto, o polinômio é do º grau se m=1. c) para o polinômio ser do 1º grau, os coeficientes de x e x devem ser iguais a zero. Então: m -1=0 => m =1 => m=1 m+1=0 => m=-1 Portanto, o polinômio é do 1º grau se m=-1. º) Num polinômio P(, do º grau, o coeficiente de x é 1. Se P(1)=P()=0 e P()=0, calcule o valor de P(-1). Resolução: Temos o polinômio: P(=x +ax +x+c. Precisamos encontrar os valores de a, e c (coeficientes). Vamos utilizar os dados fornecidos pelo enunciado do prolema:
3 P(1)=0 => (1) +a.(1) +(1)+c = 0 => 1+a++c=0 => a++c=-1 P()=0 => () +a.() +()+c = 0 => 8+4a++c=0 => 4a++c=-8 P()=0 => () +a.() +()+c = 0 => 7+9a++c=0 => 9a++c= Temos um sistema de três variáveis: a c -1 4a c -8 9a c Resolvendo esse sistema encontramos as soluções: a=9, =-4, c=4 Portanto o polinômio em questão é P(= x +9x -4x+4. O prolema pede P(-1): P(-1)= (-1) +9(-1) -4(-1)+4 => P(-1)= P(-1)= 66 Resposta: P(-1)= 66 Polinômios iguais Dizemos que dois polinômios A( e B( são iguais ou idênticos (e indicamos A(B() quando assumem valores numéricos iguais para qualquer valor comum atriuído à variável x. A condição para que dois polinômios sejam iguais ou idênticos é que os coeficientes dos termos correspondentes sejam iguais. Exemplo: Calcular a, e c, saendo-se que x -x+1 a(x +x+1)+(x+c)(x+1). Resolução: Eliminando os parênteses e somando os termos semelhantes do segundo memro temos: x -x+1 ax +ax+a+x +x+cx+c 1x -x+1 (a+)x +(a++c)x+(a+c) Agora igualamos os coeficientes correspondentes: a 1 a c a c 1
4 Sustituindo a 1ª equação na ª: 1+c = - => c=-. Colocando esse valor de c na ª equação, temos: a-=1 => a=4. Colocando esse valor de a na 1ª equação, temos: 4+=1 => =-. Resposta: a=4, =- e c=-. Os: um polinômio é dito identicamente nulo se tem todos os seus coeficientes nulos. Divisão de polinômios Sejam dois polinômios P( e D(, com D( não nulo. Efetuar a divisão de P por D é determinar dois polinômios Q( e R(, que satisfaçam as duas condições aaixo: 1ª) Q(.D( + R( = P( ª) gr(r) < gr(d) ou R(=0 P( R( D( Q( Nessa divisão: P( é o dividendo. D( é o divisor. Q( é o quociente. R( é o resto da divisão. Os: Quando temos R(=0 dizemos que a divisão é exata, ou seja, P( é divisível por D( ou D( é divisor de P(. Se D( é divisor de P( R(=0 Exemplo: Determinar o quociente de P(=x 4 +x -7x +9x-1 por D(=x +x-. Resolução: Aplicando o método da chave, temos:
5 4 x x 7x 9x1 x x x 4 x x x x1 Q( x 5x 9x1 x 6x 4x x 5x1 x x x1 R( Verificamos que: 4 x x -7x 9x-1 P( (x x - ) (x - x1) (x1) D( Q( R( Divisão de um polinômio por um inômio da forma ax+ Vamos calcular o resto da divisão de P(=4x -x+ por D(=x-1. Utilizando o método da chave temos: 4x 4x x x x1 x Logo: R(= A raiz do divisor é x-1=0 => x=1/. Agora calculamos P( para x=1/. P(1/) = 4(1/4) (1/) + P(1/) = Oserve que R( = = P(1/) Portanto, mostramos que o resto da divisão de P( por D( é igual ao valor numérico de P( para x=1/, isto é, a raiz do divisor.
6 Teorema do resto O resto da divisão de um polinômio P( pelo inômio ax+ é igual a P(-/a). Note que /a é a raiz do divisor. Exemplo: Calcule o resto da divisão de x +5x-1 por x+1. Resolução: Achamos a raiz do divisor: x+1=0 => x=-1 Pelo teorema do resto saemos que o resto é igual a P(-1): P(-1)=(-1) +5.(-1)-1 => P(-1) = -5 = R( Resposta: R( = -5. Teorema de D Alemert Um polinômio P( é divisível pelo inômio ax+ se P(-/a)=0 Exemplo: Determinar o valor de p, para que o polinômio P(=x +5x - px+ seja divisível por x-. Resolução: Se P( é divisível por x-, então P()=0. P()=0 => p+=0 => 16+0-p+=0 => p=19 Resposta: p=19. Divisão de um polinômio pelo produto (x-a)(x-) Vamos resolver o seguinte prolema: calcular o resto da divisão do polinômio P( pelo produto (x-a)(x-), saendo-se que os restos da divisão de P( por (x-a) e por (x-) são, respectivamente, r 1 e r. Temos: a é a raiz do divisor x-a, portanto P(a)=r 1 (eq. 1) é a raiz do divisor x-, portanto P()=r (eq. ) E para o divisor (x-a)(x-) temos P(=(x-a)(x-) Q( + R( (eq. ) O resto da divisão de P( por (x-a)(x-) é no máximo do 1º grau, pois o divisor é do º grau; logo:
7 R(=cx+d Da eq. vem: P(=(x-a)(x-) Q( + cx + d Fazendo: x=a => P(a) = c(a)+d (eq. 4) x= => P() = c()+d (eq. 5) Das equações 1,, 4 e 5 temos: ca d c d r r 1 Resolvendo o sistema otemos: r1 r c e a Logo : R( ar ar1 d, com a a r1 r ar ar1 x, com a a a Oservações: 1ª) Se P( for divisível por (x-a) e por (x-), temos: P(a)= r 1 =0 P()= r =0 Portanto, P( é divisível pelo produto (x-a)(x-), pois: R( r 1 r a x ar ar a ª) Generalizando, temos: Se P( é divisível por n fatores distintos (x-a 1 ), (x-a ),..., (x-a n ) então P( é divisível pelo produto (x-a 1 )(x-a )...(x-a n ). Exemplo: Um polinômio P( dividido por x dá resto 6 e dividido por (x-1) dá resto 8. Qual o resto da divisão de P( por x(x-1)? Resolução:
8 0 é a raiz do divisor x, portanto P(0)=6 (eq. 1) 1 é a raiz do divisor x-1, portanto P(1)=8 (eq. ) E para o divisor x(x-1) temos P(=x(x-1) Q( + R( (eq. ) O resto da divisão de P( por x(x-1) é no máximo do 1º grau, pois o divisor é do º grau; logo: R(=ax+ Da eq. vem: P(=x(x-1) Q( + ax + Fazendo: x=0 => P(0) = a(0)+ => P(0) = (eq. 4) x=1 => P(1) = a(1)+ => P(1) = a+ (eq. 5) Das equações 1,, 4 e 5 temos: 6 a 8 Logo, =6 e a=. Agora achamos o resto: R( = ax+ = x+6 Resposta: R( = x+6. O dispositivo de Briot-Ruffini Serve para efetuar a divisão de um polinômio P( por um inômio da forma (ax+). Exemplo: Determinar o quociente e o resto da divisão do polinômio P(=x -5x +x- por (x-). Resolução: RAIZ DO DIVISOR COEFICIENTES DE P( 5 1.() 5 1.() 1 1 COEFICIENTES DO QUOCIENTE Q(.() 4 RESTO
9 Oserve que o grau de Q( é uma unidade inferior ao de P(, pois o divisor é de grau 1. Resposta: Q(=x +x+ e R(=4. Para a resolução desse prolema seguimos os seguintes passos: 1º) Colocamos a raiz do divisor e os coeficientes do dividendo ordenadamente na parte de cima da cerquinha. º) O primeiro coeficiente do dividendo é repetido aaixo. º) Multiplicamos a raiz do divisor por esse coeficiente repetido aaixo e somamos o produto com o º coeficiente do dividendo, colocando o resultado aaixo deste. 4º) Multiplicamos a raiz do divisor pelo número colocado aaixo do º coeficiente e somamos o produto com o º coeficiente, colocando o resultado aaixo deste, e assim sucessivamente. 5º) Separamos o último número formado, que é igual ao resto da divisão, e os números que ficam à esquerda deste serão os coeficientes do quociente. Decomposição de um polinômio em fatores Vamos analisar dois casos: 1º caso: O polinômio é do º grau. De uma forma geral, o polinômio de º grau P(=ax +x+c que admite as raízes r 1 e r pode ser decomposto em fatores do 1º grau, da seguinte forma: ax +x+c = a(x-r 1 )(x-r ) Exemplos: 1) Fatorar o polinômio P(=x -4. Resolução: Fazendo x -4=0, otemos as raízes r 1 = e r =-. Logo: x -4 = (x-)(x+). ) Fatorar o polinômio P(=x -7x+10. Resolução: Fazendo x -7x+10=0, otemos as raízes r 1 =5 e r =. Logo: x -7x+10 = (x-5)(x-).
10 º caso: O polinômio é de grau maior ou igual a. Conhecendo uma das raízes de um polinômio de º grau, podemos decompô-lo num produto de um polinômio do 1º grau por um polinômio do º grau e, se este tiver raízes, podemos em seguida decompô-lo tamém. Exemplo: Decompor em fatores do 1º grau o polinômio x -x -x. Resolução: x -x -x = x.(x -x-1) colocando x em evidência Fazendo x.(x -x-1) = 0 otemos: x=0 ou x -x-1=0. Uma das raízes já encontramos (x=0). As outras duas saem da equação: x -x-1=0 => r 1 =1 e r =-1/. Portanto, o polinômio x -x -x, na forma fatorada é:.x.(x-1).(x+(1/)). Generalizando, se o polinômio P(=a n x n +a n-1 x n a 1 x+a 0 admite n raízes r 1, r,..., r n, podemos decompô-lo em fatores da seguinte forma: a n x n +a n-1 x n a 1 x+a 0 = a n (x-r 1 )(x-r )...(x-r n ) Oservações: 1) Se duas, três ou mais raiz forem iguais, dizemos que são raízes duplas, triplas, etc. ) Uma raiz r 1 do polinômio P( é dita raiz dupla ou de multiplicidade se P( é divisível por (x-r 1 ) e não por (x-r 1 ).
Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n
POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:
Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x
EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a
Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:
EQUAÇÕES POLINOMIAIS. EQUAÇÃO POLINOMIAL OU ALGÉBRICA Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: p(x) = a n x n + a n x n +a n x n +... + a x + a 0 = 0 onde
Erivaldo. Polinômios
Erivaldo Polinômios Polinômio ou Função Polinomial Definição: P(x) = a o + a 1.x + a 2.x 2 + a 3.x 3 +... + a n.x n a o, a 1, a 2, a 3,..., a n : Números complexos Exemplos: 1) f(x) = x 2 + 3x 7 2) P(x)
3 + =. resp: A=5/4 e B=11/4
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 3º ENSINO MÉDIO - PROF. CARLINHOS BONS ESTUDOS! ASSUNTO : POLINÔMIOS 1) Identifique as expressões abaixo que são
POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:
POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes
POLINÔMIOS. Nível Básico
POLINÔMIOS Nível Básico. (Eear 07) Considere P(x) x bx cx, tal que P() e P() 6. Assim, os valores de b e c são, respectivamente, a) e b) e c) e d) e. (Epcar (Afa) 05) Considere o polinômio a) x 0 não é
EQUAÇÕES POLINOMIAIS
EQUAÇÕES POLINOMIAIS Prof. Patricia Caldana Denominamos equações polinomiais ou algébricas, as equações da forma: P(x)=0, onde P(x) é um polinômio de grau n > 0. As raízes da equação algébrica, são as
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Funções polinomiais Logaritmo Aula 03 Funções Polinomiais Introdução: Polinômio Para a sucessão de termos comcom, um polinômio de grau n possui a seguinte forma : Ex : Funções
Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner
Cálculo Numérico / Métodos Numéricos Solução de equações polinomiais Briot-Ruffini-Horner Equações Polinomiais p = x + + a ( x) ao + a1 n x n Com a i R, i = 0,1,, n e a n 0 para garantir que o polinômio
Álgebra. Polinômios.
Polinômios 1) Diga qual é o grau dos polinômios a seguir: a) p(x) = x³ + x - 1 b) p(x) = x c) p(x) = x 7 - x² + 1 d) p(x) = 4 ) Discuta o grau dos polinômios em função de k R: a) p(x) = (k + 1)x² + x +
Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Função polinomial Parte 6 Parte 6 Pré-Cálculo 1 Parte 6 Pré-Cálculo 2 Função polinomial Função polinomial:
Matemática Régis Cortes EQUAÇÕES DE GRAUS
EQUAÇÕES DE 1 0 E 2 0 GRAUS 1 EQUAÇÃO DO 1º GRAU As equações do primeiro grau são aquelas que podem ser representadas sob a forma ax+b=0,em que a e b são constantes reais, com a diferente de 0, e x é a
Números Primos, Fatores Primos, MDC e MMC
Números primos são os números naturais que têm apenas dois divisores diferentes: o 1 e ele mesmo. 1) 2 tem apenas os divisores 1 e 2, portanto 2 é um número primo. 2) 17 tem apenas os divisores 1 e 17,
RACIOCÍNIO LÓGICO ÁLGEBRA LINEAR
RACIOCÍNIO LÓGICO AULA 11 ÁLGEBRA LINEAR I - POLINÔMIOS POLINÔMIOS E EQUAÇÕES ALGÉBRICAS 1 Definição Seja C o conjunto dos números complexos ( números da forma a + bi, onde a e b são números reais e i
AULA 01 (A) 9. (B) 1. (C) 0. (D) 7. (E) 10. (E) Se k 5 então axterá ( ) grau 1. (D) d(3) 4. (E) d(4) 12.
AULA 01 Observe cada um dos polinômios a seguir: x p( x) x 9x 4x x x 7 3 (I) 7 6 5 3 x 3x (II) mx ( ) 5 4 3 (III) n( x) 8x 3x 10x 3 6 Se organizarmos estes polinômios em ordem crescente de grau teremos
PRODUTOS NOTÁVEIS. Duas vezes o produto do 1º pelo 2º. Quadrado do 1º termo
PRODUTOS NOTÁVEIS QUADRADO DA SOMA DE DOIS TERMOS ( + y) = + y + y Quadrado da soma de dois termos Duas vezes o produto do 1º pelo º Eemplo 1: a) ( + 3y) = +..(3y) + (3y) = + 6y + 9y. ) (7 + 1) = c) (a
Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais
Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais 1. Verifique, recorrendo ao algoritmo da divisão, que: 6 4 0x 54x + 3x + é divisível por x 1.. De um modo geral, que relação
Visite : e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180
) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, então temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d) P(0) = e) N.D.A. ) (UFC) Seja P(x) um
Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa
1 1. (Fuvest 97) Suponha que o polinômio do 3 grau P(x) = x + x + mx + n, onde m e n são números reais, seja divisível por x - 1. a) Determine n em função de m. b) Determine m para que P(x) admita raiz
PLANO DE AULA POLINÔMIOS
Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense - Campus avançado Sombrio Curso de Licenciatura em Matemática PLANO DE AULA POLINÔMIOS 1 Identificação
FICHA DE TRABALHO N.º 4 MATEMÁTICA A - 10.º ANO POLINÓMIOS
FICHA DE TRABALHO N.º 4 MATEMÁTICA A - 10.º ANO POLINÓMIOS Conhece a Matemática e dominarás o Mundo. Galileu Galilei GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Na figura está representado um paralelepípedo ABCDEFGH.
Técnicas de. Integração
Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO 7.4 Integração de Funções Racionais por Frações Parciais Nessa seção, vamos aprender como integrar funções racionais reduzindo-as a uma soma de
Polinómios. Integração de Fracções Racionais
Polinómios. Integração de Fracções Racionais Escola Superior de Tecnologia e de Gestão, Instituto Politécnico de Bragança. Mário Abrantes 2016 1 / 17 Índice de Matérias 1. Polinómios Denição Factorização
Matemática E Extensivo V. 7
Matemática E Etensivo V. 7 Eercícios ) B ) A P() = ³ + a² + b é divisivel por. Pelo teorema do resto, = é raiz de P(). P() = ³ + a. ² + b a + b = Da mesma maneira, P() é divisível por. Pelo teorema do
Matemática E Extensivo V. 6
Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. a) P() = ³ + 7. ² 7. P() = + 7 7
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios
4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais
MAT140 - Cálculo I - Método de integração: Frações Parciais 4 de outubro de 2015 Iremos agora desenvolver técnicas para resolver integrais de funções racionais, conhecido como método de integração por
Matemática. Questão 1. 3 a série do Ensino Médio Turma. 2 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO
EM AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3 a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 2 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Dada a equação
Matemática 1 INTRODUÇÃO 1 TEOREMA DAS RAÍZES COMPLEXAS 3 TEOREMA DAS RAÍZES RACIONAIS 2 TEOREMA DAS RAÍZES IRRACIONAIS. Exercício Resolvido 2
Matemática Frente II CAPÍTULO 22 EQUAÇÕES POLINOMIAIS 1 INTRODUÇÃO Nos capítulos anteriores, durante o estudo de polinômios, já estudamos alguns teoremas que nos ajudam a encontrar as raízes de polinômios.
8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau
8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau 9. Quais das seguintes funções são polinomiais? Justifique. a) ( ) b) ( ) c) ( ) d) ( ) e) ( ) 10. Sendo ( ), calcule:
Divisibilidade Múltiplos de um número Critérios de divisibilidade 5367
Divisibilidade Um número é divisível por outro quando sua divisão por esse número for exata. Por exemplo: 20 : 5 = 4 logo 20 é divisível por 5. Múltiplos de um número Um número tem um conjunto infinito
ASSUNTO:POLINÔMIOS. a) Do 3º grau resp: m ±6 b) Do 2º grau resp: m=6 c) do 1 º grau m=-6
ASSUNTO:POLINÔMIOS 1) Identifique as expressões abaixo que são polinômios: a) 3x 3-5x 2 +x-4 b) 5x -4 -x -2 +x-9 c) x 4-16 d)x 2 3 +2x+6 e) x 2 4 resp: a, c,d 2) Dado o polinômio P(x)= 2x 3-5x 2 +x-3.
Projeto Jovem Nota 10 Polinômios Lista A Professor Marco Costa
1 Projeto Jovem Nota 10 1. (Ufv 2000) Sabendo-se que o número complexo z=1+i é raiz do polinômio p(x)=2x +2x +x+a,calcule o valor de a. 2. (Ita 2003) Sejam a, b, c e d constantes reais. Sabendo que a divisão
Matemática E Extensivo V. 6
Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +
RREGUOJMatemática Régis Cortes. Matemática Régis Cor POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD
POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD 1 Propriedades importantes: P1 - Toda equação algébrica de grau n possui exatamente n raízes. Exemplo: a equação x 3 - x = 0 possui 3 raízes a saber: x = 0
2. (Ita 2002) Com base no gráfico da função polinomial y = f(x) esboçado a seguir, responda qual é o resto da divisão de f(x) por (x - 1/2) (x 1).
1 Projeto Jovem Nota 10 Polinômios Lista B Professor Marco Costa 1. (Fuvest 2002) As raízes do polinômio p(x) = x - 3x + m, onde m é um número real, estão em progressão aritmética. Determine a) o valor
1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios
Matemática Polinômios CAPÍTULO 02 OPERAÇÕES COM POLINÔMIOS 1 INTRODUÇÃO Como com qualquer outra função, podemos fazer operações de adição, subtração, multiplicação e divisão com polinômios. A soma e a
Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Integração por Frações Parciais
MAT146 - Cálculo I - Integração por Frações Parciais Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Iremos agora desenvolver um método para resolver integrais de funções racionais,
Polinômios. 2) (ITA-1962) Se x³+px+q é divisível por x²+ax+b e x²+rx+s, demonstrar que:
Material by: Caio Guimarães Polinômios A seguir, apresento uma lista de vários exercícios propostos (com gabarito) sobre polinômios. Os exercícios são para complementar a vídeo-aula a respeito de polinômios
Matemática E Extensivo V. 8
Matemática E Extensivo V. 8 Resolva Aula 9 9.) D x + x 7x 6 = x = é raiz. Aula.) x + px + = Se + i é raiz, então i também é. 5 7 6 Soma = b a = p p = + i + i p = p = Q(x) = x + 5x + Resolvendo Q(x) =,
Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =
Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de
Equação e Fatoração MATEMÁTICA 8 ANO D PROF.: ISRAEL AVEIRO
Equação e Fatoração MATEMÁTICA 8 ANO D PROF.: ISRAEL AVEIRO WWW.ISRRAEL.COM.BR Definição Fatorar um polinômio é escrevê-lo em forma de um produto de dois ou mais fatores. Casos de fatoração: 1. Fator comum
Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental
Material Teórico - Módulo Equações do Segundo Grau Equações de Segundo Grau: outros resultados importantes Nono Ano do Ensino Funcamental Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio
Exercícios de Aprofundamento 2015 Mat - Polinômios
Exercícios de Aprofundamento 05 Mat - Polinômios. (Espcex (Aman) 05) O polinômio (x) x x deixa resto r(x). Sabendo disso, o valor numérico de r( ) é a) 0. b) 4. c) 0. d) 4. e) 0. 5 f(x) x x x, uando dividido
Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2
Polinômios. (ITA 2005) No desenvolvimento de (ax 2 2bx + c + ) 5 obtém-se um polinômio p(x) cujos coeficientes somam 32. Se 0 e são raízes de p(x), então a soma a + b + c é igual a (A) 2 (B) 4 (C) 2 (D)
Apostila de Matemática 16 Polinômios
Apostila de Matemática 16 Polinômios 1.0 Definições Expressão polinomial ou polinômio Expressão que obedece a esta forma: a n, a n-1, a n-2, a 2, a 1, a 0 Números complexos chamados de coeficientes. n
(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é:
APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado
Conteúdo. 2 Polinômios Introdução Operações... 13
Conteúdo 1 Conjunto dos números complexos 1 1.1 Introdução.......................................... 1 1.2 Operações (na forma algébrica).............................. 2 1.3 Conjugado..........................................
Unidade II MATEMÁTICA APLICADA. Prof. Luiz Felix
Unidade II MATEMÁTICA APLICADA Prof. Luiz Felix Equações do 1º grau Resolver uma equação do 1º grau significa achar valores que estejam em seus domínios e que satisfaçam à sentença do problema, ou seja,
Raízes quadrada e cúbica de um polinômio
Raízes quadrada e cúbica de um polinômio Lenimar Nunes de Andrade UFPB - João Pessoa, PB 1 de abril de 2011 1 Raiz quadrada de um polinômio Consideremos p(x) e r(x) polinômios tais que (r(x)) 2 = p(x).
FICHA DE TRABALHO DE MATEMÁTICA A 10.º ANO FUNÇÕES POLINOMIAIS
FICHA DE TRABALHO DE MATEMÁTICA A 10.º ANO FUNÇÕES POLINOMIAIS Conhece a Matemática e dominarás o Mundo. Galileu Galilei 1. Para que valores reais de m, GRUPO I ITENS DE ESCOLHA MÚLTIPLA p x x mx 0 dividido
Primeira Lista de Exercícios
Primeira Lista de Exercícios disciplina: Introdução à Teoria dos Números (ITN) curso: Licenciatura em Matemática professores: Marnei L. Mandler, Viviane M. Beuter Primeiro semestre de 2012 1. Determine
Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner
Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner Marina Andretta/Franklina Toledo ICMC-USP 29 de outubro de 2012 Baseado no livro Cálculo Numérico, de Neide B. Franco Marina Andretta/Franklina
Capítulo 1: Fração e Potenciação
1 Capítulo 1: Fração e Potenciação 1.1. Fração Fração é uma forma de expressar uma quantidade sobre o todo. De início, dividimos o todo em n partes iguais e, em seguida, reunimos um número m dessas partes.
SOCIEDADE EDUCACIONAL DO AMANHÃ. Profª: EDNALVA DOS SANTOS
SOCIEDADE EDUCACIONAL DO AMANHÃ Profª: EDNALVA DOS SANTOS 1 Frações O que são? 2 Para representar os números fracionários foi criado um símbolo, que é a fração. Sendo a e b números naturais e b 0 (b diferente
. Determine os valores de P(1) e P(22).
Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja
Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação
Polinômios 1. (Ufsc 015) Em relação à(s) proposição(ões) abaixo, é CORRETO afirmar ue: 01) Se o gráfico abaixo representa a função polinomial f, definida em por f(x) ax bx cx d, com a, b e c coeficientes
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática
Miistério da Educação Uiversidade Tecológica Federal do Paraá Campus Curitiba Gerêcia de Esio e Pesquisa Departameto Acadêmico de Matemática Dispositivo Prático de Briot-Ruffii: Poliômios O Dispositivo
Lista 1- Cálculo I Lic. - Resolução
Lista 1- Cálculo I Lic. - Resolução Exercício 6: Uma molécula de açúcar comum (sacarose) pesa 5,7 10 - g e uma de água, 3 10-3 g. Qual das duas é mais pesada? Quantas vezes uma é mais pesada que a outra?
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba Professor Gilmar Bornatto
Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba 1. Para fazer uma caixa sem tampa com um único pedaço de papelão, utilizou-se um retângulo de 16 cm de largura por 30 cm
DIVISÃO DE POLINÔMIOS
DIVISÃO DE POLINÔMIOS Prof. Patricia Caldana A divisão de polinômios estrutura-se em um algoritmo, podemos enuncia-lo como sendo: A divisão de um polinômio D(x) por um polinômio não nulo E(x), de modo
EQUAÇÕES BIQUADRADAS
EQUAÇÕES BIQUADRADAS Acredito que só pelo nome dar pra você ter uma idéia de como seja uma equação biquadrada, Se um time é campeão duas vezes, dizemos ele é bicampeão, se uma equação é do grau quando
CONJUNTO DOS NÚMEROS REAIS. Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos
CONJUNTO DOS NÚMEROS REAIS NÚMEROS RACIONAIS Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos Numero racional é todo o numero que pode ser escrito na forma a/b (com b diferente de zero) : a)
O DNA das equações algébricas
Reforço escolar M ate mática O DNA das equações algébricas Dinâmica 3 3º Série 4º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 3ª do Ensino Médio Algébrico-Simbólico Polinômios e Equações
TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS
TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:
Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e
Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c IR e Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e
a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente.
Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x 2 - x - 1 = 0 é
Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano
Módulo de Equações do Segundo Grau Relações entre coeficientes e raízes. Nono Ano Relações entre Coeficientes e Raízes. Exercícios Introdutórios Exercício. Fazendo as operações de soma e de produto entre
Fácil e Poderoso. Dinâmica 1. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Algébrico-Simbólico
Fácil e Reforço escolar M ate mática Poderoso Dinâmica 1 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Professor Matemática 3ª do Ensino Médio Algébrico-Simbólico DINÂMICA Fácil e poderoso. Polinômios
Apontamentos de Matemática 6.º ano
Revisão (divisores de um número) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, e 4, pois se dividirmos
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros
II.4 - Técnicas de Integração Integração de funções racionais:
Nesta aula, em complemento ao da aula anterior iremos resolver integrais de funções racionais utilizando expandindo estas funções em frações parciais. O uso deste procedimento é útil para resolução de
Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução:
EXERCÍCIOS 01. Calcule o valor numérico de P(x) = 2x 4 x 3 3x 2 + x + 5 para x = i. P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i 02. Dado o polinômio P(x) = x 3 + kx 2 2x + 5, determine
TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA
TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação
f x x x f x x x f x x x f x x x
Página 1 de 7 I. FUNÇÃO DO º GRAU (ou QUADRÁTICA) 1. Definição Chama-se função do º grau (ou função quadrática) a toda função do tipo onde a, e c são números reais e a 0. São exemplos: f ( x) ax x c =
Polos Olímpicos de Treinamento. Aula 7. Curso de Álgebra - Nível 3. Miscelânea sobre raízes de polinômios II
Polos Olímpicos de Treinamento Curso de Álgebra - Nível 3 Prof. Cícero Thiago / Prof. Marcelo Aula 7 Miscelânea sobre raízes de polinômios II Definição : Seja P(x) = a n x n +a n x n +...+a x+a 0 um polinômio
Fatoração Algébrica. Casos Simples de Fatoração Algébrica
Fatoração Algébrica Casos Simples de Fatoração Algébrica Como já aprendemos na Aritmética, todo número, não primo, pode ser decomposto em um produto de fatores primos. Assim, tem-se: 30 = 2 X 3 X 5 ; 72
Resolução das Questões Discursivas
COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 008-010 Prova de Matemática Resolução das Questões Discursivas São apresentadas abaixo possíveis soluções
Matemática Utilizando o dispositivo de Briot-Ruffini temos: a)
Coleção NEM ª Série Volume Matemática Matemática Aula 7 Série A 0 Utilizando o dispositivo de Briot-Ruffini temos: a) 0 0 0 Q(x) x x + x R(x) b) 0 0 0 0 0 Q(x) x x + x x + R(x) 0 c) Para n par: 0 0 0 0
INTEGRAÇÃO DE FUNÇÕES RACIONAIS
Cálculo Volume Dois - 40 INTEGRAÇÃO DE FUNÇÕES RACIONAIS Quando uma função racional da forma N()/D() for tal que o grau do polinômio do numerador for maior do que o do denominador, podemos obter sua integral
MULTIPLICAÇÃO E DIVISÃO DE DECIMAIS
MULTIPLICAÇÃO E DIVISÃO DE DECIMAIS Multiplicação com números decimais Há duas maneiras de efetuarmos a multiplicação envolvendo números decimais: multiplicação de número natural por decimal e multiplicação
PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL
PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx
CURSO PRF 2017 MATEMÁTICA
AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem
Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense
Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de
Nota: Turma: MA 327 Álgebra Linear. Terceira Prova. Boa Prova! Primeiro Semestre de T o t a l
Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 26 Terceira Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Boa Prova! Questão 1. 2. Pontos) Seja U um
MONÔMIOS E POLINÔMIOS
MONÔMIOS E POLINÔMIOS Problema: Observa as figuras. 6-9 6 4 Sabendo que as figuras são equivalentes, determina as dimensões do retângulo. Resolução: Se as figuras são equivalentes significa que têm a mesma
Fascículo 12 Unidades 37, 38, 39 e 40. 2ª Edição
2ª Edição Fascículo 12 Unidades 37, 38, 39 e 40 GOVERNO DO ESTADO DO RIO DE JANEIRO Governador Sergio Cabral Vice-Governador Luiz Fernando de Souza Pezão SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA Secretário
MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco
MATEMÁTICA 1 Professor Matheus Secco MÓDULO 2 Divisibilidade 1. DIVISIBILIDADE 1.1 DEFINIÇÃO: Dizemos que o inteiro a é divisível pelo inteiro b (ou ainda que a é múltiplo de b) se existe um inteiro c
Disciplina: Cálculo Numérico IPRJ/UERJ. Sílvia Mara da Costa Campos Victer. Aula 6 - Solução de Sistema de Equações Algébricas
Disciplina: Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer Aula 6 - Solução de Sistema de Equações Algébricas Métodos diretos: 1- Eliminação de Gauss com substituição recuada 2- Decomposição
Revisão de Pré-Cálculo
Revisão de Pré-Cálculo EQUAÇÕES E POLINÔMIOS Prof. Dr. José Ricardo de Rezende Zeni Departamento de Matemática, FEG, UNESP Lc. Ismael Soares Madureira Júnior Guaratinguetá, SP, Outubro, 2016 Direitos reservados.
Coeficientes Reais. Jorge J. Delgado Maria Lúcia Torres Villela
Pré-Cálculo, Vol. 3: Polinômios com Coeficientes Reais Jorge J. Delgado Maria Lúcia Torres Villela IM-UFF 2007 2 Conteúdo 3 Polinômios com coeficientes reais 7 1. Polinômios e operações...................
Aula 27 - Álgebra II. x (m(x)), x 2 + x + (m(x)), x 2 + x (m(x)) operações deste corpo são as seguintes:
Já vimos maneiras de codificar mensagens de modo a que, no caso de ocorrerem alguns erros na sua transmissão, o receptor possa ser capaz de corrigir esses erros. Esses códigos, chamados códigos lineares
Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA
DEFINIÇÃO... EQUAÇÃO REDUZIDA... EQUAÇÃO GERAL DA CIRCUNFERÊNCIA... 3 RECONHECIMENTO... 3 POSIÇÃO RELATIVA ENTRE PONTO E CIRCUNFERÊNCIA... 1 POSIÇÃO RELATIVA ENTRE RETA E CIRCUNFERÊNCIA... 17 PROBLEMAS
Aula 34. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Técnicas de Integração - Continuação Aula 34 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 03 de Junho de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica
r O GABARITO - QUALIFICAÇÃO - Março de 2013
GABARITO - QUALIFICAÇÃO - Março de 013 Questão 1. (pontuação: 1,5) É dado um retângulo ABCD tal que em seu interior estão duas circunferências tangentes exteriormente no ponto T, como mostra a figura abaixo.
MATEMÁTICA I. Ana Paula Figueiredo
I Ana Paula Figueiredo Números Reais IR O conjunto dos números Irracionais reunido com o conjunto dos números Racionais (Q), formam o conjunto dos números Reais (IR ). Assim, os principais conjuntos numéricos
CAPÍTULO 1 MÚLTIPLOS E DIVISORES
06 Matemática e Raciocínio Lógico Damares Pavione Capítulo Múltiplos e divisores CAPÍTULO MÚLTIPLOS E DIVISORES. NÚMERO PRIMO Um número será primo quando não for divisível por nenhum outro número além
Matemática para Ciência de Computadores
Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes [email protected] DCC-FCUP Complexidade 2002/03 1 Inteiros e divisão Definição: Se a e b são inteiros com a 0, dizemos que a divide
