4. Forças Distribuídas: Centróides de Centros de Gravidade

Tamanho: px
Começar a partir da página:

Download "4. Forças Distribuídas: Centróides de Centros de Gravidade"

Transcrição

1 4. Forças Distribuídas: Cetróides de Cetros de Gravidade 4.1 Geeralidades A atracção da Terra sobre um determiado corpo é costituída por um sistema de forças distribuídas aplicadas em cada partícula do corpo. Cosiderado tratar-se de um corpo rígido, a acção gravítica pode ser substituída pela acção da sua resultate o peso P do corpo, aplicada o cetro de gravidade do corpo. Exemplos de cargas (acções) gravíticas em edifícios.

2 O mesmo se passa com outras forças distribuídas como, por exemplo, a acção do veto sobre uma superfície, a acção da pressão hidrostática sobre superfícies submersas, etc.. Acção do veto (pressão). Acção da pressão hidrostática. Substituição pela resultate.

3 Outras acções (uiformemete) distribuídas.

4 4.2 Cetro de Gravidade e Cetróide de Corpo Bidimesioal Cetro de Gravidade Cosidere-se o caso restrito de superfícies plaas ( placas ) ou de lihas ( arames ) o plao. o caso duma placa, subdividido-a em pequeos elemetos cuja posição é descrita por (x i, y i ) e cujo peso é dado por ΔP i, o peso total P da placa é: P Δ = i = 1 P i O poto de aplicação da resultate ( peso ) pode ser determiado igualado os mometos produzidos por ambos os sistemas de forças (distribuídas e cocetrada) relativamete aos eixos ordeados x e y do plao da placa, ou seja: M y = s P x Δ P x i i = i = 1 M x = s P y Δ P y i i = i = 1 o limite, decompodo a placa em elemetos ifiitesimais, terse-ia: e em que ( y ) P = dp P y = ydp P x = xdp x, descrevem as coordeadas do cetro de gravidade da placa.

5 As equações ateriores podem ser geeralizadas a um arame (este caso o domíio de itegração é a liha que descreve o arame). Cetróide Tratado-se duma placa delgada homogéea com espessura uiforme t, tem-se: ΔP = tδa γ pelo que i i P i = 1 = ΔP taγ em que as equações ateriores que permitiam a determiação do cetro de gravidade degeeram em: i = M y = s Ax Δ A x i i = i = 1 M y = s Ay Δ A y i i = i = 1 este caso, o poto de coordeadas ( y ) x, é desigado por cetróide da placa. Estes resultados podem ser geeralizados a placas decompostas em elemetos ifiitesimais. e A = da A y = yda A x = xda o caso da placa ão ser homogéea o cetróide deixa de coicidir com o cetro de gravidade.

6 As equações ateriores defiem os chamados mometos estáticos (ou mometos de primeira ordem) da superfície relativamete aos eixos ordeados. Estes são refereciados por S x e S y e determiam-se através de: S x = Ay = yda S y Ax = = xda Das equações ateriores se coclui que as coordeadas do cetróide duma superfície podem ser determiadas dividido os mometos estáticos relativamete aos eixos ordeados pela área da superfície. Como cosequêcia, se o cetróide duma superfície se situa sobre um determiado eixo, é ulo o seu mometo estático relativamete ao mesmo eixo. De igual forma se coclui que se o mometo estático relativamete a um determiado eixo é ulo, etão o cetróide da superfície situa-se sobre o eixo. As coclusões ateriores podem ser geeralizadas para o caso de lihas o plao (arames). Simetria Simetria relativamete a eixo. Quado uma superfície é simétrica relativamete a um eixo, o seu mometo estático relativamete ao eixo é ulo e o seu cetróide situa-se sobre o eixo.

7 Caso a superfície apresete dois eixos de simetria, o cetróide situa-se o poto de itersecção destes eixos. Simetria relativamete a poto. Quado uma superfície é simétrica relativamete a um poto, o seu cetróide situa-se esse poto.

8 4.3 Determiação de Cetróides por Itegração Quado se trate da determiação do cetróide de uma superfície delimitada por curvas cujas expressões aalíticas são cohecidas, tora-se possível proceder à itegração com vista à determiação dos mometos estáticos e da área. A itegração pode ser realizada por três processos diferetes: Itegração dupla em coordeadas cartesiaas Ex: triâgulo rectâgulo da = dxdy S y H = xda = xdxdy Ω B 0 By / H y = H A = da = dxdy Ω H B 0 By / H x = B x = S y A Itegração dupla em coordeadas polares Ex: quarto de círculo da = rdrdθ S y = xda = Ω π / 2 R 0 0 ( r cosθ ) rdrdθ A = da = Ω π / 2 R 0 0 rdrdθ R x = B Sy x = A

9 Itegração simples cosiderado o método das fatias (ou das faixas) H dy x = g( y ) S y = xelda = Ω H 0 g( y ) / 2 A = da = g( y )dy Ω H 0 ( g( y ) dy ) x el = g( y )/ 2 x = Sy A Exercício: determiar a posição do cetróide sob um arco parabólico pelo método das faixas. o caso de uma liha, a posição do cetróide pode aida ser determiada por itegração através de S y = xdl Ω L = dl Ω x = Sy L Cuja itegração pode ser realizada idistitamete em coordeadas cartesiaas ou polares 2 dl = dx + dy 2 2 dl = dr + ( rdθ ) 2 que podem ser explicitados em termos da variável cosiderada como idepedete (em relação à qual a itegração é realizada) dl = 2 dy 1 + dx dx dl = 2 dx dy + 1dy dl = 1 + r 2 2 dθ dr dr dl = dr dθ 2 + r 2 dθ

10

11 4.4 Placas e Arames Compostos Uma forma eficiete de determiar a posição do cetro de gravidade (ou do cetróide) duma superfície cosiste em decompor esta em formas simples (triâgulos, círculos, rectâgulos, etc.) cujas características (área e cetróide ou cetro de gravidade) sejam previamete cohecidas. Com efeito, S y = Ax = xda = xda + xda xda = A1 x1 + A2 x2 +..A Ω Ω1 Ω 2 Ω x pelo que x A x A x = 1 = 1 = = A A o mesmo se passado com a determiação de y, ou seja = 1 y A y A y = 1 = 1 = = A A = 1 As equações ateriores são extesíveis, com as devidas adaptações à determiação do cetróide de curvas compostas. x L x L x = 1 = 1 = = L L = 1 y L y L y = 1 = 1 = = L L = 1 Para a determiação das áreas (ou comprimetos) e posições dos cetróides dos elemetos que compõe a superfície (ou liha) deverão cosultar-se Tabelas (por exemplo, as tabelas do Beer&Johsto, 7ª Edição, Figs. 5.8A e B, ateriormete apresetadas).

12 4.5 Teoremas de Pappus-Guldius Defiições: Superfície de revolução superfície gerada pela rotação duma curva plaa (curva geratriz) em toro dum eixo fixo (eixo de revolução) Exemplos Superfície esférica Superfície cóica Superfície de toro Corpo de revolução corpo gerado pela rotação duma superfície plaa (superfície geratriz) em toro dum eixo fixo (eixo de revolução) Exemplos Esfera Coe Toro

13 Teorema I. A área duma superfície de revolução é igual ao produto do comprimeto da curva geratriz pelo camiho percorrido pelo cetróide da curva durate o movimeto de rotação que gera a superfície. Demostração: cosiderado a superfície da gerada por um segmeto dl da curva geratriz da = 2π z dl Cosiderado agora a totalidade da superfície de revolução A = da = 2π z dl = 2πSy = 2π z L ota: a curva geratriz ão pode itersectar o eixo (geraria área egativa) Aplicações: Determiar a área duma superfície de revolução cohecida a posição do cetróide da curva geratriz; Determiar a posição do cetróide, cohecida a área da superfície de revolução.

14 Teorema II. O volume de um corpo de revolução é igual ao produto da área da superfície geratriz pelo camiho percorrido pelo cetróide da superfície durate o movimeto de rotação que gera o corpo. Demostração: cosiderado o volume dv gerado por um elemeto da da superfície geratriz dv = 2π z da Cosiderado agora a totalidade do volume de revolução V = dv = 2π z da = 2π Sy = 2π z A ota: a superfície geratriz ão pode itersectar o eixo (geraria volume egativo) Aplicações: Determiar o volume dum corpo de revolução, cohecidas a área e a posição do cetróide da superfície geratriz; Determiar a posição do cetróide da superfície geratriz, cohecido o volume do corpo de revolução.

15 ota fial: Ambos os teoremas (I e II) são aplicáveis superfícies/volumes de revolução icompletos (com rotação 0<θ<2π em toro do eixo geratriz). Exercício extraído de Egieerig Mechaics: Statics. RILEY, William F.; STURGES, Leroy. Joh Wiley ad Sos, 1996

16 4.6 Cargas Distribuídas em Vigas As vigas estão habitualmete sujeitas a cargas distribuídas p(x) devidas ao peso próprio, ao peso dos restates elemetos estruturais e ão estruturais, à acção do veto, etc.. Podemos, para efeito do equilíbrio global, substituir a carga distribuída pela sua resultate aplicada a sua liha de acção. Resultate R L L = dr = f x= 0 x= 0 ( x) dx = A Liha de Acção (igualado mometos relativamete a O) R L L ( x) dx = x R d A MO = x dr = x f C = x= 0 x= 0

17 Coclusão: uma carga distribuída actuate uma viga pode ser substituída por uma carga cocetrada; a itesidade desta carga úica é igual à área da superfície sob a curva de carregameto e a sua liha de acção passa pelo cetróide do carregameto Exemplos: carga uiformemete distribuída (rectagular), carga liear (triagular ou trapezoidal). Exercícios: Determie os valores das resultates (e localização) para os seguites carregametos distribuídos sobre vigas. Exercício extraído de Egieerig Mechaics: Statics. RILEY, William F.; STURGES, Leroy. Joh Wiley ad Sos, 1996

18 4.6 Cetro de Gravidade de Corpo Tridimesioal Cosidere-se o caso restrito de volumes ( corpos ) tridimesioais. Subdivida-se r o corpo em pequeos corpos elemetares cujo peso r r é ΔW = ΔW e 3 e cuja posição é descrita por. Pretede-se que o sistema de forças (pesos) distribuídos seja estaticamete equivalete a uma força úica resultate W e r 3, aplicada o cetro de gravidade G ( x, y, z) do corpo. Cosiderado elemetos de volume ifiitesimais, a codição aterior implica: Igualdade da resultate W = dw Igualdade do mometo resultate (relativamete a O, por exemplo) r R r r r r M W e = dw e O ( ) ( = G 3 3 )

19 Do último cojuto de equações se coclui: x W = x dw W y = y dw z W = z dw que defiem as coordeadas do cetro de gravidade do cetro de gravidade do corpo. Caso se trate dum corpo homogéeo com um peso específico γ, tem-se: e dw W = γ dv = γ V pelo que reformulado as equações ateriores se obtém x V = x dv V y = y dv z V = z dv equações que defiem a posição do cetróide, coicidete com o cetro de gravidade quado se trate dum corpo homogéeo. De igual forma as equações ateriores defiem os mometos estáticos (ou mometos de primeira ordem) relativamete aos plaos coordeados. SIMETRIA Simetria relativamete um plao. Quado volume é simétrico relativamete a um plao, o seu mometo estático relativamete ao plao é ulo e o seu cetróide situa-se o plao de simetria. Caso o volume apresete dois plaos de simetria, o cetróide situa-se a recta defiida pela itersecção destes plaos.

20 Caso o volume apresete três plaos de simetria que se itersectam um poto, o cetróide situa-se esse poto. DETERMIAÇÃO DE CETRÓIDES POR ITEGRAÇÃO Quado se trate da determiação do cetróide de um volume delimitado por curvas cujas expressões aalíticas são cohecidas, tora-se possível proceder à itegração com vista à determiação dos mometos estáticos relativamete aos plaos coordeados, assim como do seu volume. A itegração pode ser realizada por dois processos diferetes: Itegração tripla em coordeadas cartesiaas Itegração simples através do método das fatias (faixas). Cosiderado um volume de revolução obtido em toro do eixo y

1. CENTROS DE MASSA 1.2. CENTRO DE MASSA DE UM CORPO BI-DIMENSIONAL

1. CENTROS DE MASSA 1.2. CENTRO DE MASSA DE UM CORPO BI-DIMENSIONAL . CENTROS DE ASSA.. FORÇAS E CORPOS RÍGIDOS Corpo rígido é aquele que ão se deforma. As forças que actuam em corpos rígidos podem ser classificadas em dois grupos: Forças Exteriores que represetam a acção

Leia mais

EME 311 Mecânica dos Sólidos

EME 311 Mecânica dos Sólidos EE 311 ecâica dos Sólidos - CPÍTULO 4 - Profa. Patricia Email: patt_lauer@uifei.edu.br IE Istituto de Egeharia ecâica UNIFEI Uiversidade Federal de Itajubá 4 CENTRO DE GRIDDE E OENTO ESTÁTICO DE ÁRE 4.1

Leia mais

Borja MÓDULO 03 CENTRO DE GRAVIDADE ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. Edilberto Vitorino de

Borja MÓDULO 03 CENTRO DE GRAVIDADE ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. Edilberto Vitorino de INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL TEC. EM CONSTR. DE EDIFICIOS EDIFICAÇÕES TÉCNICO SUBSEQUENTE ESTABILIDADE DAS CONSTRUÇÕES

Leia mais

CAPÍTULO VI MOMENTOS ESTÁTICOS, BARICENTROS E MOMENTOS DE INÉRCIA

CAPÍTULO VI MOMENTOS ESTÁTICOS, BARICENTROS E MOMENTOS DE INÉRCIA 52 CPÍTULO VI MOMENTOS ESTÁTICOS, BRICENTROS E MOMENTOS DE INÉRCI I.MOMENTOS ESTÁTICOS Mometo Estático de um elemeto de superfície, em relação a um eio, situado o mesmo plao que a superfície cosiderada,

Leia mais

11 Aplicações da Integral

11 Aplicações da Integral Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos

Leia mais

Objectivos da Aula: Ser Capaz de proceder à Construção de Mohr para estados planos. Comparar os resultados Analíticos com os Resultados Gráficos.

Objectivos da Aula: Ser Capaz de proceder à Construção de Mohr para estados planos. Comparar os resultados Analíticos com os Resultados Gráficos. Sumário e Objectivos Sumário: Perpedicularidade das esões Pricipais. Elipsóide de Lamé. esões Octaédricas. Caso Particular do Estado Plao de esão. esões Pricipais Secudárias. Circuferêcia ou Circulo de

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ao 08 - a Fase Proposta de resolução Cadero... Como P µ σ < X < µ + σ 0,94, logo como P X < µ σ P X > µ + σ, temos que: P X < µ σ 0,94 E assim, vem que: P X > µ σ P X

Leia mais

ELECTROMAGNETISMO E ÓPTICA

ELECTROMAGNETISMO E ÓPTICA ELECTROMAGNETISMO E ÓPTICA NOTAS DE CURSO Prof. Resposável: Mário J. Piheiro Istituto Superior Técico 008 1 O electromagetismo estuda o efeito das cargas eléctricas em repouso ou em movimeto. Eistem dois

Leia mais

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii)

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii) Capítulo Aplicações lieares Seja T: R R a multiplicação por 8 a) Quais dos seguites vectores estão em Im( T )? i) ii) 5 iii) b) Quais dos seguites vectores estão em Ker( T)? i) ii) iii) c) Qual a dimesão

Leia mais

FEUP - MIEEC - Análise Matemática 1

FEUP - MIEEC - Análise Matemática 1 FEUP - MIEEC - Aálise Matemática Resolução do exame de Recurso de 6 de Fevereiro de 9 Respostas a pergutas diferetes em folhas diferetes Justifique cuidadosamete todas as respostas. Não é permitida a utilização

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 65) ª FASE DE JULHO 016 GRUPO I 1. Sabe-se que: P ( A B ) 0, 6 P A B P A Logo, 0, + 0, P A B Como P P 0, 6 P A B 1 0,

Leia mais

étodos uméricos MÉTODO DOS MOMENTOS - MOM Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos MÉTODO DOS MOMENTOS - MOM Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos MÉTODO DOS MOMETOS - MOM Prof. Erivelto Geraldo epomuceo PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA ELÉTRICA UIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CETRO FEDERAL DE EDUCAÇÃO TECOLÓGICA

Leia mais

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A.

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A. MATEMÁTICA NOTAÇÕES é o cojuto dos úmeros compleos. é o cojuto dos úmeros reais. = {,,, } i deota a uidade imagiária, ou seja, i =. Z é o cojugado do úmero compleo Z Se X é um cojuto, PX) deota o cojuto

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I Associação de Professores de Matemática Cotactos: Rua Dr. João Couto,.º 7-A 1500-6 Lisboa Tel.: +51 1 716 6 90 / 1 711 0 77 Fa: +51 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (IV ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice 4 4 Defiição e exemplos 4 Subespaços4 4 Cojutos

Leia mais

CAPÍTULO 6 CENTROS DE GRAVIDADE E MOMENTOS ESTÁTICOS

CAPÍTULO 6 CENTROS DE GRAVIDADE E MOMENTOS ESTÁTICOS CAPÍTULO 6 CENTROS DE GRAVIDADE E OENTOS ESTÁTICOS CENTRO DE GRAVIDADE DE U CORPO BIDIENSIONAL Considere um corpo bidimensional no plano. A acção da gravidade actua sobre o corpo como uma força distribuída,

Leia mais

( ) III) ESPAÇOS VETORIAIS REAIS. Definição: Denomina-se espaço vetorial sobre os Reais (R) ao conjunto não vazio. 1) Existe uma adição:

( ) III) ESPAÇOS VETORIAIS REAIS. Definição: Denomina-se espaço vetorial sobre os Reais (R) ao conjunto não vazio. 1) Existe uma adição: Elemetos de Álgebra Liear ESPAÇOS VETORIAIS REAIS III) ESPAÇOS VETORIAIS REAIS Defiição: Deomia-se espaço vetorial sobre os Reais (R) ao cojuto ão vazio + : V V V ) Existe uma adição: com as seguites propriedades:

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

EQUAÇÃO DO PLANO. Profª Cristiane Guedes

EQUAÇÃO DO PLANO. Profª Cristiane Guedes EQUAÇÃO DO PLANO Profª Cristiae Guedes Equação Vetorial do Plao Sejam um poto A e os vetores u e v, ão paralelos. Etão existe um úico plao que passa por A e é paralelo a u e v. : AP u v,, R : P A u v,,

Leia mais

Departamento de Engenharia Civil e Arquitectura MECÂNICA I

Departamento de Engenharia Civil e Arquitectura MECÂNICA I Departamento de Engenharia Civil e rquitectura Secção de Mecânica Estrutural e Estruturas Mestrado em Engenharia Civil MECÂNIC I pontamentos sobre centros de gravidade Luís uerreiro 21/211 CENTROS DE RIDDE

Leia mais

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares.

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares. 5. Defiição de fução de várias variáveis: campos vetoriais e. Uma fução f : D f IR IR m é uma fução de variáveis reais. Se m = f é desigada campo escalar, ode f(,, ) IR. Temos assim f : D f IR IR (,, )

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A Exame Nacioal do Esio Secudário Decreto-Lei.º 74/004, de 6 de Março Prova Escrita de Matemática A.º Ao de Escolaridade Prova 635/.ª Fase Prova Especial 4 Págias Duração da Prova: 50 miutos. Tolerâcia:

Leia mais

Mecânica dos Sólidos II

Mecânica dos Sólidos II Curso de Egeharia Civil Uiversidade Estadual de Marigá Cetro de Tecologia Departameto de Egeharia Civil Mecâica dos Sólidos II Bibliografia: Beer, F. P.; Johsto, Jr. E. R.; DEWolf, J. T. Resistêcia dos

Leia mais

4 SÉRIES DE POTÊNCIAS

4 SÉRIES DE POTÊNCIAS 4 SÉRIES DE POTÊNCIAS Por via da existêcia de um produto em C; as séries adquirem a mesma relevâcia que em R; talvez mesmo maior. Isso deve-se basicamete ao facto de podermos ovamete formular as chamadas

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate

Leia mais

Proposta de Exame de Matemática A 12.º ano

Proposta de Exame de Matemática A 12.º ano Proposta de Eame de Matemática A 1.º ao Nome da Escola Ao letivo 0-0 Matemática A 1.º ao Nome do Aluo Turma N.º Data Professor - - 0 GRUP I Na resposta aos ites deste grupo, selecioe a opção correta. Escreva,

Leia mais

As principais propriedades geométricas de figuras planas são:

As principais propriedades geométricas de figuras planas são: Tema IV. CRCTERÍSTICS GEOMÉTRICS DE FIGURS PLNS 4.1. Itrodução O dimesioameto e a verificação da capacidade resistete de barras, como de qualquer elemeto estrutural depedem de gradezas chamadas tesões,

Leia mais

Planificação Anual de Matemática

Planificação Anual de Matemática Direção-Geral dos Estabelecimetos Escolares Direção de Serviços da Região Cetro Plaificação Aual de Matemática Ao Letivo: 2015/2016 Domíio Coteúdos Metas Curriculares Nº de Aulas (45 miutos) TEOREMA DE

Leia mais

Novo Espaço Matemática A 12.º ano Proposta de Teste [outubro ]

Novo Espaço Matemática A 12.º ano Proposta de Teste [outubro ] Proposta de Teste [outubro - 017] Nome: Ao / Turma: N.º: Data: / / Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações

Leia mais

Espaço Amostral = todas as possibilidades de se formar dois conjuntos com 5 elementos cada.

Espaço Amostral = todas as possibilidades de se formar dois conjuntos com 5 elementos cada. Dez cartões estão umeradas de 1 a 10. Depois de embaralhados, são formados dois cojuto de 5 cartões cada. Determie a probabilidade de que os úmeros 9 e 10 apareçam um mesmo cojuto. C, C,..., C 1 10 Espaço

Leia mais

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,

Leia mais

BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO

BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO BANCO DE QUESTÕES MATEMÁTICA A. O ANO DOMÍNIO: Geometria Aalítica (o espaço). Cosidera, um referecial o.. do espaço, os plao defiidos pelas seguites equações: x yz e xyz A iterseção dos dois plaos é: (A)

Leia mais

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x):

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x): APROXIAÇÃO POR ÍNIOS QUADRADOS Cosideremos a seguite tabela de valores de uma fução y = f(x): i 3 x i 6 8 y i 8 Pretede-se estimar valores da fução em potos ão tabelados. Poderíamos utilizar o poliómio

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

n ) uma amostra aleatória da variável aleatória X.

n ) uma amostra aleatória da variável aleatória X. - Distribuições amostrais Cosidere uma população de objetos dos quais estamos iteressados em estudar uma determiada característica. Quado dizemos que a população tem distribuição FX ( x ), queremos dizer

Leia mais

/augustofisicamelo. 11 Cálculo do centro de massa (Simulador) 14 Cálculo do centro de massa (4º caso)

/augustofisicamelo. 11 Cálculo do centro de massa (Simulador) 14 Cálculo do centro de massa (4º caso) 1 Coceito 2 Coceito (Iterativo) 3 Experimeto 1 Explicação 4 Experimeto 2 Explicação 5 Experimeto 3 Explicação 6 Experimeto 4 7 Deslocameto do cetro de massa 8 Deslocameto do cetro de massa (iterativo)

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

Novo Espaço Matemática A 12.º ano Proposta de Teste [março ]

Novo Espaço Matemática A 12.º ano Proposta de Teste [março ] Proposta de Teste [março - 08] Nome: Ao / Turma: N.º: Data: / / Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações dos

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta Questão 1 a) O faturameto de uma empresa este ao foi 1% superior ao do ao aterior; oteha o faturameto do ao aterior, saedo que o deste ao foi de R$1.4.,. ) Um comerciate compra calças a um custo de R$6,

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 miutos Data: CADERNO I (60 miutos com calculadora). Cosidere um plao em que está fixado um referecial ortoormado xoy, os vetores

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais

Métodos iterativos. Métodos Iterativos para Sistemas Lineares

Métodos iterativos. Métodos Iterativos para Sistemas Lineares Métodos iterativos Métodos Iterativos para Sistemas Lieares Muitos sistemas lieares Ax = b são demasiado grades para serem resolvidos por métodos directos (por exemplo, se A é da ordem de 10000) á que

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

Análise da Resposta Livre de Sistemas Dinâmicos de 2 a Ordem

Análise da Resposta Livre de Sistemas Dinâmicos de 2 a Ordem Aálise da Resposta Livre de Sistemas Diâmicos de Seguda Ordem 5 Aálise da Resposta Livre de Sistemas Diâmicos de a Ordem INTRODUÇÃO Estudaremos, agora, a resposta livre de sistemas diâmicos de a ordem

Leia mais

Teste de Avaliação de MATEMÁTICA 12º ano

Teste de Avaliação de MATEMÁTICA 12º ano Turma: e º teste 06 de Fevereiro Nº Nome GRUO I Teste de Avaliação de MATEMÁTICA º ao º eríodo de 0/ duração 90 mi. rof. Josué Baptista Classificação: O rofessor: As sete questões deste grupo são de escolha

Leia mais

ESTATÍSTICA. PROF. RANILDO LOPES U.E PROF EDGAR TITO

ESTATÍSTICA. PROF. RANILDO LOPES  U.E PROF EDGAR TITO ESTATÍSTICA PROF. RANILDO LOPES http://ueedgartito.wordpress.com U.E PROF EDGAR TITO Medidas de tedêcia cetral Medidas cetrais são valores que resumem um cojuto de dados a um úico valor que, de alguma

Leia mais

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal.

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal. biomial seria quase simétrica. Nestas codições será também melhor a aproximação pela distribuição ormal. Na prática, quado e p > 7, a distribuição ormal com parâmetros: µ p 99 σ p ( p) costitui uma boa

Leia mais

M y. M z. Fig.6.1 Peça linear de secção variável

M y. M z. Fig.6.1 Peça linear de secção variável PÍTULO V TENSÕES DE FLEXÃO E VS 6.. RESUO D TEOR 6... trodução No caso mais geral, uma peça liear pode estar submetida às solicitações idicadas a Fig.6., icluido: (i) Esforço ormal N, que pode ser de tracção

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira TÓPICOS Subespaço. ALA Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

5 DESENVOLVIMENTOS EM SÉRIE DE POTÊNCIAS

5 DESENVOLVIMENTOS EM SÉRIE DE POTÊNCIAS 5 DESENVOLVIMENTOS EM SÉRIE DE POTÊNCIAS Na secção aterior cocluímos que uma fução aalítica um determiado poto é holomorfa uma viihaça desse poto. Iremos mostrar que o iverso é igualmete válido. Nesta

Leia mais

GRUPO I Duração: 50 minutos

GRUPO I Duração: 50 minutos Matemática A. o ao TESTE DE AVALIAÇÃO GLOBAL MATEMÁTICA A.º ANO O teste é costituído por dois grupos (I e II). Utiliza apeas caeta ou esferográfica de tita azul ou preta. Só é permitido o uso de calculadora

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº 10 (entregar no dia 6 de Maio de 2011) 1ª Parte

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº 10 (entregar no dia 6 de Maio de 2011) 1ª Parte Escola Secudária com º ciclo D. Diis º Ao de Matemática A Tema III Sucessões Reais TPC º 0 (etregar o dia 6 de Maio de 0) ª Parte As cico questões deste grupo são de escolha múltipla. Para cada uma delas

Leia mais

FORMAS QUADRÁTICAS. Esta forma quadrada pode ser reescrita em forma matricial, segundo:

FORMAS QUADRÁTICAS. Esta forma quadrada pode ser reescrita em forma matricial, segundo: PROGRAA DE ENGENHARIA QUÍICA/COPPE/UFRJ COQ 897- OIIZAÇÃO DE PROCESSOS- II/ FORAS QUADRÁICAS Em a epressão geral das formas quadráticas é: a a f (, ) cbb a, cujas derivadas parciais são: f(, ) b a a f(,

Leia mais

TRANSFORMAÇÕES LINEARES

TRANSFORMAÇÕES LINEARES rasformação Liear NSFOMÇÕES LINEES Sejam e espaços vetoriais reais Dizemos que uma fução : é uma trasformação liear se a fução preserva as operações de adição e de multiplicação por escalar isto é se os

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

Acesso de Maiores de 23 anos Prova escrita de Matemática 17 de Junho de 2013 Duração da prova: 150 minutos. Tolerância: 30 minutos.

Acesso de Maiores de 23 anos Prova escrita de Matemática 17 de Junho de 2013 Duração da prova: 150 minutos. Tolerância: 30 minutos. Acesso de Maiores de 3 aos Prova escrita de Matemática 17 de Jho de 013 Dração da prova: 150 mitos. Tolerâcia: 30 mitos. Primeira Parte As oito qestões desta primeira parte são de escolha múltipla. Para

Leia mais

TM Estática II

TM Estática II TM 332 - Estática II Emílio Eiji Kavamura, MSc Departamento de Engenaharia Mecânica UFPR TM-332, 2012 emilio.kavamura@ufpr.br (UFPR) Estática 2012 1 / 78 Roteiro da aula Centróides e Baricentros Formas

Leia mais

Sumário. 2 Índice Remissivo 17

Sumário. 2 Índice Remissivo 17 i Sumário 1 Itrodução à Iferêcia Estatística 1 1.1 Defiições Básicas................................... 1 1.2 Amostragem....................................... 2 1.2.1 Tipos de Amostragem.............................

Leia mais

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio Material Teórico - Módulo de ESTATÍSTICA As Diferetes Médias Primeiro Ao do Esio Médio Autor: Prof Atoio Camiha Muiz Neto Revisor: Prof Fracisco Bruo Holada Nesta aula, pausamos a discussão de Estatística

Leia mais

VERSÃO 1. Prova Escrita de Matemática A. 12.º Ano de Escolaridade. Prova 635/1.ª Fase. Entrelinha 1,5, sem figuras nem imagens

VERSÃO 1. Prova Escrita de Matemática A. 12.º Ano de Escolaridade. Prova 635/1.ª Fase. Entrelinha 1,5, sem figuras nem imagens EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei.º 19/01, de 5 de julho Prova Escrita de Matemática A 1.º Ao de Escolaridade Prova 65/1.ª Fase 1 Págias Etreliha 1,5, sem figuras em images Duração da Prova:

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 3 Resumo dos dados uméricos por meio de úmeros. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico dessa

Leia mais

Capítulo 5. CASO 5: EQUAÇÃO DE POISSON 5.1 MODELO MATEMÁTICO E SOLUÇÃO ANALÍTICA

Capítulo 5. CASO 5: EQUAÇÃO DE POISSON 5.1 MODELO MATEMÁTICO E SOLUÇÃO ANALÍTICA Capítulo 5. CASO 5: EQUAÇÃO DE POISSON No presete capítulo, é abordado um problema difusivo uidimesioal com absorção de calor (Icropera e DeWitt, 199, o que resulta uma equação de Poisso, que é uma equação

Leia mais

Proposta de prova-modelo

Proposta de prova-modelo Proposta de prova-modelo Matemática A. AN DE ESCLARIDADE Duração: (Cadero + Cadero ): 0 miutos. Tolerâcia: 0 miutos Cadero : 7 miutos. Tolerâcia: miutos (é permitido o uso de calculadora) Na resposta aos

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de teste de avaliação [março 2019]

Novo Espaço Matemática A 11.º ano Proposta de teste de avaliação [março 2019] Novo Espaço Matemática A.º ao Proposta de teste de avaliação [março 09] Nome: Ao / Trma: N.º: Data: - - Não é permitido o so de corretor. Deves riscar aqilo qe pretedes qe ão seja classificado. A prova

Leia mais

Algoritmos de Iluminação Global

Algoritmos de Iluminação Global Sistemas Gráficos/ Computação Gráfica e Iterfaces Objectivo: calcular a cor de cada poto a partir da ilumiação directa de uma fote de luz, mais a soma de todas as reflexões das superfícies próximas. Nos

Leia mais

( ) ( ) Novo Espaço Matemática A 12.º ano Proposta de Teste [abril 2018] CADERNO 1 (É permitido o uso de calculadora gráfica)

( ) ( ) Novo Espaço Matemática A 12.º ano Proposta de Teste [abril 2018] CADERNO 1 (É permitido o uso de calculadora gráfica) Proposta de Teste [abril 08] Nome: Ao / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações dos

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual

Leia mais

Instituto Politécnico de Viseu Escola Superior de Tecnologia e Gestão

Instituto Politécnico de Viseu Escola Superior de Tecnologia e Gestão Istituto Politécico de Viseu Escola Superior de Tecologia e Gestão Prova Escrita de Avaliação de Cohecimetos e Competêcias para Maiores de 23 Aos Prova de Matemática (opcioal) Duração da prova: 50 miutos

Leia mais

Resolva os grupos do exame em folhas separadas. O uso de máquinas de calcular e telemóveis não é permitido. Não se esqueça que tudo é para justificar.

Resolva os grupos do exame em folhas separadas. O uso de máquinas de calcular e telemóveis não é permitido. Não se esqueça que tudo é para justificar. Eame em 6 de Jaeiro de 007 Cálculo ATENÇÃO: FOLHAS DE EXAME NÃO IDENTIFICADAS NÃO SERÃO COTADAS Cálculo / Eame fial 06 Jaeiro de 007 Resolva os grupos do eame em folhas separadas O uso de máquias de calcular

Leia mais

Nome Cartão Turma Chamada

Nome Cartão Turma Chamada UFG Instituto de Matemática 215/2 POVA 2 16 de outubro de 215 8h3 1 2 3 4 5 81 3 y 811 onsidere a integral dupla iterada I = f(x,y)dxdy, em que o integrando é dado por f(x,y) = 4x y 2 x 2. 1. Determine

Leia mais

( ) ( ) ( ) (19) O ELITE RESOLVE IME 2010 MATEMÁTICA - DISCURSIVAS. MATEMÁTICA QUESTÃO 01 Sejam os conjuntos P 1

( ) ( ) ( ) (19) O ELITE RESOLVE IME 2010 MATEMÁTICA - DISCURSIVAS. MATEMÁTICA QUESTÃO 01 Sejam os conjuntos P 1 (9) 5-0 wwwelitecampiascombr O ELITE RESOLVE IME 00 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO 0 Sejam os cojutos P, P, S e ( P S) P e ( S S) ( P P) Demostre que ( S S ) ( P P ) S tais que ( ) P S P,

Leia mais

PROVA DE MATEMÁTICA 2 a FASE

PROVA DE MATEMÁTICA 2 a FASE PROVA DE MATEMÁTICA a FASE DEZ/04 Questão 1 a)o faturameto de uma empresa esse ao foi 10% superior ao do ao aterior; obteha o faturameto do ao aterior sabedo-se que o desse ao foi de R$1 40 000,00 b)um

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº11 (entregar no dia 20 de Maio de 2011) 1ª Parte

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº11 (entregar no dia 20 de Maio de 2011) 1ª Parte Escola Secudária com 3º ciclo D. Diis º Ao de Matemática A Tema III Sucessões Reais TPC º (etregar o dia 0 de Maio de 0) ª Parte As cico questões deste grupo são de escolha múltipla. Para cada uma delas

Leia mais

Exame Final Nacional de Matemática B Prova ª Fase Ensino Secundário º Ano de Escolaridade

Exame Final Nacional de Matemática B Prova ª Fase Ensino Secundário º Ano de Escolaridade Exame Fial Nacioal de Matemática B Prova 735 1.ª Fase Esio Secudário 019 11.º Ao de Escolaridade Decreto-Lei.º 139/01, de 5 de julho Decreto-Lei.º 55/018, de 6 de julho Duração da Prova: 150 miutos. Tolerâcia:

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Em um paralelepípedo retâgulo,

Leia mais

Prova-Modelo de Matemática

Prova-Modelo de Matemática Prova-Modelo de Matemática PROVA Págias Esio Secudário DURAÇÃO DA PROVA: miutos TOLERÂNCIA: miutos Cotações GRUPO I O quarto úmero de uma certa liha do triâgulo de Pascal é. A soma dos quatro primeiros

Leia mais

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003 ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos eercícios da aula prática 6 MATRIZES DETERMINANTES a) Epadido ao logo da primeira

Leia mais

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma.

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma. ITA 00. (ITA 00) Cosidere as afirmações abaixo relativas a cojutos A, B e C quaisquer: I. A egação de x A B é: x A ou x B. II. A (B C) = (A B) (A C) III. (A\B) (B\A) = (A B) \ (A B) Destas, é (são) falsa(s)

Leia mais

EES-49/2012 Resolução da Prova 1

EES-49/2012 Resolução da Prova 1 EES-49/ Resolução da Prova Obs: esta resolução tem explicações e passos itermediários para facilitar o etedimeto. Parte dessas explicações e os passos itermediários ão são cobrados a correção da prova.

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, o

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, ABCD

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 O poliômio p( ) 5 04 +

Leia mais

Um Estudo Sobre Curlicues

Um Estudo Sobre Curlicues Um Estudo Sobre Curlicues Ali Tahzibi 5, Bruo R. Carvalho, Dioata R. Schmidt 2, Heitor A. S. Pereira 3, Jair M. Freitas 4, Lucas A. Satos 3 Uiversidade Federal de Goiás Goiâia, GO 2 Uiversidade Federal

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME Mecânica dos Sólidos I 2 a Lista de Exercícios

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. PME Mecânica dos Sólidos I 2 a Lista de Exercícios PME- - Mecâica dos Sólidos I a Lista de Eercícios ) Determie o tesor das tesões, escrito em relação à base b = e, e, e ), para cada um dos ( casos idicados (as tesões estão em MPa). Utilie a coveção de

Leia mais

2 OPERAÇÕES E REPRESENTAÇÃO BÁSICAS EM 2D

2 OPERAÇÕES E REPRESENTAÇÃO BÁSICAS EM 2D 2 OPERAÇÕES E REPRESENTAÇÃO BÁSICAS EM 2D Neste capítulo abordaremos os aspectos pricipais em um sistema gráfico 2D: Trasformações 2D e o Sistema de Coordeadas Homogêeo Como Modelamos as Traformações de

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

MATEMÁTICA. Determine o conjunto-solução da equação sen 3 x + cos 3 x =1 sen 2 x cos 2 x. Resolução: Fatorando a equação dada:

MATEMÁTICA. Determine o conjunto-solução da equação sen 3 x + cos 3 x =1 sen 2 x cos 2 x. Resolução: Fatorando a equação dada: MATEMÁTICA 0000 Questão 0 Determie o cojuto-solução da equação se x + cos x = se x cos x Fatorado a equação dada: se x + cos x= se x cos x ( sex + cos x)( se x sexcos x+ cos x) = ( sexcos x) ( x x)( x

Leia mais

Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Teste de Matemática A 2018 / 2019 Teste N.º 5 Matemática A Duração do Teste (Cadero 1 + Cadero 2): 90 miutos 12.º Ao de Escolaridade Nome do aluo: N.º: Turma: Este teste é costituído por dois caderos:

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

Aula 5 Teorema central do limite & Aplicações

Aula 5 Teorema central do limite & Aplicações Diâmica Estocástica Aula 5 Teorema cetral do limite & Aplicações Teorema cetral do limite Se x é tal que: x 0 e ( xv é fiita,,..., x x, x,...,, 3 x variáveis aleatórias idepedetes com a mesma distribuição

Leia mais

A maneiras. Concluindo, podemos obter

A maneiras. Concluindo, podemos obter Matemática A. o ao TESTE DE AVALIAÇÃO DE MATEMÁTICA.º ANO PROPOSTA DE RESOLUÇÃO. A soma de todos os termos da liha de ordem do triâgulo de Pascal é ; assim, para esta liha, tem-se 96 log 96 log. O elemeto

Leia mais

Exame Nacional de Matemática A 1 a Fase 2017

Exame Nacional de Matemática A 1 a Fase 2017 Exame Nacioal de Matemática A a Fase 07 Proposta de Resolução Versão Nuo Miguel Guerreiro I Chave da Escolha Múltipla ABDABCDC. Pretedem-se formar úmeros aturais de quatro algarismos com os algarismos

Leia mais

10 - Medidas de Variabilidade ou de Dispersão

10 - Medidas de Variabilidade ou de Dispersão 10 - Medidas de Variabilidade ou de Dispersão 10.1 Itrodução Localizado o cetro de uma distribuição de dados, o próximo passo será verificar a dispersão desses dados, buscado uma medida para essa dispersão.

Leia mais

Redes Neurais. Redes de uma única camada O Perceptron elementar. Prof. Paulo Martins Engel. Classificação de padrões por um perceptron

Redes Neurais. Redes de uma única camada O Perceptron elementar. Prof. Paulo Martins Engel. Classificação de padrões por um perceptron Redes Neurais Redes de uma úica camada O Perceptro elemetar Classificação de padrões por um perceptro A tarefa de classificação cosiste em apreder a atribuir rótulos a dados que podem pertecer a uma etre

Leia mais