Lista de exercícios 2 Métodos Estatísticos Básicos
|
|
|
- Adelino Azambuja
- 6 Há anos
- Visualizações:
Transcrição
1 Lista de exercícios 2 Métodos Estatísticos Básicos Prof. Regis Augusto Ely 1 de julho de Variáveis aleatórias unidimensionais 1. Suponha que a variável aleatória X tenha os valores possíveis 1, 2, 3,, e P (X = j) = 1/2 j, j = 1, 2, a) Calcule P (X ser par) b) Calcule P (X 5) c) Calcule P (X ser divisível por 3) 2. A percentagem de álcool (100X) em certo composto pode ser considerada uma variável aleatória, onde X, 0 < X < 1, tem a seguinte função densidade de probabilidade: f(x) = 20x 3 (1 x), para 0 < x < 1. a) Estabeleça a expressão da função de distribuição acumulada, F, e esboce seu gráfico. b) Calcule P (X 2/3). c) Suponha que o preço de venda desse composto dependa do conteúdo de álcool. Especificamente, se 1/3 < X < 2/3, o composto se vende por C 1 dólares por galão; caso contrário, ele se vende por C 2 dólares por galão. Se o custo for C 3 dólares por galão, calcule a distribuição de probabilidade do lucro líquido por galão. 3. Cada uma das seguintes funções representa a função de distribuição acumulada de uma variável aleatória contínua. Em cada caso, F (x) = 0 para x < a e F (x) = 1 para x > b, onde [a, b] é o intervalo indicado. Em cada caso, esboce o gráfico da função F, determine a função densidade de probabilidade f e faça o gráfico. Também verifique que f é uma fdp: a) F (x) = x/5, para 0 x 5. b) F (x) = (2/π)sen 1 ( x), para 0 x 1. c) F (x) = e 3x, para < x 0. d) F (x) = x 3 /2 + 1/2, para 1 x 1. 1
2 4. Suponha que 5 por cento de todas as peças que saiam de uma linha de fabricação sejam defeituosas. Se 10 peças forem escolhidas e inspecionadas, qual será a probabilidade de que no máximo 2 defeituosas sejam encontradas? 5. (ANPEC, 2013) Em um dia de verão, você está sentado em um parque olhando as pessoas passarem. A probabilidade de uma pessoa estar andando de bicicleta é p, e a probabilidade de uma pessoa estar andando a pé é 1-p. As probabilidades dos eventos são independentes. Defina Y como o número de pessoas andando de bicicleta até que n pessoas passem por você. Defina Z como o número de pessoas andando de bicicleta que passam por você antes da primeira pessoa andando a pé passar por você. Com base nessas informações, julgue se as afirmativas são verdadeiras ou falsas, justificando: (0) Y tem uma distribuição binomial com parâmetros n e p. (1) Z tem uma distribuição de Bernoulli com parâmetro p. (2) Y e Z são variáveis aleatórias independentes. 6. Um ponto é escolhido ao acaso, sobre uma reta de comprimento L. Qual a probabilidade de que o quociente do segmento mais curto para o mais longo seja menor do que 1/4? 2 Variáveis aleatórias bidimensionais 7. Exercício 6.1 do livro do Meyer, P. L. Probabilidade: aplicações à estatística. 8. Exercício 6.2 do livro do Meyer, P. L. Probabilidade: aplicações à estatística. 9. Exercício 6.3 do livro do Meyer, P. L. Probabilidade: aplicações à estatística. 10. Exercício 6.4 do livro do Meyer, P. L. Probabilidade: aplicações à estatística. 3 Esperança e variância de variáveis aleatórias 11. Uma certa liga é formada pela reunião da mistura em fusão de dois metais. A liga resultante contém uma certa percentagem de chumbo X, que pode ser considerada como uma variável aleatória. Suponha que X tenha a seguinte fdp: f(x) = x(100 x), para 0 x 100. Suponha que o lucro líquido obtido pela venda dessa liga (por libra), seja a seguinte função da percentagem de chumbo contida: P = C 1 + C 2 X. Calcule o lucro esperado (por libra). 12. Um dado equilibrado é jogado 72 vezes. Chamando de X o número de vezes que aparece o seis, calcule E(X 2 ). 2
3 13. Suponha que X seja uma variável aleatória, para a qual E(X) = 10 e V ar(x) = 25. Para quais valores positivos de a e b deve Y = ax b ter valor esperado 0 e variância 1? 14. O que é o valor esperado condicionado? Defina-o matematicamente e descreva suas propriedades. 15. O que nos diz a Desigualdade de Tchebycheff? Qual a interpretação dessa desigualdade? 16. Suponha que ambas as curvas de regressão da média sejam, de fato, lineares. Particularmente, admita que E(Y x) = (3/2)x 2 e E(X y) = (3/5)y 3. a) Determine o coeficiente de correlação ρ. b) Determine E(X) e E(Y ). 4 Variáveis aleatórias discretas e contínuas 17. Se a variável aleatória discreta X tiver uma distribuição de Poisson com parâmetro β, e se P (X = 0) = 0, 2, calcular P (X > 2). 18. Suponha-se que a probabilidade de que uma peça, produzida por determinada máquina, seja defeituosa é 0,2. Se 10 peças produzidas por essa máquina forem escolhidas ao acaso, qual é a probabilidade de que não mais de uma peça defeituosa seja encontrada? Empregue as distribuições binomial e de Poisson e compare as respostas. 19. Suponha que a probabilidade de um componente de computador ser defeituoso é de 0,2. Numa mesa de testes, os componentes são testados um a um. Determine a probabilidade do primeiro defeito encontrado ocorrer no sétimo componente testado. Indique o valor esperado do número de componentes testados até aparecer o primeiro defeito, bem como a variância desse número. 20. Considere o mesmo experimento da questão anterior. Determine a probabilidade do terceiro defeito encontrado ocorrer no sétimo componente testado. Indique o valor esperado do número de componentes testados até aparecer o terceiro defeito, bem como a variância desse número. 21. Qual é a relação entre as distribuições binomial e de Pascal? 22. No fichário de um hospital estão arquivados os prontuários de 20 pacientes que deram entrada no Pronto Socorro apresentando algum problema cardíaco. Destes, 5 sofreram infarto. Retirando-se uma amostra ao acaso de 3 destes prontuários, qual a probabilidade de que dois deles sejam de pacientes que sofreram infarto? 23. Suponha que temos um vaso com 10 bolinhas de gude - 2 bolinhas vermelhas, 3 bolinhas verdes e 5 bolinhas azuis. Selecionamos 4 bolinhas aleatoriamente do vaso, 3
4 com reposição. Qual é a probabilidade de selecionar 2 bolinhas verdes e 2 bolinhas azuis? 24. Suponha que a variável aleatória X tenha uma distribuição N(2, 0, 16). Empregando a tábua da distribuição normal, calcule as seguintes probabilidades: a) P (X 2, 3) b) P (1, 8 X 2, 1) 25. Suponha-se que a duração da vida de dois dispositivos eletrônicos, D 1 e D 2, tenham distribuições N(40, 36) e N(45, 9), respectivamente. Se o dispositivo eletrônico tiver de ser usado por um período de 45 horas, qual dos dispositivos deve ser preferido? Se tiver de ser usado por um período de 48 horas, qual deles deve ser preferido? 26. Considere uma variável aleatória X que tem distribuição exponencial. Descreva: a) A função densidade de probabilidade de X. b) A função de distribuição acumulada de X. c) O valor esperado e a variância de X. d) Um problema que é modelado através da distribuição exponencial. 27. Considere uma variável aleatória X que tem distribuição gama. Descreva: a) A função densidade de probabilidade de X. b) A função de distribuição acumulada de X. c) O valor esperado e a variância de X. d) Um problema que é modelado através da distribuição gama. 28. Qual é a relação existente entre a distribuição qui-quadrada e a distribuição gama? 29. Demonstre que o quadrado de uma distribuição N(0, 1) tem uma distribuição quiquadrada com um grau de liberdade. Generalize esse resultado para a soma de r variáveis aleatórias N(0, 1). Descreva a função densidade de probabilidade da distribuição qui-quadrada, bem como seu valor esperado e sua variância. 30. Qual a relação existente entre as provas de Bernoulli e as distribuições binomial, geométrica e de Pascal? 31. Qual a relação existente entre um processo de Poisson e as distribuições de Poisson, exponencial e gama? 32. Suponha que (X, Y ) tenha uma distribuição normal bidimensional. Descreva a função densidade de probabilidade conjunta de (X, Y ) e as distribuições marginais de X e Y. 33. Suponha que a variável aleatória X tenha uma distribuição exponencial truncada à esquerda. Obtenha E(X). 4
5 5 Soma de variáveis aleatórias 34. Enuncie e explique o que é a Lei dos Grandes Números. 35. Enuncie e explique o que é o Teorema do Limite Central. 36. Suponha que uma amostra de tamanho n seja obtida de uma grande coleção de parafusos, 3 por cento dos quais sejam defeituosos. Qual será a probabilidade de que, no máximo, 5 por cento dos parafusos selecionados sejam defeituosos, se: a) n = 6? b) n = 60? c) n = 600? 5
Problemas 1. Determine o valor esperado das seguintes variáveis aleatórias: a. A varável aleatória definida no Probl. 4.1.
Livro: Probabilidade - Aplicações à Estatística Paul L. Meyer Capitulo 7 Caracterização Adicional de Variáveis Aleatórias. Problemas 1. Determine o valor esperado das seguintes variáveis aleatórias: a.
Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas
1. ANPEC 2018 Questão 3 Considere um indivíduo procurando emprego. Para cada entrevista de emprego (X) esse indivíduo tem um custo linear (C) de 10,00 Reais. Suponha que a probabilidade de sucesso em uma
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável
As restrições acima, sobre, são equivalentes a e. Combinandoas, poderemos escrever.
Livro: Probabilidade - Aplicações à Estatística Paul L. Meyer Capitulo 4 Variáveis Aleatórias Unidimensionais. Exemplo 4.9. Ao operar determinada máquina, existe alguma probabilidade de que o operador
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória
Universidade Federal da Paraíba Departamento de Estatística Lista 1 - Outubro de 2013
1. Seja X a duração de vida de uma válvula eletrônica e admita que X possa ser representada por uma variável aleatória contínua, com f.d.p. be bx, x 0. Seja p j = P (j X < j + 1). Verifique que p j é da
Exercícios propostos:
INF 16 Exercícios propostos: 1. Sabendo-se que Y=X-5 e que E(X)= e V(X)=1, calcule: a)e(y); b)v(y); c)e(x+y); d)e(x + Y ); e)v(x+y); Resp.: 1; 9; 5; 15; 81. Uma urna contém 5 bolas brancas e 7 bolas pretas.
Ribeirão Preto, 2º semestre de 2012 PROBABILIDADE E ESTATÍSTICA APLICADA II
FACULDADE DE ECONOMIA, ADMINISTRAÇÃO UNIVERSIDADE DE SÃO PAULO E CONTABILIDADE DE RIBEIRÃO PRETO DEPARTAMENTO DE ECONOMIA Ribeirão Preto, 2º semestre de 2012 PROBABILIDADE E ESTATÍSTICA APLICADA II LISTA
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO
ANEXO 1 - Plano de Ensino MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO PLANO DE ENSINO Ano Semestre letivo 2017 01 1. Identificação Código 1.1 Disciplina: Métodos Estatísticos
a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B.
Universidade de Brasília Departamento de Estatística 5 a Lista de PE. Um time de basquete irá jogar uma temporada de 44 jogos. desses jogos serão disputados contra times da classe A e os 8 restantes contra
Lista de Exercícios #3 Assunto: Variáveis Aleatórias Multidimensionais Discretas
1. ANPEC 2018 - Questão 07 Em um problema envolvendo variáveis aleatórias independentes, um estudante calculou corretamente que E(Y) = 2, E(X 2 )E(Y) = 6, E(X)E(Y 2 ) = 8 e E(X) 2 E(Y) 2 = 24. Avalie as
Lista de Exercícios #5 Assunto: Variáveis Aleatórias Multidimensionais Contínuas
1. ANPEC 018 Questão 9 Uma pessoa investe R$ 10.000,00 (I) em duas aplicações cujas taxas de retorno são variáveis aleatórias independentes, R 1 e R, com médias 5% e 14% e desvios-padrão 1% e 8%, respectivamente.
Instituto Politécnico de Leiria Escola Superior de Tecnologia e Gestão Componente Prática de Estatística Aplicada Contabilidade e Finanças
Instituto Politécnico de Leiria Escola Superior de Tecnologia e Gestão Componente Prática de Estatística Aplicada Contabilidade e Finanças FOLHA 2 - Distribuições 1. Considere a experiência aleatória que
Probabilidade Lista 6 - Variáveis Aleatórias Contínuas e Vetores Aleatórios
Probabilidade Lista - Variáveis Aleatórias Contínuas e Vetores Aleatórios Exercício. Uma v.a. X tem distribuição triangular no intervalo [0, ] se sua densidade for dada por 0, x < 0 cx, 0 x /2 c( x), /2
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :
Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva pessoal.utfpr.edu.
Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva pessoal.utfpr.edu.br/ngsilva Distribuição Uniforme Uma variável aleatória contínua X está
Modelos de Distribuição PARA COMPUTAÇÃO
Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO
UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II
UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II Segunda lista de Exercícios - Variáveis Aleatórias Professora Fernanda 1. Uma máquina caça níquel de cassino possui três roletas. Na primeira e segunda
Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades
Aula de Estatística 13/10 à 19/10 Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades 4.1 Distribuições de probabilidades Variáveis Aleatórias Geralmente, o resultado de um experimento de probabilidades
6.3 Valor Médio de uma Variável Aleatória
6. 3 V A L O R M É D I O D E U M A V A R I Á V E L A L E A T Ó R I A 135 1. Considere uma urna contendo três bolas vermelhas e cinco pretas. Retire três bolas, sem reposição, e defina a v.a. X igual ao
Probabilidade e Estatística
Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis
Apontamentos de Introdução às Probabilidades e à Estatística
i Índice 1. Introdução 1 1.1. Enquadramento e objectivos 2 1.2. Organização 5 1.3. Noções base da Estatística 7 1.3.1. Distinção entre população e amostra 8 1.3.2. Amostragem 10 1.3.3. Unidade estatística
EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias
EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Motivação Suponha que tenhamos um experimento onde a probabilidade
EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais
EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados
Variáveis Aleatórias Discretas e Distribuições de 3Probabilidade
Variáveis Aleatórias Discretas e Distribuições de 3Probabilidade Variáveis Aleatórias Discretas e Distribuições de Probabilidade Objetivos do aprendizado 3 Como determinar se um experimento é Binomial.
Momentos: Esperança e Variância. Introdução
Momentos: Esperança e Variância. Introdução Em uma relação determinística pode-se ter a seguinte relação: " + " = 0 Assim, m =, é a declividade e a e b são parâmetros. Sabendo os valores dos parâmetros
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Disciplina Estatística Aplicada Curso Engenharia Mec Gest Industrial º Semestre º Folha Nº3: Variáveis Aleatórias De um lote que contém 0 parafusos, dos quais 5 são defeituosos,
UNIVERSIDADE FEDERAL DA PARAÍBA. Cálculo das Probabilidades e Estatística I. Terceira Lista de Exercícios
UNIVERSIDADE FEDERAL DA PARAÍBA Cálculo das Probabilidades e Estatística I Professora: Juliana Freitas Pires Terceira Lista de Exercícios Parte I: Variáveis aleatórias, Esperança e Variância Questão 1.
Segunda Lista de Exercícios Cálculo de Probabilidades II Prof. Michel H. Montoril
Exercício 1. Uma urna contém 4 bolas numeradas: {1, 2, 2, 3}. Retira-se dessa urna duas bolas aleatoriamente e sem reposição. Sejam 1 : O número da primeira bola escolhida; 2 : O número da segunda bola
F (x) = P (X x) = Σ xi xp(x i ) E(X) = x i p(x i ).
Variável Aleatória Uma variável aleatória é uma variável numérica, cujo valor medido pode variar de uma réplica para outra do experimento. Exemplos: (i) Variáveis aleatórias contínuas: corrente elétrica,
3 a Lista de PE. Universidade de Brasília Departamento de Estatística
Universidade de Brasília Departamento de Estatística 3 a Lista de PE 1. Duas bolas são escolhidas aleatoriamente de uma urna contendo 8 bolas brancas, 4 pretas, e duas bolas laranjas. Suponha que um jogador
Exercícios Funções Multivariadas, Exponencial e Outras
Turma 2017 Exercícios Funções Multivariadas, Exponencial e Outras Problema 1 (bivariada) Um bim de cinco transistores possui dois que são defeituosos. Os transistores são testados um a um, até que os defeituosos
1 Variáveis Aleatórias
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis
SUMÁRIO. 1.1 Introdução, Conceitos Fundamentais, 2
SUMÁRIO 1 CONCEITOS BÁSICOS, 1 1.1 Introdução, 1 1.2 Conceitos Fundamentais, 2 1.2.1 Objetivo, 2 1.2.2 População e amostra, 2 1.3 Processos estatísticos de abordagem, 2 1.4 Dados estatísticos, 3 1.5 Estatística
Departamento de Estatística UFSCar Probabilidade e Estatística Lista de Exercícios 2 Prof. José Carlos Fogo (11/09/2014)
Departamento de Estatística UFSCar Probabilidade e Estatística Lista de Exercícios 2 Prof. José Carlos Fogo (11/09/2014) 1) Seja X v.a. representando o número de usuários de um microcomputador no período
Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto
Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades
Distribuição de Probabilidade. Prof. Ademilson
Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.
Estatística Descritiva e Exploratória
Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução
1073/B - Introdução à Estatística Econômica
Lista de exercicios 2 Prof. Marcus Guimaraes 1073/B - Introdução à Estatística Econômica Ciências Econômicas 1) Suponha um espaço amostral S constituido de 4 elementos: S={a 1,a2,a3,a4}. Qual das funções
Variável Aleatória Poisson. Número de erros de impressão em uma
EST029 Cálculo de Probabilidade I Cap. 7. Principais Variáveis Aleatórias Discretas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Variável Aleatória Poisson Caraterização: Usa-se quando o experimento
Modelos Probabilisticos Discretos
Modelos Probabilisticos Discretos Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 30 A distribuição Uniforme Discreta Suponha um experimento
SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20
SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17
Lucas Santana da Cunha de junho de 2017
VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados
2º LISTA DE EXERCÍCIO
DISCIPLINA: CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I Prof. Luiz Medeiros PERÍODO: 2013.2 2º LISTA DE EXERCÍCIO 1) Em uma empresa de cerâmica sabe-se que existe em média 0,1 defeito por m 2. Um comprador
Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina
Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 21 de maio de 2018 Londrina 1 / 14 Variável aleatória Introdução Definição Uma função que associa um número real
LISTA 3 Introdução à Probabilidade (Profa. Cira.) OBS. Apenas os exercícios indicados como adicional não constam no livro.
LISTA 3 Introdução à Probabilidade (Profa. Cira.) OBS. Apenas os exercícios indicados como adicional não constam no livro. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - V. A. C O N T Í N
AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017
AULAS 6 e 7 ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 Em aulas passadas vimos as funções de probabilidade de variáveis discretas e contínuas agora vamos ver
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
AULA 9 - Variável aleatória bidimensional discreta
AULA 9 - Variável aleatória bidimensional discreta Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Variáveis aleatórias bidimensionais Definition Sejam ɛ um experimento e S um espaço amostral
(a) Se X Poisson(λ) e Y Poisson(µ), então X + Y Poisson(λ + µ). (b) Se X Binomial(n, p) e Y Binomial(m, p), então (X + Y ) Binomial(n + m, p).
Capítulo 0 Revisões Exercício 0.1 Sejam X e Y variáveis aleatórias independentes. Mostre que: (a) Se X Poisson(λ) e Y Poisson(µ), então X + Y Poisson(λ + µ). (b) Se X Binomial(n, p) e Y Binomial(m, p),
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Variáveis Aleatórias Ao descrever um espaço
Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:
46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari [email protected] Distribuições Discretas Uniforme Bernoulli Binomial Poisson
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial
IND 1115 Inferência Estatística Aula 6
Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal
MB-210 Probabilidade e Estatística
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise [email protected] 2o. semestre/2013 Variáveis
Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS
Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é
Alguns símbolos:, para todos;, existe e não existe;, final da prova;, se, e somente se;, implica;, tal que; portanto e pois., leia união.
Livro: Probabilidade - Aplicações à Estatística Paul L Meyer Capitulo 1 Introdução à Probabilidade 11 Modelos Matemáticos 12 Introdução aos Conjuntos Alguns símbolos: para todos; existe e não existe; final
1 Distribuição de Bernoulli
Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 6 Professor: Carlos Sérgio Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas
Filho, não é um bicho: chama-se Estatística!
Paulo Jorge Silveira Ferreira Filho, não é um bicho: chama-se Estatística! Estatística aplicada uma abordagem prática FICHA TÉCNICA EDIÇÃO: Paulo Ferreira TÍTULO: Filho, não é um bicho: chama-se Estatística!
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08
Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Se a bola retirada da urna 1 for branca temos, pelo princípio da multiplicação:
Livro: Probabilidade - Aplicações à Estatística Paul L. Meyer Capitulo 3 Probabilidade Condicionada e Independência. 1. Probabilidade Condicionada. Definição: Definição. Dizemos que os representam uma
Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40 horas e desvio padrão
Livro: Probabilidade - Aplicações à Estatística Paul L. Meyer. Capitulo 2 Espaço Amostral Finito. 2.1 Espaço Amostral Finito. (a), (b). (2.
Livro: Probabilidade - Aplicações à Estatística Paul L. Meyer Capitulo 2 Espaço Amostral Finito. 2.1 Espaço Amostral Finito. (a), (b). (2.1) 2.2 Resultados Igualmente Verossímeis. 2.3 Métodos de Enumeração.
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição
PARTE TEÓRICA Perguntas de escolha múltipla
PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza
3.3. Diga qual é o número médio e a variância dos animais que sobrevivem?
1. Um treinador de andebol tem à sua disposição 20 jogadores dos quais deve selecionar 10 para formar uma equipa para um jogo. 12 dos jogadores são atacantes e os restantes saõ defesas. 1.1. Se o selecionador
Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 1 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Historicamente sabe-se que 10% dos artigos de uma firma são de segunda qualidade. Um inspetor de controle
Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 1 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Historicamente sabe-se que 10% dos artigos de uma firma são de segunda qualidade. Um inspetor de controle
Fundamentos de Estatística
Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA [email protected] Petrópolis, 9 de Fevereiro
Probabilidade e Estatística
Probabilidade e Estatística Aula 7 Distribuição da Média Amostral Leitura obrigatória: Devore: Seções 5.3, 5.4 e 5.5 Chap 8-1 Inferência Estatística Na próxima aula vamos começar a parte de inferência
PROBABILIDADE E ESTATÍSTICA PROBABILIDADES
PROBABILIDADE E ESTATÍSTICA PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Revisando - Análise combinatória
{ C(1 x 2 ), se x ( 1, 1), f(x) = Cxe x/2, se x > 0, x + k, se 0 x 3; 0, c.c. k, se 1 < x 2; kx + 3k, se 2 < x 3;
Universidade de Brasília Departamento de Estatística 4 a Lista de PE 1. Seja X uma variável aleatória com densidade { C(1 x 2 ), se x ( 1, 1), 0, se x / ( 1, 1). a) Qual o valor de C? b) Qual a função
Curso(s): Licenciaturas em Engenharia (1º ciclo) Aulas Teóricas 30h. Ano Curricular Semestre: 2º ano 1º semestre Aulas Teórico-Práticas 45h
UNIVERSIDADE CATÓLICA PORTUGUESA F A C U L D A D E D E E NGE N H ARIA Disciplina de Estatística Contexto da Disciplina Horas de Trabalho do Aluno Curso(s): Licenciaturas em Engenharia (1º ciclo) Aulas
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição de Bernoulli e Binomial 07/14 1 / 32 Distribuições Discretas Apresentaremos agora
2 Distribuições Teóricas Discretas
2 Distribuições Teóricas Discretas Exercício 2.1 Seja X B (n, p) e Y B (n, 1 p), verifique que P (X = r) =P (Y = n r). InterpreteoresultadoemtermosdeprovasdeBernoulli. Exercício 2.2 Utilizando as tabelas
Estatística (MAD231) Turma: IGA. Período: 2018/2
Estatística (MAD231) Turma: IGA Período: 2018/2 Aula #03 de Probabilidade: 19/10/2018 1 Variáveis Aleatórias Considere um experimento cujo espaço amostral é Ω. Ω contém todos os resultados possíveis: e
SME0320 Estatistica ICMC-USP Ricardo Ehlers Lista 4
SME0320 Estatistica ICMC-USP Ricardo Ehlers Lista 4 1. Dois dados honestos são lançados. Calcule a probabilidade condicional de que pelo menos um deles caia no 6 se os dados cairam em números diferentes.
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE II
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE II Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável
Lista de Exercícios #8 Assunto: Teste de Hipóteses
. ANPEC 8 - Questão 5 Indique se as seguintes considerações sobre a teoria dos testes de hipótese são verdadeiras (V) ou falsas (F): () No teste de hipótese para proporções, se a variância da proporção
MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel
MOQ-13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e 16 Introdução à probabilidade (eventos,
Revisão de Probabilidade
05 Mat074 Estatística Computacional Revisão de Probabilidade Prof. Lorí Viali, Dr. [email protected] http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 3-ESTATÍSTICA II (CE003) Prof. Benito Olivares Aguilera
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 3-ESTATÍSTICA II (CE003) Prof. Benito Olivares Aguilera 2 o Sem./17 MODELOS DISCRETOS. 1. Seja X o número de caras obtidas
UNIDADE II. José J. C. Hernández. April 9, 2017 DE - UFPE. José J. C. Hernández (DE - UFPE) Estatística I April 9, / 60
INTRODUÇÃO À ESTATÍSTICA UNIDADE II José J. C. Hernández DE - UFPE April 9, 2017 José J. C. Hernández (DE - UFPE) Estatística I April 9, 2017 1 / 60 Variável aleatória Seja X : Ω R uma função real de Ω
Variáveis aleatórias discretas
Probabilidades e Estatística + Probabilidades e Estatística I Colectânea de Exercícios 2002/03 LEFT + LMAC Capítulo 3 Variáveis aleatórias discretas Exercício 3.1 Uma caixa contém 6 iogurtes dos quais
Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal
Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:
Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico
RESOLUÇÃO NA PÁGINA 06 Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40
SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS
4 SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS Em muitos problemas de probabilidade que requerem o uso de variáveis aleatórias, uma completa especificação da função de densidade de probabilidade ou não está
