MB-210 Probabilidade e Estatística

Tamanho: px
Começar a partir da página:

Download "MB-210 Probabilidade e Estatística"

Transcrição

1 Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari denise [email protected] 2o. semestre/2013

2 Variáveis Aleatórias

3 Roteiro Motivação Definição VA s Discretas VA s Contínuas Função Distribuição de Probabilidade (fdp) Função Distribuição Acumulada (FDA)

4 Variáveis Aleatórias Motivação Problemas no mundo real envolvem quantidades que não possuem valor fixo ou determinístico: número de bebês que nascem em um determinado hospital por dia tempo de chegada de um ônibus na estação o volume de chuva em SJC em um determinado ano o número de terremotos na Califórnia por mês a produção de trigo em uma certa safra Variáveis Aleatórias Funções complexas de muitos fatores aleatórios sobre os quais não temos controle Transformam um espaço amostral qualitativo em quantitativo

5 Variáveis Aleatórias (Unidimensionais) Definição Uma variável aleatória é uma função que associa a cada elemento do espaço amostral um número real. Notação: X ( ) : Ω R s X(s) Ω R Probabilidade: {X (s) = x} = P[X (s) = x] = P[X = x] = p(x)

6 Variáveis Aleatórias Exemplos (1) Componentes eletrônicos fabricados em uma linha de produção são submetidos a inspeção, sendo classificados como defeituosos ou sem defeitos. Temos: Espaço amostral: Ω = {D, N} (discreto) X (D) = 0 e X (N) = 1

7 Variáveis Aleatórias Exemplos (1) Componentes eletrônicos fabricados em uma linha de produção são submetidos a inspeção, sendo classificados como defeituosos ou sem defeitos. Temos: Espaço amostral: Ω = {D, N} (discreto) X (D) = 0 e X (N) = 1 O número de nascimentos de gêmeos é aproximadamente 1 em cada 90. Seja X a v.a. definida pelo número de nascimentos em um hospital até o nascimento dos primeiros gêmeos. Sejam G o evento representando o nascimento de gêmeos e N o nascimento de uma única crianca. Temos: Espaço amostral: Ω = {G, NG, NNG, NNNG,...} X (NNN }{{... N } G) = i i 1

8 Variáveis Aleatórias Exemplos (2) Seja X a v.a. definida pelo tempo de espera (em horas) entre dois motoristas consecutivos que ultrapassam a velocidade de uma rodovia, detectados por um radar. Temos: Espaço amostral: Ω = {x R : x 0} (contínuo)

9 Variáveis Aleatórias Exemplos (2) Seja X a v.a. definida pelo tempo de espera (em horas) entre dois motoristas consecutivos que ultrapassam a velocidade de uma rodovia, detectados por um radar. Temos: Espaço amostral: Ω = {x R : x 0} (contínuo) Um determinado ônibus chega à estação rodoviária todos os dias entre as 11:00h e 11:30h. Seja X a v.a. definida pelo tempo de chegada do ônibus. Temos: Espaço amostral: Ω = {x R : 11 < x < 11,5} (contínuo)

10 Variáveis Aleatórias Observações: Variável aleatória: nome inadequado v.a. Função Probabilidade Tipos de v.a. s: Qualitativas VA s Discretas Quantitativas Contínuas

11 VA s Discretas Uma v.a. X é dita discreta se assumir um número finito ou infinito e enumerável de valores reais distintos x 1, x 2,..., x n,... (espaço amostral enumerável: contagem) Neste caso: Ω = n {s : X (s) = x n } = n {X = x n } e {X = x i } {X = x j } =, i j Portanto, do axioma (iii): 1 = P[Ω] = n P[X = x n ]

12 VA s Contínuas Uma v.a. X é dita contínua se assumir um número infinito não-enumerável de valores e a probabilidade de que X assuma um valor em particular é nula (espaço amostral não-enumerável: medição) Neste caso: P[X = x i ] = 0, i

13 Função Distribuição de Probabilidade (fdp) caso discreto Seja X uma v.a. discreta que assume os valores discretos x 1, x 2,..., x n,... Definimos a fdp de X como sendo a função Condições f X ( ) : R [0, 1] { P[X = xj ], se x = x f X (x) = j, j = 1, 2,..., n,... 0, se x x j 1. f X (x j ) 0 para j = 1, 2, f X (x j ) = 0 para x x j, j = 1, 2, j f X (x j ) = 1 Nomenclatura alternativa: função massa, função probabilidade ou função freqüência discreta

14 Função Distribuição de Probabilidade (fdp) caso discreto Exemplo Um lote de 8 computadores em uma loja contém 3 defeituosos. Um cliente seleciona ao acaso e compra 2 destes computadores. Qual a distribuição de probabilidade para o número de computadores defeituosos comprados? Solução

15 Função Distribuição de Probabilidade (fdp) caso contínuo Seja X uma v.a. contínua. Definimos a fdp de X como sendo a função f X ( ) : R [0, ) tal que, para quaisquer números a b Condições P[a X b] = b a f X (u)du 1. f X (x) 0, x R 2. f X (x)dx = 1 3. P[X = c] = 0, c R. Portanto, para quaisquer números a < b: P[a X b] = P[a < X b] = P[a X < b] = P[a < X < b] Nomenclatura alternativa: função densidade ou função densidade de probabilidade

16 Função Distribuição de Probabilidade (fdp) caso contínuo Exemplo Suponha que o erro medido na temperatura de reação ( C) em um experimento controlado em laboratório seja uma v.a. contínua cuja fdp é dada por: { 1 f X (x) = 3 x 2, 1 < x < 2 0, caso contrário Verifique que a condição (2) é válida. Calcule P[0 < X 1]. Solução

17 Função Distribuição Acumulada (FDA) Definição A FDA de uma v.a. X, representada por F X ( ) é a função F X ( ) : R [0, 1] F X (x) = P[X x], < x < Condições 1. F X ( ) é monotônica não-decrescente: 2. F X ( ) = 3. F X ( ) é contínua pela direita: F X (x 1 ) < F X (x 2 ), x 1 < x 2 lim F X (x) = 0 e F X (+ ) = lim F X (x) = 1 x x + F X (x) = lim F X (x + h) 0<h 0 Nomenclatura alternativa: função distribuição

18 Função Distribuição Acumulada (FDA) Propriedades Caso Discreto: F X ( ) pode ser obtida a partir de f X ( ) e vice-versa. (i) Dada f X ( ), F X (x) = P[X x] = x j <x f X (x j ) (ii) Dada F X ( ), f X (x j ) = F X (x j ) lim F X (x j h) 0<h 0

19 Função Distribuição Acumulada (FDA) caso discreto Exemplo: Computadores defeituosos (continuação) 1. Determine a FDA para a v.a. X = no. de computadores defeituosos comprados pelo cliente 2. Usando F X (x), verifique que f X (2) = 3/28 Solução

20 Função Distribuição Acumulada (FDA) Propriedades Caso Contínuo: F X ( ) pode ser obtida a partir de f X ( ) e vice-versa. (i) Dada f X ( ), F X (x) = P[X x] = x f X (u)du Para cada x, F X ( ) corresponde à área debaixo da curva de f X ( ) à esquerda de x. (ii) Dada F X ( ), f X (x) = df X (x) dx

21 Função Distribuição Acumulada (FDA) caso contínuo Exemplo: Reação química (continuação) 1. Determine a FDA para a v.a. X = erro na medida da temperatura de reação 2. Usando F X (x), calcule P[0 < X 1] Solução

22 Variáveis Aleatórias Multidimensionais

23 Variáveis Aleatórias Multidimensionais Definição Sejam X 1, X 2,..., X k v.a. s definidas no mesmo espaço de probabilidades E = (Ω, A, P[ ]). A coleção X = (X 1, X 2,..., X k ) é chamada v.a. k-dimensional. As v.a. s X 1, X 2,..., X k são chamadas v.a. s conjuntas. (Daqui em diante, consideraremos apenas o caso bidimensional).

24 Função Distribuição de Probabilidade (fdp) caso discreto A v.a. bidimensional discreta Z = (X, Y ) é dita v.a. conjunta discreta se assumir apenas os valores de um conjunto enumerável de pontos (x,y) no espaço R 2. Definimos a fdp discreta de (X,Y ) como sendo a função f X,Y (x,y) = P[X = x, Y = y], para qualquer valor (x,y) que o (X,Y ) possa assumir. Condições 1. f X,Y (x,y) 0 para todo (x,y) 2. X Y f X,Y (x,y) = 1 3. Para qualquer subconjunto A do plano xy P[(X,Y ) A] = f X,Y (x,y) (x,y) A

25 Função Distribuição de Probabilidade (fdp) caso discreto Exemplo Duas canetas esferográficas são escolhidas aleatoriamente de uma caixa que contém 3 canetas azuis, 2 canetas vermelhas e 3 canetas verdes. Seja X a v.a. que representa o número de canetas azuis e Y a v.a. que representa o número de canetas vermelhas selecionadas. Determine: A fdp conjunta de X e Y P[(X,Y ) A], em que A é a região definida por {(x,y) x + y 1} Solução

26 Função Distribuição de Probabilidade (fdp) caso contínuo A v.a. bidimensional discreta Z = (X, Y ) é dita v.a. conjunta contínua se existe uma função f X,Y (, ) tal que F X,Y (x,y) = para todo (x,y) no plano real. Condições y x 1. f X,Y (x,y) 0 para todo (x,y) 2. f X,Y (x,y)dxdy = 1 3. Para qualquer região A do plano xy P[(X,Y ) A] = f X,Y (u,v)dudv A f X,Y (x,y)dxdy

27 Função Distribuição de Probabilidade (fdp) caso contínuo Exemplo Um fabricante de bombons produz caixas de chocolates recheados com creme, caramelo e nozes e cobertura de chocolate amargo ou chocolate ao leite. Para uma certa caixa escolhida ao acaso, sejam X e Y, respectivamente, as proporções de chocolate ao leite e amargo com recheio de creme e suponha que a fdp conjunta correspondente seja dada por { 2 f X,Y (x,y) = 5 (2x + 3y), 0 x 1, 0 y 1 0, c.c Verifique se a condição (2) é válida Determine P[(X,Y ) A], em que A = {(x,y) 0 < x < 1/2, 1/4 < y < 1/2} Solução

28 Função Distribuição Acumulada (FDA) Definição A FDA conjunta de uma v.a. bidimensional Z = (X,Y ), representada por F X,Y (, ) é a função F X,Y (, ) : R 2 [0, 1], tal que F X,Y (x,y) = P[X x, Y y], (x,y)

29 Função Distribuição Acumulada (FDA) Definição Condições (análogas ao caso unidimensional) 1. F X ( ) é monotônica não-decrescente: P[x 1 < X x 2 ; y 1 < Y y 2 ] = F X,Y (x 2,y 2 ) F X,Y (x 2,y 1 ) F X,Y (x 1,y 2 ) + F X,Y (x 1,y 1 ) 0, 2. x 1 x 2 ; y 1 y 2 F X,Y (, y) = F X,Y (x, ) = F X,Y (, ) = lim F X,Y (x,y) = 0, x lim F X,Y (x,y) = 0, y lim F X,Y (x,y) = 1 x,y y x 3. F X,Y (x,y) é contínua em cada argumento: F X,Y (x,y) = lim F X,Y (x + h, y) = lim F X,Y (x, y + h) 0<h 0 0<h 0

30 Função Distribuição de Probabilidade (fdp) Marginal Seja Z = (X,Y ) uma v.a. conjunta. As distribuições marginais de X e Y são dadas por 1. Caso discreto f X (x) = y f X,Y (x,y) e f Y (y) = x f X,Y (x,y) 2. Caso contínuo f X (x) = f X,Y (x,y)dy e f Y (y) = f X,Y (x,y)dx

31 Função Distribuição de Probabilidade (fdp) Marginal Exemplos Determine as fdp s marginais para os exemplos anteriores. Verifique que as fdp s marginais são, de fato, fdp s. Solução

32 Função Distribuição de Probabilidade (fdp) Condicional Seja Z = (X,Y ) uma v.a. conjunta com fdp conjunta f X,Y (, ). As distribuições condicionais de X Y = y e Y X = x, representadas respectivamente, por f Y X ( x) e f X Y ( y), são dadas por: f Y X (y x) = f X,Y (x,y), f X (x) com f X (x) > 0 f X Y (x y) = f X,Y (x,y), f Y (y) com f Y (y) > 0 1. Caso discreto P[a < X < b Y = y] = f X Y (x y) 2. Caso contínuo P[a < X < b Y = y] = a<x<b b a f X Y (x y)dx

33 Função Distribuição de Probabilidade (fdp) Condicional Exemplos 1. Caso discreto: No exemplo das canetas, determine a distribuição condicional de X, dado Y = 1 e a empregue para calcular P[X = 0 Y = 1]. 2. Caso contínuo: A fdp conjunta para as v.a. s (X,Y ), em que X = variação unitária de temperatura e Y = proporção de variação do espectro produzido por uma determinada partícula atômica, é dada por { 10xy f X,Y (x,y) = 2, 0 < x < y < 1 0, c.c. Solução Determine as fdp s marginais fx (x) e f Y (y) e a fdp condicional f Y X (y x) Qual a probabilidade de que o espectro varie mais que a metade do total de observações, dado que a temperatura sofreu um acréscimo de 0,25 unidade.

34 Independência Estatística Sejam X e Y duas v.a. s (contínuas ou discretas) com fdp conjunta f X,Y (, ) e distribuições marginais f X (x) e f Y (y). As v.a. s X e Y são ditas estatisticamente independentes se, e somente se, f X,Y (x,y) = f X (x)f Y (y), (x,y) (Demonstração) Independência Estatística para v.a. s discretas É possível que o produto das fdp s marginais seja igual à fdp conjunta para algumas (mas não todas as) combinações de (x,y). Portanto, se existir algum ponto (x,y) para o qual f X,Y (x,y) é definida e tal que f X,Y (x,y) f X (x)f Y (y), as v.a. s discretas X e Y não são estatisticamente independentes.

35 Independência Estatística Exemplos 1. Caso discreto: No exemplo das canetas, mostre que as v.a. s X e Y não são estatisticamente independentes. 2. Caso contínuo: Verifique se as v.a. s X e Y cuja fdp conjunta é dada por { x f X,Y (x,y) = 4 (1 + 3y 2 ), 0 < x < 2, 0 < y < 1 0, c.c. Solução são estatisticamente independentes.

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições Motivação: MOQ-2: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS VA s e Distribuições Definimos anteriormente Espaço de Probabilidades como sendo a tripla (W,, P(.)), em que, dado um eperimento, W representa

Leia mais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados

Leia mais

Princípios de Estatística

Princípios de Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise [email protected] 05/10/2011 Probabilidade

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Função de Distribuição 05/14 1 / 25

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Função de Distribuição 05/14 1 / 25 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função de Distribuição 05/14 1 / 25 Função de Distribuição Definição 8.1:(Função de Distribuição)

Leia mais

Lucas Santana da Cunha de junho de 2017

Lucas Santana da Cunha de junho de 2017 VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados

Leia mais

Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina

Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 21 de maio de 2018 Londrina 1 / 14 Variável aleatória Introdução Definição Uma função que associa um número real

Leia mais

AULA 9 - Variável aleatória bidimensional discreta

AULA 9 - Variável aleatória bidimensional discreta AULA 9 - Variável aleatória bidimensional discreta Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Variáveis aleatórias bidimensionais Definition Sejam ɛ um experimento e S um espaço amostral

Leia mais

SME0801- Probabilidade II Distribuições conjuntas. Primeiras definições e propriedades

SME0801- Probabilidade II Distribuições conjuntas. Primeiras definições e propriedades SME0801- Probabilidade II Distribuições conjuntas. Primeiras definições e propriedades Pablo Martin Rodriguez SME ICMC USP Bacharelado em Estatística 20 Mar 2017 Vetores aleatórios Definição Sejam X 1,

Leia mais

Variável Aleatória Contínua. Tiago Viana Flor de Santana

Variável Aleatória Contínua. Tiago Viana Flor de Santana ESTATÍSTICA BÁSICA Variável Aleatória Contínua Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ [email protected] sala 07 Curso: MATEMÁTICA Universidade Estadual de Londrina UEL Departamento

Leia mais

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC, CF ou CC. No entanto, o nosso interesse

Leia mais

Probabilidade Condicional e Independência

Probabilidade Condicional e Independência Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise [email protected] 17/08/2011 Probabilidade

Leia mais

Momentos: Esperança e Variância. Introdução

Momentos: Esperança e Variância. Introdução Momentos: Esperança e Variância. Introdução Em uma relação determinística pode-se ter a seguinte relação: " + " = 0 Assim, m =, é a declividade e a e b são parâmetros. Sabendo os valores dos parâmetros

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari [email protected] Distribuições Discretas Uniforme Bernoulli Binomial Poisson

Leia mais

Variáveis Aleatórias. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Luiz Medeiros Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja um

Leia mais

AULA 10 - Variável aleatória bidimensional contínua

AULA 10 - Variável aleatória bidimensional contínua AULA 10 - Variável aleatória bidimensional contínua Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Variável aleatória contínua bidimensional (X, Y ) será uma variável aleatória contínua bidimensional

Leia mais

Estatística (MAD231) Turma: IGA. Período: 2018/2

Estatística (MAD231) Turma: IGA. Período: 2018/2 Estatística (MAD231) Turma: IGA Período: 2018/2 Aula #03 de Probabilidade: 19/10/2018 1 Variáveis Aleatórias Considere um experimento cujo espaço amostral é Ω. Ω contém todos os resultados possíveis: e

Leia mais

Distribuição de Probabilidade Conjunta

Distribuição de Probabilidade Conjunta . DISTRIBUIÇÃO DE ROBABILIDADE CONJUNTA O nosso estudo de variável aleatória e de suas funções de probabilidade até agora se restringiram a espaços amostrais unidimensionais nos quais os valores observados

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Variáveis Aleatórias Ao descrever um espaço

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Variáveis Aleatórias Bidimensionais 11/13 1 / 1 Variáveis Bidimensionais Até o momento, consideramos

Leia mais

Probabilidade. 1 Variável Aleatória 2 Variável Aleatória Discreta 3 Variável Aleatória Contínua. Renata Souza

Probabilidade. 1 Variável Aleatória 2 Variável Aleatória Discreta 3 Variável Aleatória Contínua. Renata Souza Probabilidade 1 Variável Aleatória 2 Variável Aleatória Discreta 3 Variável Aleatória Contínua Renata Souza Introdução E: Lançamento de duas moedas Ω = {(c,c), (c,k), (k,k), (k,c)}. X: número de caras

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Condicionais 11/13 1 / 19 Em estudo feito em sala perguntamos aos alunos qual

Leia mais

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω. PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses

Leia mais

1 Variáveis Aleatórias

1 Variáveis Aleatórias Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis

Leia mais

Variáveis Aleatórias. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Variáveis Aleatórias. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Variáveis Aleatórias Variável Aleatória Variável aleatória (VA) é uma função que associa a cada

Leia mais

Introdução à probabilidade e estatística I

Introdução à probabilidade e estatística I Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: [email protected] Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável

Leia mais

Probabilidade ESQUEMA DO CAPÍTULO. UFMG-ICEx-EST Cap. 2- Probabilidade 1

Probabilidade ESQUEMA DO CAPÍTULO. UFMG-ICEx-EST Cap. 2- Probabilidade 1 Probabilidade ESQUEMA DO CAPÍTULO 2.1 ESPAÇOS AMOSTRAIS E EVENTOS 2.2 INTERPRETAÇÕES DE PROBABILIADE 2.3 REGRAS DE ADIÇÃO 2.4 PROBABILIDADE CONDICIONAL 2.5 REGRAS DA MULTIPLICAÇÃO E DA PROBABILIDADE TOTAL

Leia mais

Variáveis Aleatórias - VA

Variáveis Aleatórias - VA Variáveis Aleatórias - VA cc ck kc kk 0 1 2 1/4 1/2 Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - Introdução Se entende por VA ou V. indicadoras uma lista de valores

Leia mais

Lista de exercícios 2 Métodos Estatísticos Básicos

Lista de exercícios 2 Métodos Estatísticos Básicos Lista de exercícios 2 Métodos Estatísticos Básicos Prof. Regis Augusto Ely 1 de julho de 2014 1 Variáveis aleatórias unidimensionais 1. Suponha que a variável aleatória X tenha os valores possíveis 1,

Leia mais

Probabilidade. Objetivos de Aprendizagem. UFMG-ICEx-EST. Cap. 2 - Probabilidade Espaços Amostrais e Eventos. 2.1.

Probabilidade. Objetivos de Aprendizagem. UFMG-ICEx-EST. Cap. 2 - Probabilidade Espaços Amostrais e Eventos. 2.1. 2 ESQUEMA DO CAPÍTULO 2.1 ESPAÇOS AMOSTRAIS E EVENTOS 2.2 INTERPRETAÇÕES E AXIOMAS DE PROBABILIADE 2.3 REGRAS DE ADIÇÃO 2.4 PROBABILIDADE CONDICIONAL 2.5 REGRAS DA MULTIPLICAÇÃO E DA PROBABILIDADE TOTAL

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Probabilidade Aula 11

Probabilidade Aula 11 0303200 Probabilidade Aula 11 Magno T. M. Silva Escola Politécnica da USP Junho de 2017 A maior parte dos exemplos dessa aula foram extraídos de Jay L. Devore, Probabilidade e Estatística para engenharia

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Probabilidade Aula 05

Probabilidade Aula 05 0303200 Probabilidade Aula 05 Magno T. M. Silva Escola Politécnica da USP Abril de 2017 A maior parte dos eemplos dessa aula foram etraídos de Jay L. Devore, Probabilidade e Estatística para engenharia

Leia mais

Cap. 4 - Probabilidade

Cap. 4 - Probabilidade Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 4 - Probabilidade APOIO: Fundação de Apoio à Pesquisa

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

Distribuições Multidimensionais de Probabilidade para Variáveis Discretas e Contínuas Distribuições Marginais. Aula 9

Distribuições Multidimensionais de Probabilidade para Variáveis Discretas e Contínuas Distribuições Marginais. Aula 9 Distribuições Multidimensionais de Probabilidade para Variáveis Discretas e Contínuas Distribuições Marginais Aula 9 Variáveis Aleatórias Discretas Variável aleatória discreta função definida em um espaço

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 1 Leitura obrigatória: Devore, 3.1, 3.2 e 3.3 Chap 5-1 Objetivos Nesta parte, vamos aprender: Como representar a distribuição

Leia mais

Prof.Letícia Garcia Polac. 26 de setembro de 2017

Prof.Letícia Garcia Polac. 26 de setembro de 2017 Bioestatística Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 26 de setembro de 2017 Sumário 1 2 Probabilidade Condicional e Independência Introdução Neste capítulo serão abordados

Leia mais

2. INTRODUÇÃO À PROBABILIDADE

2. INTRODUÇÃO À PROBABILIDADE 2. INTRODUÇÃO À ROILIDDE 2014 Conceitos básicos Experimento aleatório ou fenômeno aleatório Situações ou acontecimentos cujos resultados não podem ser previstos com certeza. Um experimento ou fenônemo

Leia mais

Notas de Aula. tal que, para qualquer ponto (x, y) no plano xy, temos: p XY

Notas de Aula. tal que, para qualquer ponto (x, y) no plano xy, temos: p XY UNIVERSIDDE FEDERL D BHI INSTITUTO DE MTEMÁTIC DEPRTMENTO DE ESTTÍSTIC v. demar de Barros s/n - Campus de Ondina 40170-110 - Salvador B Tel:(071)247-405 Fax 245-764 Mat 224 - Probabilidade II - 2002.2

Leia mais

Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Probabilidade Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Experimento aleatório Definição. Qualquer experimento cujo resultado não pode

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais

3 3. Variáveis Aleatórias

3 3. Variáveis Aleatórias ÍNDICE 3. VARIÁVEIS ALEATÓRIAS...49 3.. VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS...49 3.2. VARIÁVEIS DISCRETAS FUNÇÃO DE PROBABILIDADE E FUNÇÃO DISTRIBUIÇÃO DE PROBABILIDADE...50 3.2.. Função de probabilidade...50

Leia mais

Estatística (MAD231) Turma: IGA. Período: 2017/2

Estatística (MAD231) Turma: IGA. Período: 2017/2 Estatística (MAD231) Turma: IGA Período: 2017/2 Aula #03 de Probabilidade: 04/10/2017 1 Variáveis Aleatórias Considere um experimento cujo espaço amostral é Ω. Ω contém todos os resultados possíveis: e

Leia mais

Distribuições Contínuas de Probabilidade

Distribuições Contínuas de Probabilidade Distribuições Contínuas de Probabilidade Uma variável aleatória contínua é uma função definida sobre o espaço amostral, que associa valores em um intervalo de números reais. Exemplos: Espessura de um item

Leia mais

NOTAS DA AULA. Prof.: Idemauro Antonio Rodrigues de Lara

NOTAS DA AULA. Prof.: Idemauro Antonio Rodrigues de Lara 1 NOTAS DA AULA VARIÁVEIS ALEATÓRIAS. ESPERANÇA E VARIÂNCIA Prof.: Idemauro Antonio Rodrigues de Lara 2 Objetivo geral da aula Caracterizar variáveis aleatórias discretas e contínuas. Compreender e aplicar

Leia mais

Os exercícios a seguir são para resolver em sala

Os exercícios a seguir são para resolver em sala Os exercícios a seguir são para resolver em sala i) Uma mulher tem 1/3 de chance de ainda estar viva daqui a 30 anos e seu marido tem 2/5 de chance. Qual é a probabilidade de, daqui a 30 anos: a) Ambos

Leia mais

2. INTRODUÇÃO À PROBABILIDADE

2. INTRODUÇÃO À PROBABILIDADE 2. INTRODUÇÃO À PROBABILIDADE 2019 Conceitos básicos Experimento aleatório ou fenômeno aleatório Situações ou acontecimentos cujos resultados não podem ser previstos com certeza. Um experimento ou fenônemo

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral

Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades

Leia mais

Revisão de Probabilidade

Revisão de Probabilidade 05 Mat074 Estatística Computacional Revisão de Probabilidade Prof. Lorí Viali, Dr. [email protected] http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito

Leia mais

Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise

Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Você reconhece algum desses experimentos? Alguns

Leia mais

MOQ-12 Cadeias de Markov

MOQ-12 Cadeias de Markov Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-12 Cadeias de Markov Professora: Denise Beatriz T. P. do Areal Ferrari [email protected] Roteiro Introdução Processos Estocásticos

Leia mais

Variáveis aleatórias

Variáveis aleatórias Variáveis aleatórias Joaquim Neto [email protected] www.ufjf.br/joaquim_neto Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF

Leia mais

Variáveis aleatórias contínuas

Variáveis aleatórias contínuas Variáveis aleatórias contínuas Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 20/04/2018 WB, FM,

Leia mais

Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Probabilidade Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução Experimento aleatório Definição Qualquer experimento cujo resultado

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

1 Probabilidade: Axiomas e Propriedades

1 Probabilidade: Axiomas e Propriedades 1 Probabilidade: Axiomas e Propriedades 1.1 Definição Frequentista Considere um experimento aleatório que consiste no lançamento de um dado honesto. O espaço amostral desse experimento é Ω = {1, 2, 3,

Leia mais

Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística TODOS OS CURSOS Duração: 90 minutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique convenientemente todas as respostas 2 o semestre 206/207 05/07/207 :30 o Teste C 0 valores. Uma peça de certo tipo é

Leia mais

Aula 11. Variáveis Aleatórias Contínuas Bidimensionais

Aula 11. Variáveis Aleatórias Contínuas Bidimensionais Aula. Variáveis Aleatórias Contínuas Bidimensionais Resumo de caso unidimensional Caso Discreto p p 2 p 3 Caso Contínuo f(x) x x 2 x 3 i p i + f x dx X x x 2 x 3 P p p 2 p 3 Caso bidimensional Caso Discreto

Leia mais

Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas. Probabilidades. Cristian Villegas

Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Exatas. Probabilidades. Cristian Villegas Probabilidades Cristian Villegas [email protected] Setembro de 2013 Apostila de Estatística (Cristian Villegas) 1 Introdução Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis aleatórias contínuas: vamos considerar agora uma lista de quantidades as quais não é possível associar uma tabela de probabilidades pontuais ou frequências tempo de duração de uma chamada telefônica

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ Tipos de Modelos Determinístico Sistema Real Probabilístico Modelo determinístico Causas Efeito Exemplos Gravitação F GM 1 M /r

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória

Leia mais

Par de Variáveis Aleatórias

Par de Variáveis Aleatórias Par de Variáveis Aleatórias Luis Henrique Assumpção Lolis 7 de abril de 2014 Luis Henrique Assumpção Lolis Par de Variáveis Aleatórias 1 Conteúdo 1 Introdução 2 Par de Variáveis Aleatórias Discretas 3

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis Aleatórias Contínuas Bacharelado em Administração - FEA - Noturno 2 o Semestre 2017 MAE0219 (IME-USP) Variáveis Aleatórias Contínuas 2 o Semestre 2017 1 / 35 Objetivos da Aula Sumário 1 Objetivos

Leia mais

a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B.

a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B. Universidade de Brasília Departamento de Estatística 5 a Lista de PE. Um time de basquete irá jogar uma temporada de 44 jogos. desses jogos serão disputados contra times da classe A e os 8 restantes contra

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz

Leia mais

Estatística Descritiva e Exploratória

Estatística Descritiva e Exploratória Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução

Leia mais

Estatística Básica. Variáveis Aleatórias Contínuas. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais

Estatística Básica. Variáveis Aleatórias Contínuas. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais Estatística Básica Variáveis Aleatórias Contínuas Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Lembrando... Uma quantidade X, associada a cada possível resultado

Leia mais

VARIÁVEIS ALEATÓRIAS 1

VARIÁVEIS ALEATÓRIAS 1 VARIÁVEIS ALEATÓRIAS 1 Na prática é, muitas vezes, mais interessante associarmos um número a um evento aleatório e calcularmos a probabilidade da ocorrência desse número do que a probabilidade do evento.

Leia mais

É a função que associa um número real a cada elemento do espaço amostral.

É a função que associa um número real a cada elemento do espaço amostral. Capítulo Variável Aleatória 1. VARIÁVEL ALEATÓRIA (X) (Walpole, S 1 ) É a função que associa um número real a cada elemento do espaço amostral. S IR s X(s) Onde S espaço amostral s elemento do espaço amostral

Leia mais

Probabilidade. Definição de Probabilidade Principais Teoremas Probabilidades dos Espaços Amostrais Espaços Amostrais Equiprováveis.

Probabilidade. Definição de Probabilidade Principais Teoremas Probabilidades dos Espaços Amostrais Espaços Amostrais Equiprováveis. Probabilidade Definição de Probabilidade Principais Teoremas Probabilidades dos Espaços Amostrais Espaços Amostrais Equiprováveis Renata Souza Probabilidade É um conceito matemático que permite a quantificação

Leia mais

Aula 10 Variáveis aleatórias discretas

Aula 10 Variáveis aleatórias discretas AULA 0 Aula 0 Variáveis aleatórias discretas Nesta aula você aprenderá um conceito muito importante da teoria de probabilidade: o conceito de variável aleatória. Você verá que as variáveis aleatórias e

Leia mais

Probabilidades. Wagner H. Bonat Elias T. Krainski Fernando P. Mayer

Probabilidades. Wagner H. Bonat Elias T. Krainski Fernando P. Mayer Probabilidades Wagner H. Bonat Elias T. Krainski Fernando P. Mayer Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 06/03/2018 WB, EK, FM ( LEG/DEST/UFPR

Leia mais

ME-310 Probabilidade II Lista 0

ME-310 Probabilidade II Lista 0 ME-310 Probabilidade II Lista 0 1. Sejam A e B eventos disjuntos tais que P(A) = 0.1 e P(B) = 0.. Qual é a probabilidade que (a) A ou B ocorra; (b) A ocorra, mas B não ocorra; (c) repita (a) e (b) se os

Leia mais