Princípios de Estatística
|
|
|
- Patrícia de Sousa Godoi
- 8 Há anos
- Visualizações:
Transcrição
1 Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari denise [email protected] 05/10/2011
2 Probabilidade Estatística Probabilidade Distribuições de probabilidades (conhecidas) utilizadas para calcular probabilidades de eventos POPULAÇÃO AMOSTRA Estatística Dados coletados utilizados para estimar probabilidades, tomar decisões, fazer previsões População: totalidade das observações sobre as quais temos interesse. Finita: altura dos alunos do ITA tamanho dos peixes no lago do CTA Infinita: temperatura em SJC medida a partir de hoje profundidade do lago medida em todos os locais possíveis Às vezes, populações finitas podem ser consideradas infinitas (N ). Exemplo: População de todos os tempos de duração de um determinado tipo de bateria automotiva produzida no país.
3 População: Seja X uma v.a. tal que X f X (x). Cada observação na população corresponde a um valor x assumido por X. Diz-se: População f X (x): X f X (x) População binomial: X Bin(n,p) População normal: X N(µ, σ)... Os parâmetros que definem as populações (f.d.p.) são desconhecidos, a menos que se observe toda a população!... normalmente inviável... População: Seja X uma v.a. tal que X f X (x). Cada observação na população corresponde a um valor x assumido por X. Diz-se: População f X (x): X f X (x) População binomial: X Bin(n,p) População normal: X N(µ, σ)... Os parâmetros que definem as populações (f.d.p.) são desconhecidos, a menos que se observe toda a população!... normalmente impossível ou inviável...
4 Queremos chegar a uma determinada conclusão (inferência) a respeito de uma população quando é impossível ou inviável observar todos os indivíduos da população. Amostra: Consiste em um subconjunto da população. Inferências válidas são construídas apenas a partir de uma amostra representativa: Observações realizadas de forma aleatória e independentemente. Amostra: Queremos uma amostra de tamanho n a partir de uma população f X (x). Seja a v.a. X i = i-ésima observação desta população, para i = 1,..., n. Temos: X 1, X 2,... X n : a.a. de f X (x) x 1, x 2,... x n : valores observados X 1, X 2,..., X n são i.i.d. f X (x) e f(x 1,..., x n ) = f X (x 1 )... f X (x n ) é f.d.p. conjunta
5 Suponha que queremos chegar a uma conclusão a respeito da proporção p da população brasileira que tem acesso à internet em casa. Impossível entrevistar todas as pessoas para calcular o parâmetro p! Coletamos uma a.a. X 1, X 2,..., X n A partir da amostra calculamos a quantidade ˆp = proporção na amostra ˆp é então utilizada para inferência da proporção verdadeira p ˆp = g(x 1, x 2,..., x n ) valor de uma v.a. P varia de amostra a amostra chamada estatística: qualquer função de v.a. s que formam uma a.a. Estatísticas Importantes Média Amostral: X Seja X 1, X 2,..., X n uma a.a. de tamanho n. A média amostral é definida pela estatística (também uma v.a.): X n = 1 n n X i Para uma determinada a.a. X 1 = x 1, X 2 = x 2,..., X n = x n, temos: n x n = 1 n x i
6 Estatísticas Importantes Variância Amostral: S 2 Seja X 1, X 2,..., X n uma a.a. de tamanho n. A variância amostral é definida pela estatística (também uma v.a.): (Demonstração) S 2 n = 1 n 1 = n (X i X ) 2 1 n(n 1) n n X 2 i ( n ) 2 X i Para uma determinada a.a. X 1 = x 1, X 2 = x 2,..., X n = x n, temos: sn 2 = 1 n (x i x) 2 n 1 Exemplo 1. Considere as seguintes medidas (em litros) de duas amostras de caixas de suco de laranja produzidas pelas companhias A e B: A 0,97 1,00 0,94 1,03 1,06 B 1,06 1,01 0,88 0,91 1,14 As propagandas veiculadas pelas compahinas afirmam que cada caixa contém 1L de suco. Ao comprar uma caixa de suco produzida por cada uma das marcas, qual caixa selecionada parecerá ser mais fiel à propaganda? Justifique.
7 Estatística organizar resumir descrever Descritiva Matemática (Inferência) organizar resumir descrever Natureza dos Dados Paramétrica Não-Paramétrica Qualitativa Quantitativa Natureza dos Dados Qualitativa Quantitativa Parâmetro Parâmetro Proporção Média Variância Modelo de Relação Estimação Interv. Conf. Testes Hipót. Análise Categ. (Tab. Conting.) Estimação Interv. Conf. Testes Hipót. ANOVA Ctrl. Qualidade Estimação Interv. Conf. Testes Hipót. Ctrl. Qualidade Análise Regressão Simples/Múltipla Constr. Modelos
MB-210 Probabilidade e Estatística
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise [email protected] 2o. semestre/2013 Variáveis
Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM
Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Noções básicasb de Inferência Estatística descritiva inferencial População - Parâmetros desconhecidos (reais) Amostra
MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel
MOQ-13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e 16 Introdução à probabilidade (eventos,
Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise. Período 2017.
Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Distribuições Amostrais O intuito de fazer uma amostragem
Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza
Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes
Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística
Introdução ao Planejamento e Análise Estatística de Experimentos Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Agora,
Inferência Estatística
Inferência Estatística procura os argumentos estatísticos para fazer afirmações sobre as características de uma população, com base em informações dadas por amostras. Exemplo 1: observe como uma cozinheira
Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza
Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari [email protected] Distribuições Discretas Uniforme Bernoulli Binomial Poisson
Cap. 4 - Estimação por Intervalo
Cap. 4 - Estimação por Intervalo Amostragem e inferência estatística População: consiste na totalidade das observações em que estamos interessados. Nº de observações na população é denominado tamanho=n.
Inferência Estatistica
Inferência Estatistica Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Modelos e Inferência Um modelo é uma simplificação da realidade (e alguns
Estimação: (A) Propriedades e Distribuições Amostrais
Estimação: (A) Propriedades e Distribuições Amostrais Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação
Testes de Hipótese para uma única Amostra - parte II
Testes de Hipótese para uma única Amostra - parte II 01 de Julho de 2014 Objetivos Ao final deste capítulo você deve ser capaz de: Testar hipóteses para média de uma população. Serão usadas as distribuições
Inferência Estatística
Inferência Estatística procura os argumentos estatísticos para fazer afirmações sobre as características de uma população, com base em informações dadas por amostras. Exemplo 1: observe como uma cozinheira
Introdução à Inferência Estatística
Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) 2a AULA 02/03/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 2a aula (02/03/2015) MAE229 1 / 16
Catarina Marques. Estatística II Licenciatura em Gestão. Conceitos: População, Unidade Estatística e Amostra
Amostragem Estatística II Licenciatura em Gestão 1 Conceitos: População, Unidade Estatística e Amostra População (ou Universo) dimensão N Conjunto de unidades com uma ou mais características comuns População
Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo
A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.
UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Prof. Tarciana Liberal Departamento de Estatística INTRODUÇÃO A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através
Testes de Hipótese para uma única Amostra - parte II
Testes de Hipótese para uma única Amostra - parte II 2012/02 1 Teste para média com variância conhecida 2 3 Objetivos Ao final deste capítulo você deve ser capaz de: Testar hipóteses para média de uma
Fernando de Pol Mayer
Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative
Distribuição Amostral e Estimação Pontual de Parâmetros
Roteiro Distribuição Amostral e Estimação Pontual de Parâmetros 1. Introdução 2. Teorema Central do Limite 3. Conceitos de Estimação Pontual 4. Métodos de Estimação Pontual 5. Referências População e Amostra
Estimador: combinação dos elementos da amostra, construída com a finalidade de representar, ou estimar, um parâmetro de interesse na população.
Objetivo: tirar conclusões sobre uma população com base na informação de uma amostra. estimação testes de hipóteses Parâmetro metro: quantidades desconhecidas da população e sobre as quais temos interesse.
ESTATÍSTICA. Lucas Santana da Cunha 18 de setembro de Universidade Estadual de Londrina
INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 18 de setembro de 2017 Introdução Estatística Descritiva: Preocupa-se com
Estatística Descritiva (I)
Estatística Descritiva (I) 1 O que é Estatística Origem relacionada com a coleta e construção de tabelas de dados para o governo. A situação evoluiu: a coleta de dados representa somente um dos aspectos
Probabilidade e Estatística
Probabilidade e Estatística Aula 7 Distribuição da Média Amostral Leitura obrigatória: Devore: Seções 5.3, 5.4 e 5.5 Chap 8-1 Inferência Estatística Na próxima aula vamos começar a parte de inferência
Estatística Descritiva (I)
Estatística Descritiva (I) 1 O que é Estatística A Estatística originou-se com a coleta e construção de tabelas de dados para o governo. A situação evoluiu e esta coleta de dados representa somente um
TESTE DE KOLMOGOROV-SMIRNOV. Professor Ewaldo Santana Universidade Estadual do Maranhão - UEMA
TESTE DE KOLMOGOROV-SMIRNOV Professor Ewaldo Santana Universidade Estadual do Maranhão - UEMA Conteúdo 2 Ewaldo Santana Introdução 3 Ewaldo Santana Introdução Testes estatísticos paramétricos, tais como
Estatística Descritiva (I)
Estatística Descritiva (I) 1 O que é Estatística Origem relacionada com a coleta e construção de tabelas de dados para o governo. A situação evoluiu: a coleta de dados representa somente um dos aspectos
MOQ-13/PO-210: Probabilidade e Estatística
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica MOQ-13/PO-210: Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise [email protected] 2o. semestre/2017 SEMANA
Noções de Estatística Airlane P. Alencar LANE
Noções de Estatística Airlane P. Alencar LANE www.ime.usp.br/~lane 1 Programa Estatística, Amostragem Análise Descritiva Organização dos dados, Tipos de variáveis Medidas resumo: proporção, média, mediana,
Intervalos de Confiança
Intervalos de Confiança Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques e Nuno Bastos (DepMAT) Intervalos de Confiança 2010/2011 1 / 33 Introdução
1 Que é Estatística?, 1. 2 Séries Estatísticas, 9. 3 Medidas Descritivas, 27
Prefácio, xiii 1 Que é Estatística?, 1 1.1 Introdução, 1 1.2 Desenvolvimento da estatística, 1 1.2.1 Estatística descritiva, 2 1.2.2 Estatística inferencial, 2 1.3 Sobre os softwares estatísticos, 2 1.4
Elementos de Estatística. Michel H. Montoril Departamento de Estatística - UFJF
Elementos de Estatística Michel H. Montoril Departamento de Estatística - UFJF O que é a estatística? Para muitos, a estatística não passa de conjuntos de tabelas de dados numéricos. Os estatísticos são
Distribuições Amostrais e Estimação Pontual de Parâmetros
Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 19 de Maio de 2011 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição
Estatística Aplicada II. } Estimação e Intervalos de Confiança
Estatística Aplicada II } Estimação e Intervalos de Confiança 1 Aula de hoje } Tópicos } Revisão } Estimação } Intervalos de Confiança } Referências } Barrow, M. Estatística para economia, contabilidade
Amostragem e distribuições por amostragem
Amostragem e distribuições por amostragem Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Contabilidade e Administração População, amostra e inferência estatística
DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia
ROTEIRO 1. Introdução; DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL. Teorema Central do Limite; 3. Conceitos de estimação pontual; 4. Métodos de estimação pontual; 5. Referências. 1 POPULAÇÃO E AMOSTRA População:
CONTROLE ESTATÍSTICO DE PROCESSOS
CONTROLE ESTATÍSTICO DE PROCESSOS ANEXOS INTRODUÇÃO ANEXO 1 TABELA I Fator para estimar o desvio padrão ANEXO 2 TABELA II Valores padronizados para distribuição normal ANEXO 3 TABELA III Distribuição de
Capítulo 4 Inferência Estatística
Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a diferença de
Introdução à Inferência Estatística
Introdução à Inferência Estatística Prof. Cícero Quarto www.cicerocq.com Slides produzidos a partir de suas anotações de aula do curso de Especialização em Estatística, Turma 2018/UEMA, assim como, aprofundados
Teoria de probabilidade - objetiva descrever e prever as características de populações infinitas
1 Introdução Definição: Estatística é um conjunto de conceitos e métodos científicos para coleta, organização, descrição, análise e interpretação de dados experimentais, que permitem conclusões válidas
Intervalos Estatísticos para uma única Amostra - parte I
Intervalos Estatísticos para uma única Amostra - parte I Intervalo de confiança para média 14 de Janeiro Objetivos Ao final deste capítulo você deve ser capaz de: Construir intervalos de confiança para
Distribuições Amostrais
Distribuições Amostrais 1 Da população, com parâmetro, retira-se k amostras de tamanho n e calcula-se a estatística. Estas estatísticas são as estimativas de. As estatísticas, sendo variáveis aleatórias,
Les Estatística Aplicada II AMOSTRA E POPULAÇÃO
Les 0407 - Estatística Aplicada II AMOSTRA E POPULAÇÃO AULA 1 04/08/16 Prof a Lilian M. Lima Cunha Agosto de 2016 Estatística 3 blocos de conhecimento Estatística Descritiva Levantamento e resumo de dados
ESTIMAÇÃO DE PARÂMETROS
ESTIMAÇÃO DE PARÂMETROS Um dos principais objetivos da estatística inferencial consiste em estimar os valores de parâmetros populacionais desconhecidos (estimação de parâmetros) utilizando dados amostrais.
Fernando de Pol Mayer
Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
5 TORIA ELEMENTAR DA AMOSTRAGEM
5 TORIA ELEMENTAR DA AMOSTRAGEM É errôneo pensar que, caso tivéssemos acesso a todos os elementos da população, seríamos mais precisos. Os erros de coleta e manuseio de um grande número de dados são maiores
Processo de Amostragem
Processo de Amostragem População versus Amostra População: conjunto de unidades com uma ou mais característica em comum N é a dimensão da população Amostra: Subconjunto da população N é a dimensão da amostra
Distribuições Amostrais e Estimação Pontual de Parâmetros
Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 2012/02 1 Introdução 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição
Inferência Estatística. 1 Amostra Aleatória. Baseado nos slides cedidos pelo Professor Vinícius D. Mayrink (DEST-UFMG)
Inferência Estatística 1 Amostra Aleatória Baseado nos slides cedidos pelo Professor Vinícius D. Mayrink (DEST-UFMG) O que é Inferência Estatística? Desconhecimento, incerteza Fenômenos/experimentos: determinísticos
Introdução à Probabilidade e à Estatística II
Introdução à Probabilidade e à Estatística II Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) Lígia Henriques-Rodrigues MAE0229 1º semestre 2018 1 / 36
Inferência Estatística. Tiago Viana Flor de Santana
ESTATÍSTICA BÁSICA Inferência Estatística Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ [email protected] sala 07 Curso: MATEMÁTICA Universidade Estadual de Londrina UEL Departamento
Introdução a Estatística
Introdução a Estatística Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução O curso foi dividido em três etapas: 1 vimos como
Professora Ana Hermínia Andrade. Período
Estimação intervalar Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Estimação Intervalar Vimos que como
Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM
Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Estimação de Parâmetros O objetivo da Estatística Indutiva é tirar conclusões probabilísticas sobre aspectos da população,
Amostragem e Distribuição Amostral. Tipos de amostragem, distribuição amostral de média, proporção e variância
Amostragem e Distribuição Amostral Tipos de amostragem, distribuição amostral de média, proporção e variância 1 AMOSTRAGEM Amostragem Probabilística ou Aleatória Amostragem Não Probabilística Amostragem
Teste de Hipóteses Paramétricos
Teste de Hipóteses Paramétricos Fundamentos de um teste de hipóteses Como construir testes de hipóteses para uma média. Como construir testes de hipóteses para uma proporção. Como construir testes de hipóteses
Erro e Tamanho Amostral
Erro e Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ 30 de agosto de 2018 Londrina 1 / 17 Estimação é o nome técnico para o processo que consiste em se utilizar os dados de uma amostra para
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Conceitos Estatística É uma parte da Matemática Aplicada que fornece métodos para a coleta, organização,
MAE116 Farmácia Estatística Descritiva (I)
MAE116 Farmácia 2017 Estatística Descritiva (I) 1 O que é Estatística A estatística desempenha o papel importante em muitos processos de tomada de decisão. Um pesquisador, em muitas situações, necessita
ESTATÍSTICA ECONÔMICA A 6EMA
6EMA020-2000 Lucas Santana da Cunha email: [email protected] Universidade Estadual de Londrina 13 de abril de 2016 CRONOGRAMA 1 o BIMESTRE: MÓDULO I - Estatística Descritiva Noções Básicas em estatística:
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
Probabilidade Condicional e Independência
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise [email protected] 17/08/2011 Probabilidade
3. Estimação pontual USP-ICMC-SME. USP-ICMC-SME () 3. Estimação pontual / 25
3. Estimação pontual USP-ICMC-SME 2013 USP-ICMC-SME () 3. Estimação pontual 2013 1 / 25 Roteiro Formulação do problema. O problema envolve um fenômeno aleatório. Interesse em alguma característica da população.
1 Teoria da Decisão Estatística
1 Teoria da Decisão Estatística 1.1 Teste de Hipótese É uma metodologia estatística que permite tomar decisão sobre uma ou mais populações baseando no conhecimento de informações da amostra. Ao tentarmos
Estatística II. Intervalo de Confiança Lista de Exercícios
Estatística II Intervalo de Confiança Lista de Exercícios 1. IC da Média com a Variância Populacional Desconhecida De 50.000 válvulas fabricadas por uma companhia, retira-se uma amostra de 400 válvulas,
Universidade Federal de Lavras
Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 6 a Lista de Exercícios Teoria da Estimação pontual e intervalar 1) Marcar como verdadeira ou falsa as seguintes
UNIVERSIDADE FEDERAL DA PARAÍBA CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I
UNIVERSIDADE FEDERAL DA PARAÍBA CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I Departamento de Estatística Tarciana Liberal CONCEITOS FUNDAMENTAIS DE ESTATÍSTICA O que a Estatística significa para você? Pesquisas
CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I
UNIVERSIDADE FEDERAL DA PARAÍBA CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ CONCEITOS FUNDAMENTAIS DE ESTATÍSTICA O que a Estatística
Teorema central do limite e es/mação da proporção populacional p
Teorema central do limite e es/mação da proporção populacional p 1 RESULTADO 1: Relembrando resultados importantes Seja uma amostra aleatória de tamanho n de uma variável aleatória X, com média µ e variância
i. f Y (y, θ) = 1/θ... 0 y θ 0... y < 0 ou y > θ Se a amostra selecionada foi ( ), qual será a estimativa para θ?
Fundação Getulio Vargas Curso: Graduação Disciplina: Estatística Professor: Moisés Balassiano Lista de Exercícios Inferência. Seja (Y, Y 2,..., Y n ) uma amostra aleatória iid, de tamanho n, extraída de
6. Amostragem e estimação pontual
6. Amostragem e estimação pontual Definição 6.1: População é um conjunto cujos elementos possuem qualquer característica em comum. Definição 6.2: Amostra é um subconjunto da população. Exemplo 6.1: Um
Probabilidade e Estatística
Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Inferência Estatística stica e Distribuições Amostrais Inferência Estatística stica O objetivo
Prof. Tiago Viana Flor de Santana
INFERÊNCIA ESTATÍSTICA Introdução Prof. Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ [email protected] sala 07 Universidade Estadual de Londrina UEL Departamento de Estatística DSTA
Prof. Eduardo Bezerra. 15 de setembro de 2017
Distribuições Amostrais Prof. Eduardo Bezerra Inferência Estatística 15 de setembro de 2017 Eduardo Bezerra (CEFET/RJ) Distribuições Amostrais 1 / 28 Roteiro Distribuições amostrais 1 Distribuições amostrais
Distribuições amostrais
Distribuições amostrais Tatiene Correia de Souza / UFPB [email protected] October 14, 2014 Souza () Distribuições amostrais October 14, 2014 1 / 23 Distribuição Amostral Objetivo Estender a noção de uma
6EMA Lucas Santana da Cunha 19 de abril de Universidade Estadual de Londrina
ESTATÍSTICA ECONÔMICA 6EMA020-2000 [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de abril de 2017 1 o Bimestre Plano do Curso Cronograma Critério de Avaliação Bibliografia
6EMA Lucas Santana da Cunha 17 e 19 de abril de Universidade Estadual de Londrina
ESTATÍSTICA ECONÔMICA 6EMA020-1000 [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 17 e 19 de abril de 2017 1 o Bimestre Cronograma Critério de Avaliação Bibliografia
