Probabilidade Aula 11
|
|
|
- Victor Gabriel Rodrigues Freire
- 8 Há anos
- Visualizações:
Transcrição
1 Probabilidade Aula 11 Magno T. M. Silva Escola Politécnica da USP Junho de 2017 A maior parte dos exemplos dessa aula foram extraídos de Jay L. Devore, Probabilidade e Estatística para engenharia e ciências, tradução da 8a edição americana, Cengage, 2014 Essa parte da matéria está no Capítulo 3 do livro do Dantas.
2 Sumário Variáveis aleatórias de distribuição conjunta Independência estatística Covariância e coeficiente de correlação
3 5.1 Mapeamento do espaço amostral S ao espaço S J (plano xy) y s 2 S s 1 (X(s 2 ),Y(s 1 )) S J função Y x função X
4 5.1 Duas variáveis aleatórias discretas Sejam X e Y duas variáveis aleatórias definidas no espaço amostral S de um experimento. A distribuição de probabilidade conjunta p(x,y) é definida para cada par de números (x, y) por Observações: p(x, y) = P[X = x, Y = y] Como toda função de probabilidade, p(x,y) 0 e x yp(x,y) = 1. Seja A qualquer conjunto que consista em pares de valores (x,y), por exemplo, A = {(x,y) : x+y = 5}, então P[(X,Y) A] é obtida como a soma da distribuição de probabilidade conjunta com os pares em A: P[(X,Y) A] = p(x,y) (x,y) A
5 5.1 Exemplo 5.1 Uma grande agência de seguros presta serviços a diversos clientes que compraram uma apólice residencial e outra de automóvel da mesma seguradora. Para cada tipo, deve ser especificado um valor dedutível. Para uma apólice de automóvel, as opções são $100 e $250, enquanto para uma apólice residencial, as opções são $0, $100 e $200. Suponha que um indivíduo com os dois referidos tipos seja selecionado aleatoriamente nos arquivos da seguradora. Sejam e X = o valor dedutível na apólice de automóvel Y = o valor dedutível na apólice residencial. Os pares possíveis de (X,Y) são (100, 0), (100, 100), (100, 200), (250, 0), (250, 100), (250, 200)
6 5.1 Exemplo 5.1 A distribuição de probabilidade conjunta especifica a probabilidade associada a cada um desses pares, sendo que qualquer outro par tem probabilidade 0. Considere a distribuição conjunta da tabela seguinte Calcule as probabilidades P[X +Y 200] P[Y 100] p(x,y) y = 0 y = 100 y = 200 x = 100 0,20 0,10 0,20 x = 250 0,05 0,15 0,30
7 5.1 Exemplo 5.1 Resolução: p(x,y) y = 0 y = 100 y = 200 x = 100 0,20 0,10 0,20 x = 250 0,05 0,15 0,30 P[X +Y 200] = P[X = 100, Y = 0]+P[X = 100, Y = 100] = p(100,0)+p(100,100) = 0,20+0,10 = 0,30 P[Y 100] = p(100,100) + p(250,100) + p(100,200) + p(250,200) = 0,75
8 5.1 Distribuições marginais A distribuição de probabilidade marginal de X, denotada por P[X = x], é dada por P[X = x] = y p(x,y) para cada valor possível de X. Da mesma forma, a distribuição de probabilidade marginal de Y é P[Y = y] = x p(x,y) para cada valor possível de Y.
9 5.1 Distribuições marginais - Exemplo 5.2 p(x,y) y = 0 y = 100 y = 200 x = 100 0,20 0,10 0,20 x = 250 0,05 0,15 0,30 Uma vez que a distribuição conjunta das variáveis X e Y esteja disponível, podemos encontrar a distribuição de X e de Y separadamente. Por exemplo, P[X = 100] = P[(X,Y) = (100,0) ou (100,100) ou (100,200)] = p(100,0) + p(100,100) + p(100,200) = 0,20+0,10+0,20 = 0,50 e consequentemente P[X = 250] = 0,50. Para a v.a. Y temos P[Y = 0] = P[(X,Y) = (100,0) ou (250,0)] = p(100,0)+p(250,0) = 0,25, P[Y = 100] = 0,25 e P[Y = 200] = 0,50.
10 5.1 Distribuições de probabilidade marginais - Exemplo 5.2 Resumindo, e Note que como antes. P[X = x] = P[Y = y] = { 0,50, x = 100, caso contrário 0,25, y = 0, 100 0,50 y = caso contrário P[Y 100] = 0,75, (1) (2)
11 5.1 Distribuição conjunta Vamos definir um evento A por A = {X x} e um evento B por {Y y}. Esses eventos se referem ao espaço amostral S enquanto o evento {X x, Y y} se refere ao espaço amostral S J A S A = {X x} y S J B B = {Y y} x A B = {X x,y y} Define-se a função de distribuição conjunta das variáveis aleatórias X e Y como F(x,y) = P[X x,y y] = P(A B).
12 5.1 Variáveis aleatórias independentes Duas variáveis aleatórias X e Y são independentes se, para cada par de valores x e y, P[X = x, Y = y] = P[X = x] P[Y = y]. Em outras palavras, a distribuição conjunta é dada pelo produto das marginais.
13 5.1 Variáveis aleatórias independentes Duas variáveis aleatórias X e Y com função de distribuição conjunta F(x,y) são independentes se e somente se F(x,y) = F X (x) F Y (y). A função de distribuição conjunta for igual ao produto das funções de distribuição marginais. Além disso, E(XY) = E(X)E(Y). A esperança do produto das v.a. s é igual ao produto das esperanças das v.a. s.
14 5.1 Variáveis aleatórias independentes Exemplo Uma urna contém três bolas vermelhas e cinco bolas azuis. Retiram-se sucessivamente três bolas da urna, repondo-se a bola selecionada após cada retirada. Vamos definir as variáveis aleatórias para i = 1,2,3. Pede-se: X i = 1 se a i-ésima bola retirada for vermelha X i = 0 se a i-ésima bola retirada for azul. Determine a distribuição conjunta de X 1, X 2, X 3 Defina a v.a. S 3 = X 1 +X 2 +X 3 que representa o número de bolas vermelhas entre as três retiradas e calcule P[S 3 = 2].
15 Covariância e coeficiente de correlação Seja (X,Y) uma v.a. bidimensional. A covariância de X e Y é definida como Cov(X,Y) = E{[X E(X)][Y E(Y)]} = E(XY) E(X)E(Y) Se X e Y forem independentes, então Cov(X,Y) = 0 (o contrário nem sempre é verdade) O coeficiente de correlação é definido como É possível mostrar que ρ(x,y) = Cov(X,Y) σ(x)σ(y) ρ(x,y) 1
16 Covariância e coeficiente de correlação - Exemplo Considere uma urna com três bolas azuis e duas bolas vermelhas. Retiram-se duas bolas, uma após a outra sem reposição. Sejam as v.a. s X e Y tais que X = 1 se a primeira bola retirada for azul X = 0 se a primeira bola retirada for vermelha. Y = 1 se a segunda bola retirada for azul Y = 0 se a segunda bola retirada for vermelha. Calcule Cov(X,Y) e ρ(x,y).
Distribuições Multidimensionais de Probabilidade para Variáveis Discretas e Contínuas Distribuições Marginais. Aula 9
Distribuições Multidimensionais de Probabilidade para Variáveis Discretas e Contínuas Distribuições Marginais Aula 9 Variáveis Aleatórias Discretas Variável aleatória discreta função definida em um espaço
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Covariância e Coeficiente de correlação 11/13 1 / 21 Covariância Quando duas variáveis aleatórias
a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B.
Universidade de Brasília Departamento de Estatística 5 a Lista de PE. Um time de basquete irá jogar uma temporada de 44 jogos. desses jogos serão disputados contra times da classe A e os 8 restantes contra
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Condicionais 11/13 1 / 19 Em estudo feito em sala perguntamos aos alunos qual
Probabilidade Aula 08
332 Probabilidade Aula 8 Magno T. M. Silva Escola Politécnica da USP Maio de 217 A maior parte dos exemplos dessa aula foram extraídos de Jay L. Devore, Probabilidade e Estatística para engenharia e ciências,
Exercícios propostos:
INF 16 Exercícios propostos: 1. Sabendo-se que Y=X-5 e que E(X)= e V(X)=1, calcule: a)e(y); b)v(y); c)e(x+y); d)e(x + Y ); e)v(x+y); Resp.: 1; 9; 5; 15; 81. Uma urna contém 5 bolas brancas e 7 bolas pretas.
Segunda Lista de Exercícios Cálculo de Probabilidades II Prof. Michel H. Montoril
Exercício 1. Uma urna contém 4 bolas numeradas: {1, 2, 2, 3}. Retira-se dessa urna duas bolas aleatoriamente e sem reposição. Sejam 1 : O número da primeira bola escolhida; 2 : O número da segunda bola
1 Variáveis Aleatórias
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis
5 a Lista de PE Solução
Universidade de Brasília Departamento de Estatística 5 a Lista de PE Solução. Sejam X A e X B o números de jogos que o time ganha contra times da classe A e da classe B respectivamente. Claramente X A
Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ
Duração: 90 minutos Grupo I Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ Justifique convenientemente todas as respostas 1 o semestre 2017/2018 18/11/2017
Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto
Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}
CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo
Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40 horas e desvio padrão
Probabilidade Aula 05
0303200 Probabilidade Aula 05 Magno T. M. Silva Escola Politécnica da USP Abril de 2017 A maior parte dos eemplos dessa aula foram etraídos de Jay L. Devore, Probabilidade e Estatística para engenharia
AULA 9 - Variável aleatória bidimensional discreta
AULA 9 - Variável aleatória bidimensional discreta Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Variáveis aleatórias bidimensionais Definition Sejam ɛ um experimento e S um espaço amostral
Variáveis Aleatórias. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Variáveis Aleatórias Variável Aleatória Variável aleatória (VA) é uma função que associa a cada
Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico
RESOLUÇÃO NA PÁGINA 06 Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40
Aula 5 - Variáveis bidimensionais
Aula 5 - Variáveis bidimensionais PhD. Wagner Hugo Bonat Laboratório de Estatística e Geoinformação-LEG Universidade Federal do Paraná 1/2017 Bonat, W. H. (LEG/UFPR) 1/2017 1 / 15 Variáveis bidimensionais
Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina
Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 21 de maio de 2018 Londrina 1 / 14 Variável aleatória Introdução Definição Uma função que associa um número real
Exercícios Funções Multivariadas, Exponencial e Outras
Turma 2017 Exercícios Funções Multivariadas, Exponencial e Outras Problema 1 (bivariada) Um bim de cinco transistores possui dois que são defeituosos. Os transistores são testados um a um, até que os defeituosos
PROBABILIDADE RESUMO E EXERCÍCIOS* P2
PROBABILIDADE RESUMO E EXERCÍCIOS* P2 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções grátis em Variáveis Aleatórias Discretas e Contínuas
ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO
Área Científica Matemática Probabilidades e Estatística Curso Engenharia do Ambiente º Semestre º Ficha n.º: Probabilidades e Variáveis Aleatórias. Lançam-se ao acaso moedas. a) Escreva o espaço de resultados
EST012 - Estatística Econômica I Turma A - 1 o Semestre de 2019 Lista de Exercícios 3 - Variável aleatória
Exercício 1. Considere uma urna em que temos 4 bolas brancas e 6 bolas pretas. Vamos retirar, ao acaso, 3 bolas, uma após a outra e sem reposição. Sejam X: o número de bolas brancas e Y : o número de bolas
Ribeirão Preto, 2º semestre de 2012 PROBABILIDADE E ESTATÍSTICA APLICADA II
FACULDADE DE ECONOMIA, ADMINISTRAÇÃO UNIVERSIDADE DE SÃO PAULO E CONTABILIDADE DE RIBEIRÃO PRETO DEPARTAMENTO DE ECONOMIA Ribeirão Preto, 2º semestre de 2012 PROBABILIDADE E ESTATÍSTICA APLICADA II LISTA
É a função que associa um número real a cada elemento do espaço amostral.
Capítulo Variável Aleatória 1. VARIÁVEL ALEATÓRIA (X) (Walpole, S 1 ) É a função que associa um número real a cada elemento do espaço amostral. S IR s X(s) Onde S espaço amostral s elemento do espaço amostral
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Variáveis Aleatórias Bidimensionais 11/13 1 / 1 Variáveis Bidimensionais Até o momento, consideramos
Lista de Exercícios 4
Introdução à Teoria de Probabilidade. Informática Biomédica. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 30 de maio de 2007. Lista de Exercícios 4 são difíceis, são bem mais difíceis.
Lista de Exercícios #5 Assunto: Variáveis Aleatórias Multidimensionais Contínuas
1. ANPEC 018 Questão 9 Uma pessoa investe R$ 10.000,00 (I) em duas aplicações cujas taxas de retorno são variáveis aleatórias independentes, R 1 e R, com médias 5% e 14% e desvios-padrão 1% e 8%, respectivamente.
Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral
Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades
Lucas Santana da Cunha de junho de 2017
VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados
Estatística Descritiva e Exploratória
Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução
Variáveis Aleatórias. Henrique Dantas Neder. April 26, Instituto de Economia - Universidade Federal de Uberlândia
Variáveis Aleatórias Henrique Dantas Neder Instituto de Economia - Universidade Federal de Uberlândia April 2, 202 VARIÁVEL ALEATÓRIA DISCRETA O conceito de variável aleatória está intrínsicamente relacionado
Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu
Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC, CF ou CC. No entanto, o nosso interesse
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Probabilidades e Estatística Curso Engenharia do Ambiente 2º Semestre 1º Ficha n.º1: Probabilidades e Variáveis Aleatórias 1. Lançam- ao acaso 2 moedas. a) Escreva o espaço de resultados
Par de Variáveis Aleatórias
Par de Variáveis Aleatórias Luis Henrique Assumpção Lolis 7 de abril de 2014 Luis Henrique Assumpção Lolis Par de Variáveis Aleatórias 1 Conteúdo 1 Introdução 2 Par de Variáveis Aleatórias Discretas 3
SME0801- Probabilidade II Distribuições conjuntas. Primeiras definições e propriedades
SME0801- Probabilidade II Distribuições conjuntas. Primeiras definições e propriedades Pablo Martin Rodriguez SME ICMC USP Bacharelado em Estatística 20 Mar 2017 Vetores aleatórios Definição Sejam X 1,
Variáveis aleatórias. Universidade Estadual de Santa Cruz. Ivan Bezerra Allaman
Variáveis aleatórias Universidade Estadual de Santa Cruz Ivan Bezerra Allaman DEFINIÇÃO É uma função que associa cada evento do espaço amostral a um número real. 3/37 Aplicação 1. Seja E um experimento
Probabilidade e Estatística Probabilidade Condicional
Introdução Probabilidade e Estatística Probabilidade Condicional Em algumas situações, a probabilidade de ocorrência de um certo evento pode ser afetada se tivermos alguma informação sobre a ocorrência
AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017
AULAS 6 e 7 ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 Em aulas passadas vimos as funções de probabilidade de variáveis discretas e contínuas agora vamos ver
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Variáveis Aleatórias Ao descrever um espaço
Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas
1. ANPEC 2018 Questão 3 Considere um indivíduo procurando emprego. Para cada entrevista de emprego (X) esse indivíduo tem um custo linear (C) de 10,00 Reais. Suponha que a probabilidade de sucesso em uma
UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros
UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade
MB-210 Probabilidade e Estatística
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise [email protected] 2o. semestre/2013 Variáveis
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável
Aula 11. Variáveis Aleatórias Contínuas Bidimensionais
Aula. Variáveis Aleatórias Contínuas Bidimensionais Resumo de caso unidimensional Caso Discreto p p 2 p 3 Caso Contínuo f(x) x x 2 x 3 i p i + f x dx X x x 2 x 3 P p p 2 p 3 Caso bidimensional Caso Discreto
AULA 11 - Valor esperado e suas propriedades
AULA 11 - Valor esperado e suas propriedades Susan Schommer Introdução à Estatística Econômica - IE/UFRJ O valor esperado de uma variável aleatória Como forma de resumir o comportamento de uma variável
MAE-219: Introdução à Probabilidade e Estatística I
MAE-219: Introdução à Probabilidade e Estatística I Prof. Pedro Morettin e Prof. Nelson I. Tanaka Gabarito - Lista de Exercícios 6 1o. Semestre de 216 1 Questão 1 X: Número de caras nos dois primeiros
Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.
Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador
Avaliação e Desempenho Aula 5
Avaliação e Desempenho Aula 5 Aula passada Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Aula de hoje Variáveis aleatórias discretas e contínuas PMF, CDF e função densidade
Probabilidades e Estatística TODOS OS CURSOS
Duração: 90 minutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique convenientemente todas as respostas 1 o semestre 2018/2019 30/01/2019 11:30 1 o Teste C 10 valores 1. Numa unidade fabril
Probabilidade - 7/7/2018. Prof. Walter Tadeu
Probabilidade - 7/7/018 Prof. Walter Tadeu www.professorwaltertadeu.mat.br Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado.
Momentos: Esperança e Variância. Introdução
Momentos: Esperança e Variância. Introdução Em uma relação determinística pode-se ter a seguinte relação: " + " = 0 Assim, m =, é a declividade e a e b são parâmetros. Sabendo os valores dos parâmetros
Variáveis bidimensionais
Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 19/04/2018 WB, FM, EK ( LEG/DEST/UFPR ) Variáveis
MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade
MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição
Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec
Duração: 9 minutos Grupo I Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec Justifique convenientemente todas as respostas o semestre 7/8 5/5/8 9: o Teste A valores. Uma loja comercializa telemóveis
Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas
Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas Matheus Rosso e Camila Steffens 19 de Março de 2018 Independência de variáveis aleatórias Duas V.A. são independentes se, e somente
Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB
Variáveis Aleatórias Esperança e Variância Prof. Luiz Medeiros Departamento de Estatística - UFPB ESPERANÇA E VARIÂNCIA Nos modelos matemáticos aleatórios parâmetros podem ser empregados para caracterizar
PARTE 2. Profª. Drª. Alessandra de Ávila Montini
PARTE 2 Profª. Drª. Alessandra de Ávila Montini Conteúdo Introdução a Probabilidade Conceito de Experimento Conceito de Espaço Amostral Conceito de Variável Aleatória Principais Distribuições de Probabilidade
VARIÁVEIS ALEATÓRIAS 1
VARIÁVEIS ALEATÓRIAS 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado duas vezes e observar
Probabilidades e Estatística LEAN, LEE, LEGI, LEMat, LETI, LMAC, MEAmb, MEAer, MEBiol, MEBiom, MEEC, MEFT, MEQ
Duração: 90 minutos Grupo I Probabilidades e Estatística LEAN, LEE, LEGI, LEMat, LETI, LMAC, MEAmb, MEAer, MEBiol, MEBiom, MEEC, MEFT, MEQ Justifique convenientemente todas as respostas! o semestre 015/016
Vetores Aleatórios, correlação e conjuntas
Vetores Aleatórios, correlação e conjuntas Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Segundo Semestre, 2013 C.T.Cristino (DEINFO-UFRPE) Vetores Aleatórios 2013.2
Probabilidade II Lista 1 - Vetores Aleatórios
Probabilidade II Lista - Vetores Aleatórios Exercício. Duas moedas equilibradas são lançadas de forma independente. Dena as v.a's X : número de caras nos dois lançamentos e Y : função indicadora de faces
Lista de Exercícios #3 Assunto: Variáveis Aleatórias Multidimensionais Discretas
1. ANPEC 2018 - Questão 07 Em um problema envolvendo variáveis aleatórias independentes, um estudante calculou corretamente que E(Y) = 2, E(X 2 )E(Y) = 6, E(X)E(Y 2 ) = 8 e E(X) 2 E(Y) 2 = 24. Avalie as
Aula 4. NOÇÕES DE PROBABILIDADE
Aula 4. NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 013???? Quem será o próximo prefeito
Probabilidade Aula 03
0303200 Probabilidade Aula 03 Magno T. M. Silva Escola Politécnica da USP Março de 2017 Sumário Teorema de Bayes 2.5 Independência Teorema de Bayes Sejam A 1,,A k uma partição de S (eventos disjuntos)
1 Definição Clássica de Probabilidade
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica
PEDRO A. BARBETTA Estatística Aplicada às Ciências Sociais 6ed. Editora da UFSC, 2006.
Como usar modelos de probabilidade para entender melhor os fenômenos aleatórios Capítulos 7 e 8. Estatística Aplicada às Ciências Sociais Sexta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC,
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aulas passadas Espaço Amostral Álgebra de Eventos Axiomas de Probabilidade Análise Combinatória Aula de hoje Probabilidade Condicional Independência de Eventos
3 a Lista de PE Solução
Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes
Prof.Letícia Garcia Polac. 26 de setembro de 2017
Bioestatística Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 26 de setembro de 2017 Sumário 1 2 Probabilidade Condicional e Independência Introdução Neste capítulo serão abordados
Prof. Lorí Viali, Dr.
Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X 0 1 2 3 R x X(s) X(S) Uma função X que associa a cada elemento de S (s S) um número real
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE ALEATORIEDADE Menino ou Menina me? CARA OU COROA? 3 Qual será o rendimento da Caderneta de Poupança no final deste ano? E qual será a taxa de inflação acumulada em 014? Quem será
Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos
Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada
Variável Aleatória Uma função X que associa a cada Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ elemento de S (s S) um número real x X(s) é denominada variável aleatória. O
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE Experimento Aleatório Experimento Aleatório: procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes Exemplos:. Resultado no lançamento de
Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos
Estatística (MAD231) Turma: IGA. Período: 2018/2
Estatística (MAD231) Turma: IGA Período: 2018/2 Aula #03 de Probabilidade: 19/10/2018 1 Variáveis Aleatórias Considere um experimento cujo espaço amostral é Ω. Ω contém todos os resultados possíveis: e
