Probabilidade - 7/7/2018. Prof. Walter Tadeu
|
|
|
- Tomás Sampaio Tomé
- 7 Há anos
- Visualizações:
Transcrição
1 Probabilidade - 7/7/018 Prof. Walter Tadeu
2 Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado. = {1,, 3, 4,, 6}. Exame de sangue (tipo sangüíneo). = {A, B, AB, O} 3. Hábito de fumar. = {Fumante, Não fumante} 4. Tempo de duração de uma lâmpada. = {t: t 0}
3 Eventos: subconjuntos do espaço amostral Notação: A, B, C... Alguns eventos: (conjunto vazio): evento impossível : evento certo Exemplo: Lançamento de um dado. Espaço amostral: = {1,, 3, 4,, 6} A: sair face par A = {, 4, 6} B: sair face maior que 3 B = {4,, 6} C: sair face 1 C = {1}
4 Operações com eventos Sejam A e B dois eventos de um espaço amostral. A B: união dos eventos A e B. Representa a ocorrência de pelo menos um dos eventos, A ou B. A B: interseção dos eventos A e B. Representa a ocorrência simultânea dos eventos A e B.
5 A e B são disjuntos ou mutuamente exclusivos quando não têm elementos em comum, isto é, A B = A e B são complementares se sua interseção é vazia e sua união é o espaço amostral, isto é, A B = e A B = O complementar de A é representado por A c.
6 Exemplo: Lançamento de um dado = {1,, 3, 4,, 6} Eventos: A = {, 4, 6}, B = {4,, 6} e C = {1} sair uma face par e maior que 3 A B = {, 4, 6} {4,, 6} = {4, 6} sair uma face par e face 1 A C = {, 4, 6} {1} = sair uma face par ou maior que 3 A B = {, 4, 6} {4,, 6} = {, 4,, 6} sair uma face par ou face 1 A C = {, 4, 6} {1} = {1,, 4, 6} não sair face par A C = {1, 3, }
7 No caso discreto, todo experimento aleatório tem seu modelo probabilístico especificado quando estabelecemos: O espaço amostral = {w 1,w,... } A probabilidade P(w) para cada ponto amostral de tal forma que: 0 P(w ) i 1 e P ( ) P ({w 1, w,...}) i1 P(w ) i 1.
8 Ainda no caso discreto, Se A é um evento, então P (A) Se Ω {w, w,..., w } 1 N w A j P (w ) 1 P (w ) (pontos equiprováveis), então i N e j P (A) nº. nº. de elementos de A de elementosde Ω
9 Regra da adição de probabilidades Sejam A e B eventos de. Então, P(A B) = P(A) + P(B) P(A B) Conseqüências: Se A e B forem eventos disjuntos, então P(A B) = P(A) + P(B). Para qualquer evento A de, P(A) = 1 - P(A c ).
10 PROBABILIDADE CONDICIONAL E INDEPENDÊNCIA Probabilidade condicional: Dados dois eventos A e B, a probabilidade condicional de A dado que ocorreu B é denotada por P(A B) e definida por P(A B) P(A P(B) B), P(B) Da definição de probabilidade condicional, obtemos a regra do produto de probabilidades P(A B) P(B) P(A B). 0. Analogamente, se P(A) >0, P(A B) P(A) P(B A).
11 Exemplo 1. Observando a tabela, qual é a probabilidade do jovem escolhido ser alfabetizado sabendo-se que é do sexo masculino? temos P(S M) = / = 0,8. Pela definição, P(S M) P(S M) P(M) ,8.
12 Exemplo : Em uma urna, há bolas: brancas e 3 vermelhas. Duas bolas são sorteadas sucessivamente, sem reposição. A: ª bola sorteada é branca C: 1ª bola sorteada é branca P(A) =??? Para representar todas as possibilidades, utilizamos, um diagrama conhecido como diagrama de árvores ou árvore de probabilidades.
13 3 B V 4 4 V B V B 1 Total V V VB BV BB Probabilidades Resultados e (A) P Temos. 4 1 C) (A P
14 Considere agora que as extrações são feitas com reposição, ou seja, a 1 a bola sorteada é reposta na urna antes da a extração. Nesta situação, temos B Resultados Probabilidade B 3 V 3 V B BB BV VB V V Total V
15 Neste caso, P(A) = P(branca na ª) = 4 6 e P(A C) = P( branca na ª branca na 1ª) = P(A) P(A C c ) = P(branca na ª vermelha na 1ª) = P(A) ou seja, o resultado na a extração independe do que ocorre na 1 a extração.
16 Independência de eventos: Dois eventos A e B são independentes se a informação da ocorrência (ou não) de B não altera a probabilidade de ocorrência de A, isto é, P(A B) P(A), P(B) 0. Temos a seguinte forma equivalente: P(A B) P(A) P(B).
17 Exemplo: A probabilidade de Jonas ser aprovado no vestibular é 1/3 e a de Madalena é /3. Qual é a probabilidade de ambos serem aprovados? A: Jonas é aprovado B: Madalena é aprovada P(A B) = P(A) x P(B) = 1/3 x /3 = /9 Qual foi a suposição feita?
18 Distribuição Binomial A distribuição binomial é adequada para descrever os resultados de uma variável aleatória que podem ser agrupados em apenas duas classes ou categorias. As categorias devem ser mutuamente excludentes. Geralmente, denomina-se as duas categorias como sucesso ou falha. Psuceso ( ) falha P( )1 Exemplo: Se P(sucesso) = 0,6 então P(falha) = 1-0,6 = 0,4.
19 Seja um processo composto de uma seqüência de n observações independentes com probabilidade de sucesso constante igual a p. A distribuição do número de sucessos seguirá o modelo Binomial: x n x n x n x P( x) p ( 1 p),x = 0,1,...,n onde representa o número de combinações de n objetos tomados x de cada vez, calculado como: n x n! x!( n x)!
20 Exemplo 1 Exemplo
21
22
23
24
25
26
27
28
29
30
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE Experimento Aleatório Experimento Aleatório: procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes Exemplos:. Resultado no lançamento de
Aula 4. NOÇÕES DE PROBABILIDADE
Aula 4. NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 013???? Quem será o próximo prefeito
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE ALEATORIEDADE Menino ou Menina me? CARA OU COROA? 3 Qual será o rendimento da Caderneta de Poupança no final deste ano? E qual será a taxa de inflação acumulada em 014? Quem será
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? 2 ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 2011???? Quem será o próximo prefeito
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE Fenômeno Aleatório: situação ou acontecimento cujos resultados não podem ser determinados com certeza. Exemplos: 1. Resultado do lançamento de um dado;. Hábito de fumar de um estudante
Conceitos básicos de teoria da probabilidade
Conceitos básicos de teoria da probabilidade Experimento Aleatório: procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes Exemplos:. Resultado no lançamento de
PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache
PROBABILIDADE Aula 2 Probabilidade Básica Fernando Arbache Probabilidade Medida da incerteza associada aos resultados do experimento aleatório Deve fornecer a informação de quão verossímil é a ocorrência
Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB
Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais Prof. Hemílio Fernandes Depto. de Estatística - UFPB Um pouco de Probabilidade Experimento Aleatório: procedimento que, ao ser repetido
Espaço Amostral ( ): conjunto de todos os
PROBABILIDADE Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado. = {1,, 3, 4,, 6}. Doador de sangue (tipo sangüíneo). = {A, B,
INTRODUÇÃO À PROBABILIDADE
INTRODUÇÃO À PROBABILIDADE Análise e Elaboração de Projetos Apresentação Prof Dr Isnard Martins Conteúdo: Profº Dr Carlos Alberto (Caio) Dantas Profº Dr Luiz Renato G. Fontes Prof Dr Victor Hugo Lachos
Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.
Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador
Prof.Letícia Garcia Polac. 26 de setembro de 2017
Bioestatística Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 26 de setembro de 2017 Sumário 1 2 Probabilidade Condicional e Independência Introdução Neste capítulo serão abordados
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 011???? Quem será o próximo prefeito de
Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Probabilidade Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução Experimento aleatório Definição Qualquer experimento cujo resultado
Estatística Empresarial. Fundamentos de Probabilidade
Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação
PROBABILIDADES PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO
PROBABILIDADES Probabilidade é um conceito filosófico e matemático que permite a quantificação da incerteza, permitindo que ela seja aferida, analisada e usada para a realização de previsões ou para a
Probabilidade Parte 1. Camyla Moreno
Probabilidade Parte 1 Camyla Moreno Probabilidade A teoria das probabilidades é um ramo da Matemática que cria, elabora e pesquisa modelos para estudar experimentos ou fenômenos aleatórios. Principais
Probabilidade em espaços discretos. Prof.: Joni Fusinato
Probabilidade em espaços discretos Prof.: Joni Fusinato [email protected] [email protected] Probabilidade em espaços discretos Definições de Probabilidade Experimento Espaço Amostral Evento Probabilidade
Teoria da Probabilidade
Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos
Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.
PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses
T o e r o ia a da P oba ba i b lida d de
Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que
Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz
2. INTRODUÇÃO À PROBABILIDADE
2. INTRODUÇÃO À PROBABILIDADE 2019 Conceitos básicos Experimento aleatório ou fenômeno aleatório Situações ou acontecimentos cujos resultados não podem ser previstos com certeza. Um experimento ou fenônemo
MA12 - Unidade 17 Probabilidade
MA12 - Unidade 17 Probabilidade Paulo Cezar Pinto Carvalho PROFMAT - SBM 17 de Maio de 2013 Teoria da Probabilidade Teoria da Probabilidade: modelo matemático para incerteza. Objeto de estudo: experimentos
Teoria das Probabilidades
Teoria das Prof. Eduardo Bezerra (CEFET/RJ) 23 de fevereiro de 2018 Eduardo Bezerra (CEFET/RJ) Teoria das 2018.1 1 / 54 Roteiro Experimento aleatório, espaço amostral, evento 1 Experimento aleatório, espaço
Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Probabilidade Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Experimento aleatório Definição. Qualquer experimento cujo resultado não pode
Introdução à Estatística
Introdução à Estatística Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução a Probabilidade Existem dois tipos de experimentos:
2. INTRODUÇÃO À PROBABILIDADE
2. INTRODUÇÃO À ROILIDDE 2014 Conceitos básicos Experimento aleatório ou fenômeno aleatório Situações ou acontecimentos cujos resultados não podem ser previstos com certeza. Um experimento ou fenônemo
Disciplina: Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar
Disciplina: 221171 Probabilidade Condicional Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Probabilidade condicional Em muitas situações práticas, o fenômeno aleatório com o qual trabalhamos
Teoria das Probabilidades
08/06/07 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto
Teoria das Probabilidades
Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 08:8 ESTATÍSTICA APLICADA I - Teoria das
Teoria das Probabilidades
Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento
MA12 - Unidade 18 Probabilidade Condicional
MA12 - Unidade 18 Probabilidade Condicional Paulo Cezar Pinto Carvalho PROFMAT - SBM 4 de Abril de 2014 Um dado honesto é lançado duas vezes. a) Qual é a probabilidade de sair 1 no 1 o lançamento? b) Qual
Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise
Probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Você reconhece algum desses experimentos? Alguns
PROBABILIDADE. ENEM 2016 Prof. Marcela Naves
PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.
Regras de probabilidades
Regras de probabilidades Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 16 de maio de 2018 Londrina 1 / 17 Propriedades As probabilidades sempre se referem a
Probabilidade. Objetivos de Aprendizagem. UFMG-ICEx-EST. Cap. 2 - Probabilidade Espaços Amostrais e Eventos. 2.1.
2 ESQUEMA DO CAPÍTULO 2.1 ESPAÇOS AMOSTRAIS E EVENTOS 2.2 INTERPRETAÇÕES E AXIOMAS DE PROBABILIADE 2.3 REGRAS DE ADIÇÃO 2.4 PROBABILIDADE CONDICIONAL 2.5 REGRAS DA MULTIPLICAÇÃO E DA PROBABILIDADE TOTAL
Probabilidade. É o conjunto de todos os possíveis resultados de um experimento aleatório.
Probabilidade Introdução O trabalho estatístico se desenvolve a partir da observação de determinados fenômenos e emprega dados numéricos relacionados aos mesmos, para tirar conclusões que permitam conhecê-los
Matemática & Raciocínio Lógico
Matemática & Raciocínio Lógico para concursos Prof. Me. Jamur Silveira www.professorjamur.com.br facebook: Professor Jamur PROBABILIDADE No estudo das probabilidades estamos interessados em estudar o experimento
INTRODUÇÃO À PROBABILIDADE
INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo
2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2
GET00116 Fundamentos de Estatística Aplicada Lista de exercícios Probabilidade Profa. Ana Maria Lima de Farias Capítulo 1 Probabilidade: Conceitos Básicos 1. Lançam-se três moedas. Enumere o espaço amostral
Prof.: Joni Fusinato
Introdução a Teoria da Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso
Modelos de Probabilidade e Inferência Estatística
Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 1 03/14 1 / 49 Conceitos Fundamentais Prof. Tarciana Liberal
Probabilidade ESQUEMA DO CAPÍTULO. UFMG-ICEx-EST Cap. 2- Probabilidade 1
Probabilidade ESQUEMA DO CAPÍTULO 2.1 ESPAÇOS AMOSTRAIS E EVENTOS 2.2 INTERPRETAÇÕES DE PROBABILIADE 2.3 REGRAS DE ADIÇÃO 2.4 PROBABILIDADE CONDICIONAL 2.5 REGRAS DA MULTIPLICAÇÃO E DA PROBABILIDADE TOTAL
Cap. 4 - Probabilidade
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 4 - Probabilidade APOIO: Fundação de Apoio à Pesquisa
Probabilidades. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Probabilidades Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 41 Noções Básicas Os métodos estatísticos para análise de dados estão associados
Experiências aleatórias e probabilidade
Experiências aleatórias e probabilidade L.J. Amoreira UBI Novembro 2010 Experiências aleatórias Experiências aleatórias são aquelas cujos resultados não são conhecidos de antemão. Espaço de resultados
2. INTRODUÇÃO À PROBABILIDADE
2. INTRODUÇÃO À PROILIDDE 2011 Conceitos básicos Experimento aleatório ou fenômeno aleatório Situações ou acontecimentos cujos resultados não podem ser previstos com certeza. Um experimento ou fenônemo
Teoria das probabilidades
Teoria das probabilidades Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 25 de abril de 2018 Londrina 1 / 22 Conceitos probabiĺısticos são necessários para se
Probabilidades. Wagner H. Bonat Elias T. Krainski Fernando P. Mayer
Probabilidades Wagner H. Bonat Elias T. Krainski Fernando P. Mayer Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 06/03/2018 WB, EK, FM ( LEG/DEST/UFPR
PROBABILIDADE CONDICIONAL E TEOREMA DE BAYES
PROBABILIDADE CONDICIONAL E TEOREMA DE BAYES Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 08 de junho de 2016 Probabilidade Condicional
3 NOÇÕES DE PROBABILIDADE
3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação
2 Conceitos Básicos de Probabilidade
CE003 1 1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento de técnicas estatísticas
Teoria das Probabilidades
Teoria das Probabilidades Lucas Santana da Cunha [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 09 de maio de 2018 Londrina 1 / 21 Conceitos probabiĺısticos são necessários
Experiências Aleatórias. Espaço de Resultados. Acontecimentos
Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados
UNIVERSIDADE FEDERAL DA PARAÍBA
UNIVERSIDADE FEDERAL DA PARAÍBA Probabilidade Departamento de Estatística UFPB Luiz Medeiros Introdução Encontramos na natureza dois tipos de fenômenos Determinísticos: Os resultados são sempre os mesmos
PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S.
PROBABILIDADE A história da teoria das probabilidades, teve início com os jogos de cartas, dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo da probabilidade.
Experimento Aleatório
Probabilidades 1 Experimento Aleatório Experimento aleatório (E) é o processo pelo qual uma observação é ob;da. Exemplos: ü E 1 : Jogar uma moeda 3 vezes e observar o número de caras ob;das; ü E 2 : Lançar
CE Estatística I
CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 2 08/11 1 / 25
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 2 08/11 1 / 25 Prof. Tarciana Liberal (UFPB) Aula 2 08/11 2 / 25 Para apresentar os conceitos
2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2
GET00189 Probabilidade I Lista de exercícios - Capítulo 1 Profa. Ana Maria Lima de Farias SEÇÃO 1.1 Experimento aleatório, espaço amostral e evento 1. Lançam-se três moedas. Enumere o espaço amostral e
Exercícios de Probabilidade - Lista 1. Profa. Ana Maria Farias
Exercícios de Probabilidade - Lista 1 Profa. Ana Maria Farias 1. Lançam-se três moedas. Enumere o espaço amostral e os eventos A = faces iguais ; B = cara na primeira moeda ; C = coroa na segunda e terceira
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos
Probabilidade Condicional
Disciplina: 221171 robabilidade ondicional rof. a Dr. a Simone Daniela Sartorio de Medeiros DTiSeR-r 1 robabilidade condicional Em muitas situações práticas, o fenômeno aleatório com o qual trabalhamos
UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade
UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística Probabilidade Disciplina: Cálculo das Probabilidades e Estatística I Prof. Tarciana Liberal Existem muitas situações que envolvem incertezas:
TEORIA DA PROBABILIDADE
TEORIA DA PROBABILIDADE Lucas Santana da Cunha [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 22 de maio de 2017 Introdução Conceitos probabiĺısticos são necessários
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Espaço Amostral, Eventos, Álgebra de eventos Aula de hoje Probabilidade Análise Combinatória Independência Probabilidade Experimentos
Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas. Probabilidades. Cristian Villegas
Probabilidades Cristian Villegas [email protected] Setembro de 2013 Apostila de Estatística (Cristian Villegas) 1 Introdução Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas
Princípios de Bioestatística
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Princípios de Bioestatística Aula 5 Introdução à Probabilidade Nosso dia-a-dia está cheio de incertezas Vai
Capítulo 2 Probabilidades
Capítulo 2 Probabilidades Slide 1 Definições Slide 2 Acontecimento Qualquer colecção de resultados de uma experiência. Acontecimento elementar Um resultado que não pode ser simplificado ou reduzido. Espaço
Bioestatística: Probabilidade. Prof: Paulo Cerqueira Jr.
Bioestatística: Probabilidade Prof: Paulo Cerqueira Jr. Probabilidade: Definições: Probabilidade; Espaço amostral; Evento; Independência de eventos; Teorema de Bayes; Probabilidade: Variáveis aleatórias;
3. Probabilidade P(A) =
7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de
REGRAS DE PROBABILIDADE
REGRAS DE PROBABILIDADE Lucas Santana da Cunha [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 24 de maio de 2017 Propriedades As probabilidades sempre se referem a
Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)
Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative
Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL.
Estatística Aplicada Administração p(a) = n(a) / n(u) PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL Prof. Carlos Alberto Stechhahn 2014 1. Noções de Probabilidade Chama-se experimento
AULA 4 -Probabilidade Condicional e Regra de Bayes
AULA 4 - e Regra de Bayes Susan Schommer Introdução à Estatística Econômica - IE/UFRJ : exemplos A soma dos resultados de dois lançamentos de um dado é 9. Qual a probabilidade do primeiro resultado ter
Disciplina: Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar
Disciplina: 221171 Probabilidade Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Revisão de conceitos Você sabe contar? (Análise Combinatória) 2 Análise combinatória É um dos tópicos que
Noções sobre probabilidade
Capítulo 3 Noções sobre probabilidade Um casal tem dois filhos. Qual é a probabilidade de: o primogênito ser homem? os dois filhos serem homens? pelo menos um dos filhos ser homem? A teoria das probabilidades
UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade. Cálculo das Probabilidades e Estatística I Luiz Medeiros
UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística Probabilidade Cálculo das Probabilidades e Estatística I Luiz Medeiros http://www.de.ufpb.br/~luiz/ Existem muitas situações que envolvem incertezas:
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos
Processos Estocásticos. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema
Conceitos de Probabilidade
1/1 Introdução à Bioestatística Conceitos de Probabilidade Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 2/1 Tipos de Fenômenos 1. Aleatório: Situação ou acontecimentos
BIOESTATÍSTICA AULA 3. Anderson Castro Soares de Oliveira Jose Nilton da Cruz. Departamento de Estatística/ICET/UFMT
BIOESTATÍSTICA AULA 3 Anderson Castro Soares de Oliveira Jose Nilton da Cruz Departamento de Estatística/ICET/UFMT Probabilidade PROBABILIDADE Probabilidade é o ramo da matemática que estuda fenômenos
