INTRODUÇÃO À PROBABILIDADE
|
|
|
- Terezinha Ferrão Arruda
- 7 Há anos
- Visualizações:
Transcrição
1 INTRODUÇÃO À PROBABILIDADE Análise e Elaboração de Projetos Apresentação Prof Dr Isnard Martins Conteúdo: Profº Dr Carlos Alberto (Caio) Dantas Profº Dr Luiz Renato G. Fontes Prof Dr Victor Hugo Lachos Davila Prof Fernando Brito Soares Prof. Claudio Jordão et al. Prof David Lavine et al. Prof Isnard Martins 1
2 Experimento Designaremos por Experimento todo processo que fornece dados: Pode ser a observação de um fenômeno natural: 1.observação astronômica 2.meteorológica 2
3 Experimento Aleatório ou Fenômeno Aleatório Situações ou acontecimentos cujos resultados não podem ser previstos com certeza. Exemplos: Condições climáticas do próximo domingo; Taxa de inflação do próximo mês; Resultado ao lançar um dado ou moeda; Tempo de duração de uma lâmpada. Espaço Amostral (O) Conjunto de todos os possíveis resultado de um experimento aleatório ou fenômeno aleatório. 3
4 observação de um experimento controlado para testar a fadiga de materiais verificar o resultado de um exame de sangue etc. pesquisa de opinião para saber quantos estudantes fumam na Universidade quantos eleitores tem intenção de votar num candidato A em uma eleição 4
5 Exemplos: 1. Lançamento de um dado.? O={1,2,3,4,5,6} 2. Tipo sanguíneo de um individuo.? O={A, B, AB,0} 3. Opinião de um eleitor sobre um projeto.? O={Favorável,Contrário} 4. Tempo de duração de uma lâmpada? O={t; t>0) Evento subconjunto do espaço amostral O Notação: A, B, C,... Exemplos: No exemplo 1, alguns eventos: A: sair face par:? A={2,4,6}? O B: Sair face maior que 3? B={4,5,6}? O C: sair face 1? C={1}? O D: sair face 7? D={ } (evento impossível)= Ø (conjunto vazio)? O 5
6 Definição Clássica ou a priori Se um experimento aleatório tiver n(o) resultados mutuamente exclusivos e igualmente prováveis e se um evento A tiver n(a) desses resultados. A probabilidade do evento A representado por P(A), é dado por: Exemplo: Considere o lançamento de 2 dados balanceados. Calcular a probabilidade de: a) Obter soma 7; b) Obter soma maior que 10; c) Que resultado do primeiro dado seja superior ao resultado do segundo. 6
7 7
8 Definição frequentista ou a posteriori Suponhamos que realizamos um experimento n vezes (n grande) e destas o evento A ocorre exatamente r<n vezes, então a frequência relativa de vezes que ocorreu o evento A, r/n, é a estimação da probabilidade que ocorra o evento A, ou seja, Essa estimação da probabilidade por frequência relativa de um evento A, é próxima da verdadeira probabilidade do evento A, quando n tende ao infinito. Exemplo: Considere o lançamento de uma moeda. Calcular a probabilidade de A={ resultado obtido é cara}. 8
9 Experimento aleatório Os resultados são imprevisíveis mas podemos descrever quais são os possíveis resultados. É possível associar uma chance a cada possível resultado. 9
10 Sejam os eventos A e B definidos no mesmo espaço amostral A? B: União dos eventos A e B. Representa a ocorrência de pelo menos um dos eventos A ou B AnB: Intersecção dos eventos A e B. Representa a ocorrência simultânea dos eventos A e B. A e B são disjuntos ou mutuamente exclusivos quando não têm elementos em comum, isto é, AnB= Ø A e B são complementares se sua intersecção é vazia e sua união o espaço amostral, isto é. AnB= Ø e A? B= O. O complementar de um evento A é representado por A C 10 ou A
11 Exemplo 1 Qual a probabilidade do Funcionário 10 ser escolhido? {Funcionário 1, Funcionário 2,, Funcionário 100 } Se há 40 mulheres dentre os 100 funcionários, qual é a probabilidade de uma delas ser escolhida? 11
12 Exemplo 2 Lançamento de um dado honesto Conjunto de possibilidades = {1, 2, 3, 4, 5, 6} Qual é a probabilidade de vitória? Supondo que o dado é equilibrado, temos: (3/6) (nº de possibilidades favoráveis / nº total de possibilidades ) 12
13 Modelos matemáticos para experimentos aleatórios Modelo de Probabilidade 1)? = Conjunto de resultados possíveis do experimento, denominado Espaço Amostral. 2) Atribuição de Probabilidades a cada Evento = Subconjunto do Espaço Amostral. Eventos particulares do experimento Em geral, temos interesse em eventos particulares do experimento. Evento A: é escolhida uma mulher A = {ser escolhida uma mulher}? 1 13
14 Exemplo 2? 2 = {1, 2, 3, 4, 5, 6} Evento B: sair face par B = {2, 4, 6}?? 2 Evento C: sair uma face ímpar C = {1, 3, 5}?? 2 Evento D: sair uma face maior que 3 D = {4, 5, 6}?? 2 Evento E: sair face 1 E = {1}?? 2 14
15 A um experimento aleatório está associado um espaço amostral?. Um evento A ocorre se o resultado do experimento pertence a A. Os conjuntos? e Ø também são eventos:? é o evento certo Ø é o evento impossível 15
16 Sejam A e B dois eventos de um mesmo espaço amostral: O evento interseção de A e B, denotado An B, é o evento em que A e B ocorrem Simultaneamente O evento reunião de A e B, denotado AUB, é o evento em que A ocorre ou B ocorre (ou ambos) O evento complementar de A, denotado Ac, é o evento em que A não ocorre 16
17 Exemplos: interseção e reunião de eventos? 2 = {1,2,3,4,5,6} Eventos A = {2, 4, 6}, B = {4, 5, 6} e C = {1, 3, 5} A n C = {2, 4, 6} n {1, 3, 5} = Ø sair uma face par e ímpar A n B = {2, 4, 6} n {4, 5, 6} = {4, 6} sair uma face par e maior que 3 A U B = {2, 4, 6} U {4, 5, 6} = {2, 4, 5, 6} sair uma face par ou maior que 3 A U C = {2, 4, 6} U {1, 3, 5} = {1, 2, 3, 4, 5, 6} sair uma face par ou ímpar 17
18 Probabilidade É uma função que atribui aos eventos de? um número P(A) (se A é um evento de?, P(A) é a probabilidade de A) satisfazendo as condições: 1) 0 <= P(A) <= 1 2) P(Ø) = 0, P(? ) = 1 3) Regra da soma para dois eventos, A e B, mutuamente exclusivos: P(A U B) = P(A) + P(B) 18
19 Propriedades Probabilidade da união de eventos: P(AUB) = P(A) + P(B) - P(A n B) Probabilidade do evento complementar: P(AC) = 1 - P(A) para todo evento A 19
20 Relativos aos habitantes de Sergipe, na faixa etária entre 20 a 24 anos com relação às variáveis Sexo e Leitura 20
21 Um jovem entre 20 e 24 anos é escolhido ao acaso em Sergipe.? = conjunto de jovens de Sergipe, com idade entre 20 e 24 anos. Exemplo Eventos de interesse: M = jovem sorteado é do sexo masculino F = jovem sorteado é do sexo feminino L = jovem sorteado sabe ler M n L = jovem sorteado é do sexo masculino e sabe ler M U L = jovem sorteado é do sexo masculino ou sabe ler 21
22 22
23 23
24 Definição de probabilidade condicional Se A e B são eventos de um experimento aleatório, a prob. condicional de A dado B é: Exemplo: Prob. de um jovem sorteado ser do sexo masculino dado que sabe ler: P(M L) = P(M n L) = 0,388 = 0,460 P(L) 0,843 Regra do Produto: P(A n B) = P(B).P(A B) 24
25 Exercícios Ex. 1 No lançamento de um dado perfeito de 6 faces qual é a probabilidade de saída de: a) um número par; b) um número superior a 4; c) um número igual ou inferior a 4 25
26 Exercícios a) um número par; b) um número superior a 4; c) um número igual ou inferior a 4 26
27 Probabilidades Aplicações na Administração de Projetos A incerteza é uma característica inerente a todos os fatos da vida particularmente àqueles relacionados com o futuro. A probabilidade é uma medida de certeza ou incerteza. Quando afirmamos ser possível realizar um projeto em 15 semanas, afirmamos que em determinadas condições de trabalho e da equipe envolvida, a realização plena do projeto pode ser obtida no prazo dimensionado. 27
28 Probabilidades Aplicações na Administração de Projetos Quando afirmamos que a probabilidade de desenvolvimento de uma atividade é de 60%, estamos na verdade associando uma medida de certeza à sua realização, bem como uma medida de incerteza de 40% à não realização da atividade. Quanto mais improvável apresentar-se a realização do evento mais próximo de zero estará a probabilidade de sua realização e quanto mais provável, mais próximo de 1 estará a sua probabilidade de materialização. 28
29 Probabilidades Aplicações na Administração de Projetos O conceito de probabilidade é muito útil na área de administração, já que permite expressar opiniões quantificadas com base na experiência pessoal de gestores. Com base no aprendizado profissional podemos tomar decisões com maior segurança através das informações acumuladas e armazenadas em nossa mente ao longo do tempo. Desta forma quando afirmamos assumir um risco calculado, queremos afirmar que dispomos de um grau de certeza satisfatório para determinada situação sobre o sucesso de certa ação. 29
30 EXERCÍCIO Se escolhermos aleatoriamente uma carta do baralho, qual a probabilidade: 1. A carta escolhida ser preta? 2. A carta escolhida ser um ás? 3. A carta escolhida ser um às preto? 4. A carta escolhida ser um ás ou carta preta? 5. Sabendo à priori que a carta escolhida é preta, ser a carta um ás? 30
31 EXERCÍCIO Se escolhermos aleatoriamente uma carta do baralho, qual a probabilidade: A carta escolhida ser preta? A carta escolhida ser um ás? A carta escolhida ser um às preto? A carta escolhida ser um ás ou carta preta? Sabendo à priori que a carta escolhida é preta, ser a carta um ás? 31
Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB
Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais Prof. Hemílio Fernandes Depto. de Estatística - UFPB Um pouco de Probabilidade Experimento Aleatório: procedimento que, ao ser repetido
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE Experimento Aleatório Experimento Aleatório: procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes Exemplos:. Resultado no lançamento de
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? 2 ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 2011???? Quem será o próximo prefeito
T o e r o ia a da P oba ba i b lida d de
Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que
PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache
PROBABILIDADE Aula 2 Probabilidade Básica Fernando Arbache Probabilidade Medida da incerteza associada aos resultados do experimento aleatório Deve fornecer a informação de quão verossímil é a ocorrência
Teoria das probabilidades
Teoria das probabilidades Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 25 de abril de 2018 Londrina 1 / 22 Conceitos probabiĺısticos são necessários para se
Prof.: Joni Fusinato
Introdução a Teoria da Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso
2. INTRODUÇÃO À PROBABILIDADE
2. INTRODUÇÃO À PROBABILIDADE 2019 Conceitos básicos Experimento aleatório ou fenômeno aleatório Situações ou acontecimentos cujos resultados não podem ser previstos com certeza. Um experimento ou fenônemo
Aula 4. NOÇÕES DE PROBABILIDADE
Aula 4. NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 013???? Quem será o próximo prefeito
2. INTRODUÇÃO À PROBABILIDADE
2. INTRODUÇÃO À PROILIDDE 2011 Conceitos básicos Experimento aleatório ou fenômeno aleatório Situações ou acontecimentos cujos resultados não podem ser previstos com certeza. Um experimento ou fenônemo
TEORIA DA PROBABILIDADE
TEORIA DA PROBABILIDADE Lucas Santana da Cunha [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 22 de maio de 2017 Introdução Conceitos probabiĺısticos são necessários
Teoria das Probabilidades
Teoria das Probabilidades Lucas Santana da Cunha [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 09 de maio de 2018 Londrina 1 / 21 Conceitos probabiĺısticos são necessários
Probabilidade Parte 1. Camyla Moreno
Probabilidade Parte 1 Camyla Moreno Probabilidade A teoria das probabilidades é um ramo da Matemática que cria, elabora e pesquisa modelos para estudar experimentos ou fenômenos aleatórios. Principais
2. INTRODUÇÃO À PROBABILIDADE
2. INTRODUÇÃO À ROILIDDE 2014 Conceitos básicos Experimento aleatório ou fenômeno aleatório Situações ou acontecimentos cujos resultados não podem ser previstos com certeza. Um experimento ou fenônemo
PROBABILIDADES PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO
PROBABILIDADES Probabilidade é um conceito filosófico e matemático que permite a quantificação da incerteza, permitindo que ela seja aferida, analisada e usada para a realização de previsões ou para a
Probabilidade - 7/7/2018. Prof. Walter Tadeu
Probabilidade - 7/7/018 Prof. Walter Tadeu www.professorwaltertadeu.mat.br Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado.
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE ALEATORIEDADE Menino ou Menina me? CARA OU COROA? 3 Qual será o rendimento da Caderneta de Poupança no final deste ano? E qual será a taxa de inflação acumulada em 014? Quem será
Probabilidade em espaços discretos. Prof.: Joni Fusinato
Probabilidade em espaços discretos Prof.: Joni Fusinato [email protected] [email protected] Probabilidade em espaços discretos Definições de Probabilidade Experimento Espaço Amostral Evento Probabilidade
Regras de probabilidades
Regras de probabilidades Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 16 de maio de 2018 Londrina 1 / 17 Propriedades As probabilidades sempre se referem a
REGRAS DE PROBABILIDADE
REGRAS DE PROBABILIDADE Lucas Santana da Cunha [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 24 de maio de 2017 Propriedades As probabilidades sempre se referem a
Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas. Probabilidades. Cristian Villegas
Probabilidades Cristian Villegas [email protected] Setembro de 2013 Apostila de Estatística (Cristian Villegas) 1 Introdução Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas
Estatística. Aula : Probabilidade. Prof. Ademar
Estatística Aula : Probabilidade Prof. Ademar TEORIA DAS PROBABILIDADES A teoria das probabilidades busca estimar as chances de ocorrer um determinado acontecimento. É um ramo da matemática que cria, elabora
Probabilidades. Carla Henriques e Nuno Bastos. Eng. do Ambiente. Departamento de Matemática Escola Superior de Tecnologia de Viseu
Probabilidades Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Eng. do Ambiente Introdução Ao comprar acções, um investidor sabe que o ganho que vai obter
Aula 07. Modelos Probabilísticos. Stela Adami Vayego - DEST/UFPR 1
ula 07 Modelos Probabilísticos Stela dami Vayego - DEST/UFPR 1 Probabilidade Universo do estudo (população) Hipóteses, conjeturas,... Modelos Probabilísticos Distribuições de Frequências Resultados ou
Estatística Empresarial. Fundamentos de Probabilidade
Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação
Probabilidades. Wagner H. Bonat Elias T. Krainski Fernando P. Mayer
Probabilidades Wagner H. Bonat Elias T. Krainski Fernando P. Mayer Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 06/03/2018 WB, EK, FM ( LEG/DEST/UFPR
Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz
ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015
ELEMENTOS DE PROBABILIDADE Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Def.: Um experimento é dito aleatório quando o seu resultado não for previsível antes de sua realização, ou seja,
INTRODUÇÃO À PROBABILIDADE
INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo
3 NOÇÕES DE PROBABILIDADE
3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação
REGRAS PARA CÁLCULO DE PROBABILIDADES
REGRAS PARA CÁLCULO DE PROBABILIDADES Prof. Dr. Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ 15 de abril de 2019 Londrina 1 / 17 As probabilidades sempre se referem a ocorrência de eventos
Probabilidade e Estatística
Aula 3 Professora: Rosa M. M. Leão Probabilidade e Estatística Conteúdo: 1.1 Por que estudar? 1.2 O que é? 1.3 População e Amostra 1.4 Um exemplo 1.5 Teoria da Probabilidade 1.6 Análise Combinatória 3
Conteúdo: Aula 2. Probabilidade e Estatística. Professora: Rosa M. M. Leão
Aula 2 Professora: Rosa M. M. Leão Probabilidade e Estatística Conteúdo: 1.1 Por que estudar? 1.2 O que é? 1.3 População e Amostra 1.4 Um exemplo 1.5 Teoria da Probabilidade 1.6 Análise Combinatória 3
PROBABILIDADE CONDICIONAL E TEOREMA DE BAYES
PROBABILIDADE CONDICIONAL E TEOREMA DE BAYES Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 08 de junho de 2016 Probabilidade Condicional
Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Probabilidade Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução Experimento aleatório Definição Qualquer experimento cujo resultado
Teoria das Probabilidades
Teoria das Prof. Eduardo Bezerra (CEFET/RJ) 23 de fevereiro de 2018 Eduardo Bezerra (CEFET/RJ) Teoria das 2018.1 1 / 54 Roteiro Experimento aleatório, espaço amostral, evento 1 Experimento aleatório, espaço
Matemática & Raciocínio Lógico
Matemática & Raciocínio Lógico para concursos Prof. Me. Jamur Silveira www.professorjamur.com.br facebook: Professor Jamur PROBABILIDADE No estudo das probabilidades estamos interessados em estudar o experimento
2 Conceitos Básicos de Probabilidade
CE003 1 1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento de técnicas estatísticas
Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL.
Estatística Aplicada Administração p(a) = n(a) / n(u) PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL Prof. Carlos Alberto Stechhahn 2014 1. Noções de Probabilidade Chama-se experimento
Conceitos básicos de teoria da probabilidade
Conceitos básicos de teoria da probabilidade Experimento Aleatório: procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes Exemplos:. Resultado no lançamento de
CONCEITOS BASICOS, ORGANIZAÇÃO E APRESENTAÇÃO DOS RESULTADOS, DISTRIBUIÇÃO DE FREQUÊNCIA
DISCIPLINA: MÉTODOS QUANTITATIVOS PROFESSORA: GARDÊNIA SILVANA DE OLIVEIRA RODRIGUES CONCEITOS BASICOS, ORGANIZAÇÃO E APRESENTAÇÃO DOS RESULTADOS, DISTRIBUIÇÃO DE FREQUÊNCIA MOSSORÓ/RN 2015 1 POR QUE ESTUDAR
Teoria das Probabilidades
Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento
Aula 16 - Erivaldo. Probabilidade
Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar
Teoria das Probabilidades
08/06/07 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto
Probabilidade. Definição de Probabilidade Principais Teoremas Probabilidades dos Espaços Amostrais Espaços Amostrais Equiprováveis.
Probabilidade Definição de Probabilidade Principais Teoremas Probabilidades dos Espaços Amostrais Espaços Amostrais Equiprováveis Renata Souza Probabilidade É um conceito matemático que permite a quantificação
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos
Teoria das Probabilidades
Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 08:8 ESTATÍSTICA APLICADA I - Teoria das
Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Probabilidade Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Experimento aleatório Definição. Qualquer experimento cujo resultado não pode
UNIVERSIDADE FEDERAL DA PARAÍBA
UNIVERSIDADE FEDERAL DA PARAÍBA Probabilidade Departamento de Estatística UFPB Luiz Medeiros Introdução Encontramos na natureza dois tipos de fenômenos Determinísticos: Os resultados são sempre os mesmos
Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise
Probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Você reconhece algum desses experimentos? Alguns
A B e A. Calcule as suas respectivas probabilidades.
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 2-BIOESTATÍSTICA II (CE020) Prof. Benito Olivares Aguilera 1 o Sem./17 1. Expresse em termos de operações entre eventos:
Definição de Probabilidade
INTRODUÇÃO A TEORIA DAS PROBABILIDADES A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número
MA12 - Unidade 17 Probabilidade
MA12 - Unidade 17 Probabilidade Paulo Cezar Pinto Carvalho PROFMAT - SBM 17 de Maio de 2013 Teoria da Probabilidade Teoria da Probabilidade: modelo matemático para incerteza. Objeto de estudo: experimentos
3. Probabilidade P(A) =
7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de
UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade
UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística Probabilidade Disciplina: Cálculo das Probabilidades e Estatística I Prof. Tarciana Liberal Existem muitas situações que envolvem incertezas:
Prof.: Joni Fusinato
Probabilidade Condicional Prof.: Joni Fusinato [email protected] [email protected] Probabilidade Condicional É a probabilidade de ocorrer um evento A sabendo-se que já ocorreu um evento B. Assim,
Introdução à Estatística
Introdução à Estatística Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução a Probabilidade Existem dois tipos de experimentos:
2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2
GET00116 Fundamentos de Estatística Aplicada Lista de exercícios Probabilidade Profa. Ana Maria Lima de Farias Capítulo 1 Probabilidade: Conceitos Básicos 1. Lançam-se três moedas. Enumere o espaço amostral
PROBABILIDADE. Luciana Santos da Silva Martino. PROFMAT - Colégio Pedro II. 01 de julho de 2017
Sumário PROBABILIDADE Luciana Santos da Silva Martino PROFMAT - Colégio Pedro II 01 de julho de 2017 Sumário 1 Conceitos Básicos 2 Probabildade Condicional 3 Espaço Amostral Infinito Outline 1 Conceitos
Exercícios de Probabilidade - Lista 1. Profa. Ana Maria Farias
Exercícios de Probabilidade - Lista 1 Profa. Ana Maria Farias 1. Lançam-se três moedas. Enumere o espaço amostral e os eventos A = faces iguais ; B = cara na primeira moeda ; C = coroa na segunda e terceira
Probabilidade. É o conjunto de todos os possíveis resultados de um experimento aleatório.
Probabilidade Introdução O trabalho estatístico se desenvolve a partir da observação de determinados fenômenos e emprega dados numéricos relacionados aos mesmos, para tirar conclusões que permitam conhecê-los
PEDRO A. BARBETTA Estatística Aplicada às Ciências Sociais 6ed. Editora da UFSC, 2006.
Como usar modelos de probabilidade para entender melhor os fenômenos aleatórios Capítulos 7 e 8. Estatística Aplicada às Ciências Sociais Sexta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC,
Métodos Quantitativos para Ciência da Computação Experimental. Jussara Almeida DCC-UFMG 2013
Métodos Quantitativos para Ciência da Computação Experimental Jussara Almeida DCC-UFMG 2013 Revisão de Probabilidade e Estatística Concentrado em estatística aplicada Estatística apropriada para medições
Processos Estocásticos. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema
Probabilidades- Teoria Elementar
Probabilidades- Teoria Elementar Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados
Princípios de Bioestatística
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Princípios de Bioestatística Aula 5 Introdução à Probabilidade Nosso dia-a-dia está cheio de incertezas Vai
UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade. Cálculo das Probabilidades e Estatística I Luiz Medeiros
UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística Probabilidade Cálculo das Probabilidades e Estatística I Luiz Medeiros http://www.de.ufpb.br/~luiz/ Existem muitas situações que envolvem incertezas:
PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti
Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de incerteza que existe em um determinado experimento.
Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.
PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aulas passadas Espaço Amostral Álgebra de Eventos Axiomas de Probabilidade Análise Combinatória Aula de hoje Probabilidade Condicional Independência de Eventos
Experiências Aleatórias. Espaço de Resultados. Acontecimentos
Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados
MA12 - Unidade 18 Probabilidade Condicional
MA12 - Unidade 18 Probabilidade Condicional Paulo Cezar Pinto Carvalho PROFMAT - SBM 4 de Abril de 2014 Um dado honesto é lançado duas vezes. a) Qual é a probabilidade de sair 1 no 1 o lançamento? b) Qual
Introdução à Estatística. Segundo Semestre/2018
Introdução à Estatística Segundo Semestre/2018 Probabilidade Sua origem está relacionada a jogos de azar; Exemplo: Jogo de dados; Retirar uma carta de um baralho; Lançar uma moeda;... Probabilidade Normalmente
Introdução à Probabilidade
A Teoria de Probabilidade é responsável pelo estudo de fenômenos que envolvem a incerteza (é impossível prever antecipadamente o resultado) e teve origem na teoria de jogos, servindo como ferramenta para
Métodos Quantitativos para Ciência da Computação Experimental. Jussara Almeida DCC-UFMG 2016
Métodos Quantitativos para Ciência da Computação Experimental Jussara Almeida DCC-UFMG 2016 Revisão de Probabilidade e Estatística Concentrado em estatística aplicada Estatística apropriada para medições
