Teoria das probabilidades
|
|
|
- Norma Lisboa
- 6 Há anos
- Visualizações:
Transcrição
1 Teoria das probabilidades Prof. Dr. Lucas Santana da Cunha de abril de 2018 Londrina 1 / 22
2 Conceitos probabiĺısticos são necessários para se estudar fenômenos aleatórios, isto é, situações em que os resultados possíveis são conhecidos, mas não se pode saber a priori qual deles ocorrerá. Em particular, a distribuição de frequências é um instrumento importante para avaliar a variabilidade das observações de um fenômeno aleatório. Assim, podemos criar um modelo teórico que reproduza de maneira razoável a distribuição de frequências. Tais modelos são chamados modelos probabiĺısticos. 2 / 22
3 Definição É um processo de coleta de dados relativo a um fenômeno que acusa variabilidade em seus resultados, mesmo que as condições iniciais sejam sempre as mesmas. Exemplo 1 a) o lançamento de uma moeda; b) lançar três moedas justas e observar as faces voltadas pra cima; c) lançar um dado e observar a face voltada para cima; d) resultado de um exame de gravidez; e) resultado de uma eleição. 3 / 22
4 Quando se tem um experimento aleatório, não se pode prever com certeza o resultado. Pode-se, no entanto, descrever todos os possíveis resultados deste experimento. Definição O conjunto de todos os resultados possíveis de um experimento aleatório é chamado de espaço amostral. Vamos representá-lo por Ω. 4 / 22
5 Exemplo 2 Encontre o espaço amostral dos exemplos a seguir: a) o lançamento de uma moeda; b) lançar três moedas justas e observar as faces voltadas pra cima; c) lançar um dado e observar a face voltada para cima; d) resultado de um exame de gravidez; e) resultado da eleição de certo candidato. 5 / 22
6 Definição É qualquer subconjunto do espaço amostral. Os eventos são geralmente representados por letras maiúsculas, como A, B, C,.... Dentre os eventos a considerar, deve-se incluir o próprio espaço amostral, Ω, que denominamos evento certo e o conjunto vazio,, que denominamos evento impossível. 6 / 22
7 Exemplo 3 a) No lançamento de um dado, considere os seguintes eventos: A: ser sorteado o número 2; B: ser sorteado um número par; C: ser sorteado número primo. b) Suponha que em um lote de 12 peças, 4 sejam defeituosas. Duas peças são retiradas aleatoriamente sem reposição. Assim, o espaço amostral é Ω = {DD, D D, DD, D D}, em que D é peça defeituosa e D é peça não defeituosa. Considere os seguintes eventos: A: ambas sejam defeituosas; B: pelo menos uma seja defeituosa; C: ambas sejam perfeitas. 7 / 22
8 Operações com s Em muitos problemas de probabilidade interessam-nos eventos que podem ser expressos em termos de dois ou mais eventos, formando uniões, interseções e complementos. Os espaços amostrais e os eventos, especialmente as relações entre os eventos, costumam ser ilustrados por diagramas de Venn. 8 / 22
9 União de eventos O evento união de A e B equivale à ocorrência de A, ou de B, ou ambos. Contém os elementos do espaço amostral que estão em pelo menos um dos dois conjuntos. Diz-se ocorre A ou B. Figura 1: Diagrama de Venn Notação: A B 9 / 22
10 Intersecção de eventos A intersecção de dois eventos A e B é o evento que consiste de todos os elementos contidos simultaneamente em A e em B. Contém todos os pontos comuns a A e B. Figura 2: Diagrama de Venn Notação: A B 10 / 22
11 Sub-Conjuntos Diz-se: B é sub-conjunto de A ou B implica em A. Figura 3: Diagrama de Venn Notação: B A { B A = A, B A = B. 11 / 22
12 s Disjuntos Dois eventos A e B, dizem-se disjuntos ou mutuamente exclusivos, quando a ocorrência de um deles impossibilita a ocorrência do outro. Os dois eventos não têm elementos em comum. Figura 4: Diagrama de Venn Notação: A B = 12 / 22
13 Complemento É o evento que consiste de todos os elementos do espaço amostral que não estão contidos em A, ou seja, é a negação de A. Figura 5: Diagrama de Venn Notação: A c { A c A = Ω, A c A =. 13 / 22
14 Exemplo 4 Em um lançamento de um dado, considere os seguintes eventos: A: sair uma face par; B: sair uma face maior que 3; C: sair a face 1. Calcule: a) sair uma face par e maior que 3. b) sair uma face par e face 1. c) sair uma face par ou maior que 3. d) sair uma face par ou face 1. e) não sair face par; 14 / 22
15 Definição clássica Definição clássica Definição frequentista Definição clássica O conceito clássico ou a priori surgiu no século XVII a partir dos jogos de azar e define a probabilidade de o evento A ocorrer como sendo: P(A) = número de resultados favoráveis a A número de resultados possíveis = n(a) n(ω) Esse conceito aplica-se somente quando todos os resultados possíveis são igualmente prováveis. 15 / 22
16 Definição clássica Definição frequentista Exemplo 5 No lançamento de um dado honesto, qual é a probabilidade de o resultado ser um número: a) ímpar? b) Menor que 3? c) primo? d) Maior que 6? e) entre 1 e 6? 16 / 22
17 Definição clássica Definição frequentista Mas como podemos calcular as probabilidades a priori nas seguintes situações: Uma pessoa que fuma um pacote de cigarros por dia desenvolver câncer; Ocorrer uma geada no próximo inverno; Sair cara em uma moeda desonesta; As vendas decrescerem se aumentarmos os preços; Um novo método de montagem aumentar a produtividade. É importante notar que a definição clássica exige que os resultados tenham todos a mesma chance. Se os resultados não têm a mesma chance, deve-se apelar para a estimativa pela frequência relativa. 17 / 22
18 Definição clássica Definição frequentista Definição frequentista Suponhamos que realizamos um experimento n vezes ( n grande) e destas o evento A ocorre exatamente n A < n vezes, então a frequência relativa de vezes que ocorreu o evento A, n A /n, é a estimação da probabilidade que ocorra o evento A, ou seja, P(A) = f A = n A n Essa estimação da probabilidade por frequência relativa de um evento A, é próxima da verdadeira probabilidade do evento A, quando n tende ao infinito. 18 / 22
19 Definição clássica Definição frequentista Exemplo 6 a) Considere o lançamento de uma moeda desonesta. Calcular a probabilidade de A = {resultado obtido é cara}. b) Considere o lançamento de uma moeda honesta. Calcular a probabilidade de A = {resultado obtido é coroa}. 19 / 22
20 Exercício 1 Um casal pretende ter filhos. Admitindo probabilidades iguais para ambos os sexos, qual a probabilidade de que venha a ter três filhos do mesmo sexo? Pelo menos duas mulheres? Exercício 2 Suponha que em um lote de 12 peças, 4 sejam defeituosas. Duas peças são retiradas aleatoriamente sem reposição. Calcule a probabilidade de: a) ambas sejam defeituosas; b) ambas sejam perfeitas; c) pelo menos uma seja defeituosa. 20 / 22
21 Exercício 3 Os registros indicam que 34 de de 956 pessoas que recentemente visitaram África Central contraíram malária. Qual a probabilidade de que uma pessoa que recentemente visitou a África Central não tenha contraído malária? 21 / 22
22 Exercício 3 Os registros indicam que 34 de de 956 pessoas que recentemente visitaram África Central contraíram malária. Qual a probabilidade de que uma pessoa que recentemente visitou a África Central não tenha contraído malária? 22 / 22
TEORIA DA PROBABILIDADE
TEORIA DA PROBABILIDADE Lucas Santana da Cunha [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 22 de maio de 2017 Introdução Conceitos probabiĺısticos são necessários
Teoria das Probabilidades
Teoria das Probabilidades Lucas Santana da Cunha [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 09 de maio de 2018 Londrina 1 / 21 Conceitos probabiĺısticos são necessários
Probabilidade Parte 1. Camyla Moreno
Probabilidade Parte 1 Camyla Moreno Probabilidade A teoria das probabilidades é um ramo da Matemática que cria, elabora e pesquisa modelos para estudar experimentos ou fenômenos aleatórios. Principais
Costa, S.C. 1. Universidade Estadual de Londrina Departamento de Estatística. Probabilidades. Silvano Cesar da Costa.
Costa, S.C. 1 Universidade Estadual de Londrina Departamento de Estatística Probabilidades Silvano Cesar da Costa Londrina - Paraná Costa, S.C. 2 Noções sobre a teoria das probabilidades Conceitos probabilísticos
INTRODUÇÃO À PROBABILIDADE
INTRODUÇÃO À PROBABILIDADE Análise e Elaboração de Projetos Apresentação Prof Dr Isnard Martins Conteúdo: Profº Dr Carlos Alberto (Caio) Dantas Profº Dr Luiz Renato G. Fontes Prof Dr Victor Hugo Lachos
T o e r o ia a da P oba ba i b lida d de
Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que
Estatística Empresarial. Fundamentos de Probabilidade
Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação
Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz
3 NOÇÕES DE PROBABILIDADE
3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação
Prof.: Joni Fusinato
Introdução a Teoria da Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso
Probabilidade em espaços discretos. Prof.: Joni Fusinato
Probabilidade em espaços discretos Prof.: Joni Fusinato [email protected] [email protected] Probabilidade em espaços discretos Definições de Probabilidade Experimento Espaço Amostral Evento Probabilidade
Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas. Probabilidades. Cristian Villegas
Probabilidades Cristian Villegas [email protected] Setembro de 2013 Apostila de Estatística (Cristian Villegas) 1 Introdução Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas
2. INTRODUÇÃO À PROBABILIDADE
2. INTRODUÇÃO À ROILIDDE 2014 Conceitos básicos Experimento aleatório ou fenômeno aleatório Situações ou acontecimentos cujos resultados não podem ser previstos com certeza. Um experimento ou fenônemo
Introdução à Estatística
Introdução à Estatística Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução a Probabilidade Existem dois tipos de experimentos:
2 Conceitos Básicos de Probabilidade
CE003 1 1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento de técnicas estatísticas
Lucas Santana da Cunha de junho de 2017
VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados
Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina
Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 21 de maio de 2018 Londrina 1 / 14 Variável aleatória Introdução Definição Uma função que associa um número real
Regras de probabilidades
Regras de probabilidades Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 16 de maio de 2018 Londrina 1 / 17 Propriedades As probabilidades sempre se referem a
2. INTRODUÇÃO À PROBABILIDADE
2. INTRODUÇÃO À PROBABILIDADE 2019 Conceitos básicos Experimento aleatório ou fenômeno aleatório Situações ou acontecimentos cujos resultados não podem ser previstos com certeza. Um experimento ou fenônemo
Introdução à Probabilidade
A Teoria de Probabilidade é responsável pelo estudo de fenômenos que envolvem a incerteza (é impossível prever antecipadamente o resultado) e teve origem na teoria de jogos, servindo como ferramenta para
Teoria das Probabilidades
Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento
REGRAS DE PROBABILIDADE
REGRAS DE PROBABILIDADE Lucas Santana da Cunha [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 24 de maio de 2017 Propriedades As probabilidades sempre se referem a
Probabilidades- Teoria Elementar
Probabilidades- Teoria Elementar Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados
Disciplina: Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar
Disciplina: 221171 Probabilidade Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Revisão de conceitos Você sabe contar? (Análise Combinatória) 2 Análise combinatória É um dos tópicos que
Matemática & Raciocínio Lógico
Matemática & Raciocínio Lógico para concursos Prof. Me. Jamur Silveira www.professorjamur.com.br facebook: Professor Jamur PROBABILIDADE No estudo das probabilidades estamos interessados em estudar o experimento
Teoria das Probabilidades
Teoria das Prof. Eduardo Bezerra (CEFET/RJ) 23 de fevereiro de 2018 Eduardo Bezerra (CEFET/RJ) Teoria das 2018.1 1 / 54 Roteiro Experimento aleatório, espaço amostral, evento 1 Experimento aleatório, espaço
14/03/2014. Tratamento de Incertezas TIC Aula 1. Conteúdo Espaços Amostrais e Probabilidade. Revisão de conjuntos. Modelos Probabilísticos
Tratamento de Incertezas TIC-00.176 Aula 1 Conteúdo Espaços Amostrais e Probabilidade Professor Leandro Augusto Frata Fernandes [email protected] Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2014.1/tic-00.176
REGRAS PARA CÁLCULO DE PROBABILIDADES
REGRAS PARA CÁLCULO DE PROBABILIDADES Prof. Dr. Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ 15 de abril de 2019 Londrina 1 / 17 As probabilidades sempre se referem a ocorrência de eventos
Estatística. Aula : Probabilidade. Prof. Ademar
Estatística Aula : Probabilidade Prof. Ademar TEORIA DAS PROBABILIDADES A teoria das probabilidades busca estimar as chances de ocorrer um determinado acontecimento. É um ramo da matemática que cria, elabora
Teoria da Probabilidade
Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos
2. INTRODUÇÃO À PROBABILIDADE
2. INTRODUÇÃO À PROILIDDE 2011 Conceitos básicos Experimento aleatório ou fenômeno aleatório Situações ou acontecimentos cujos resultados não podem ser previstos com certeza. Um experimento ou fenônemo
INTRODUÇÃO À PROBABILIDADE
INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo
UNIVERSIDADE FEDERAL DA PARAÍBA
UNIVERSIDADE FEDERAL DA PARAÍBA Probabilidade Departamento de Estatística UFPB Luiz Medeiros Introdução Encontramos na natureza dois tipos de fenômenos Determinísticos: Os resultados são sempre os mesmos
Definição: É uma coleção bem definida de
EST029 Cálculo de Probabilidade I Cap. 1: Introdução à Probabilidade Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Conjuntos: Definição e notação Definição: É uma coleção bem definida de objetos,
Modelos de Probabilidade e Inferência Estatística
Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 1 03/14 1 / 49 Conceitos Fundamentais Prof. Tarciana Liberal
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 1 04/14 1 / 35
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 1 04/14 1 / 35 Prof. Tarciana Liberal (UFPB) Aula 1 04/14 2 / 35 Prof. Tarciana Liberal (UFPB)
1 Definição Clássica de Probabilidade
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica
Estatística (MAD231) Turma: IGA. Período: 2017/2
Estatística (MAD231) Turma: IGA Período: 2017/2 Aula #01 de Probabilidade: 27/09/2017 1 Probabilidade: incerteza? como medir e gerenciar a Introdução Os jornais informaram que há uma chance de 60% de chover
Probabilidade e Estatística Probabilidade Condicional
Introdução Probabilidade e Estatística Probabilidade Condicional Em algumas situações, a probabilidade de ocorrência de um certo evento pode ser afetada se tivermos alguma informação sobre a ocorrência
Teoria das Probabilidades
08/06/07 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto
Aula 07. Modelos Probabilísticos. Stela Adami Vayego - DEST/UFPR 1
ula 07 Modelos Probabilísticos Stela dami Vayego - DEST/UFPR 1 Probabilidade Universo do estudo (população) Hipóteses, conjeturas,... Modelos Probabilísticos Distribuições de Frequências Resultados ou
Teoria das Probabilidades
Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 08:8 ESTATÍSTICA APLICADA I - Teoria das
Probabilidade - 7/7/2018. Prof. Walter Tadeu
Probabilidade - 7/7/018 Prof. Walter Tadeu www.professorwaltertadeu.mat.br Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado.
PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache
PROBABILIDADE Aula 2 Probabilidade Básica Fernando Arbache Probabilidade Medida da incerteza associada aos resultados do experimento aleatório Deve fornecer a informação de quão verossímil é a ocorrência
Aula - Introdução a Teoria da Probabilidade
Introdução a Teoria da Probabilidade Prof. Magnos Martinello Aula - Introdução a Teoria da Probabilidade Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI 5 de dezembro de
Aula 4. NOÇÕES DE PROBABILIDADE
Aula 4. NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 013???? Quem será o próximo prefeito
Probabilidades. O cálculo de probabilidades teve a sua origem no estudo dos jogos de azar, principalmente nos jogos de dados.
Probabilidades O cálculo de probabilidades teve a sua origem no estudo dos jogos de azar, principalmente nos jogos de dados. Quando lançamos um dado, os resultados possíveis são sempre um dos elementos
Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)
Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative
PROBABILIDADE. ENEM 2016 Prof. Marcela Naves
PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.
Probabilidades. Wagner H. Bonat Elias T. Krainski Fernando P. Mayer
Probabilidades Wagner H. Bonat Elias T. Krainski Fernando P. Mayer Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 06/03/2018 WB, EK, FM ( LEG/DEST/UFPR
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? 2 ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 2011???? Quem será o próximo prefeito
Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.
Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador
Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Probabilidade Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução Experimento aleatório Definição Qualquer experimento cujo resultado
Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Probabilidade Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Experimento aleatório Definição. Qualquer experimento cujo resultado não pode
Estatística. Disciplina de Estatística 2011/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa
Estatística Disciplina de Estatística 20/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa Estatística Inferencial Estudos das Probabilidades (noção básica) Amostragens e Distribuição
DISTRIBUIÇÕES BERNOULLI E BINOMIAL
DISTRIBUIÇÕES BERNOULLI E BINOMIAL Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 26 de junho de 2017 Distribuição Bernoulli Nos experimentos
Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB
Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais Prof. Hemílio Fernandes Depto. de Estatística - UFPB Um pouco de Probabilidade Experimento Aleatório: procedimento que, ao ser repetido
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE Experimento Aleatório Experimento Aleatório: procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes Exemplos:. Resultado no lançamento de
1 Probabilidade: Axiomas e Propriedades
1 Probabilidade: Axiomas e Propriedades 1.1 Definição Frequentista Considere um experimento aleatório que consiste no lançamento de um dado honesto. O espaço amostral desse experimento é Ω = {1, 2, 3,
PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES
PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES 0 1 INTRODUÇÃO A teoria das probabilidades é utilizada para determinar as chances de um experimento aleatório acontecer. 1.1
Distribuições Bernoulli e Binomial
Distribuições Bernoulli e Binomial Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 04 de junho de 2018 Londrina 1 / 12 Distribuição Bernoulli Nos experimentos
PROBABILIDADES PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO
PROBABILIDADES Probabilidade é um conceito filosófico e matemático que permite a quantificação da incerteza, permitindo que ela seja aferida, analisada e usada para a realização de previsões ou para a
PROBABILIDADE. Luciana Santos da Silva Martino. PROFMAT - Colégio Pedro II. 01 de julho de 2017
Sumário PROBABILIDADE Luciana Santos da Silva Martino PROFMAT - Colégio Pedro II 01 de julho de 2017 Sumário 1 Conceitos Básicos 2 Probabildade Condicional 3 Espaço Amostral Infinito Outline 1 Conceitos
UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade
UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística Probabilidade Disciplina: Cálculo das Probabilidades e Estatística I Prof. Tarciana Liberal Existem muitas situações que envolvem incertezas:
ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015
ELEMENTOS DE PROBABILIDADE Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Def.: Um experimento é dito aleatório quando o seu resultado não for previsível antes de sua realização, ou seja,
Noções sobre probabilidade
Capítulo 3 Noções sobre probabilidade Um casal tem dois filhos. Qual é a probabilidade de: o primogênito ser homem? os dois filhos serem homens? pelo menos um dos filhos ser homem? A teoria das probabilidades
AULA 4 -Probabilidade Condicional e Regra de Bayes
AULA 4 - e Regra de Bayes Susan Schommer Introdução à Estatística Econômica - IE/UFRJ : exemplos A soma dos resultados de dois lançamentos de um dado é 9. Qual a probabilidade do primeiro resultado ter
AULA 08 Probabilidade
Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral
CE Estatística I
CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,
MA12 - Unidade 17 Probabilidade
MA12 - Unidade 17 Probabilidade Paulo Cezar Pinto Carvalho PROFMAT - SBM 17 de Maio de 2013 Teoria da Probabilidade Teoria da Probabilidade: modelo matemático para incerteza. Objeto de estudo: experimentos
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE ALEATORIEDADE Menino ou Menina me? CARA OU COROA? 3 Qual será o rendimento da Caderneta de Poupança no final deste ano? E qual será a taxa de inflação acumulada em 014? Quem será
Prof.Letícia Garcia Polac. 26 de setembro de 2017
Bioestatística Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 26 de setembro de 2017 Sumário 1 2 Probabilidade Condicional e Independência Introdução Neste capítulo serão abordados
Probabilidades. Carla Henriques e Nuno Bastos. Eng. do Ambiente. Departamento de Matemática Escola Superior de Tecnologia de Viseu
Probabilidades Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Eng. do Ambiente Introdução Ao comprar acções, um investidor sabe que o ganho que vai obter
Lista de exercícios de Matemática Eventos, espaço amostral e definição de probabilidade. Probabilidade condicional. Exercícios gerais.
p: João Alvaro w: www.matemaniacos.com.br e: [email protected]. No lançamento de dois dados, D e D 2, tem-se o seguinte espaço amostral, dado em forma de tabela de dupla entrada. Lista de exercícios
UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade. Cálculo das Probabilidades e Estatística I Luiz Medeiros
UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística Probabilidade Cálculo das Probabilidades e Estatística I Luiz Medeiros http://www.de.ufpb.br/~luiz/ Existem muitas situações que envolvem incertezas:
Universidade Federal de Lavras
Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 13 a Lista de Exercícios Práticos Conceitos Básicos de Probabilidade 1) Considere um experimento que consiste em
NOTAS DA AULA REVISÃO SOBRE FUNDAMENTOS DE PROBABILIDADE. Prof.: Idemauro Antonio Rodrigues de Lara
1 NOTAS DA AULA REVISÃO SOBRE FUNDAMENTOS DE PROBABILIDADE Prof.: Idemauro Antonio Rodrigues de Lara 2 Experimentos aleatórios Definição 1. Experimentos aleatórios são experimentos que quando executados
3. Probabilidade P(A) =
7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de
PROBABILIDADE CONDICIONAL E TEOREMA DE BAYES
PROBABILIDADE CONDICIONAL E TEOREMA DE BAYES Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 08 de junho de 2016 Probabilidade Condicional
Disciplina: Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar
Disciplina: 221171 Probabilidade Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Revisão de conceitos Você sabe contar? 2 Análise combinatória É um dos tópicos que a matemática é dividida,
Notas de Aula de Probabilidade A
I- CONCEITOS INICIAIS. 1.1- INTRODUÇÃO. PROBABILIDADE POPULAÇÃO AMOSTRA ESTATÍSTICA 1.2- CONJUNTOS. 1.2.1- DEFINIÇÃO. Conjunto é uma coleção de objetos chamados de elementos do conjunto. Em geral denota-se
Sumário. 2 Índice Remissivo 12
i Sumário 1 Definições Básicas 1 1.1 Fundamentos de Probabilidade............................. 1 1.2 Noções de Probabilidade................................ 3 1.3 Espaços Amostrais Finitos...............................
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos
