Espaço Amostral ( ): conjunto de todos os
|
|
|
- Bernadete Zagalo Marreiro
- 10 Há anos
- Visualizações:
Transcrição
1 PROBABILIDADE
2 Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado. = {1,, 3, 4,, 6}. Doador de sangue (tipo sangüíneo). = {A, B, AB, O} 3. Hábito de fumar. = {Fumante, Não fumante} 4. Tempo de duração de uma lâmpada. = {t: t 0}
3 Eventos: ocorrências do experimento aleatório / subconjuntos do espaço amostral Notação: A, B, C,... (conjunto vazio): evento impossível : evento certo Exemplo: Lançamento de um dado. Espaço amostral: = {1,, 3, 4,, 6} Alguns eventos: A: sair face par A = {, 4, 6} B: sair face maior que 3 B = {4,, 6} C: sair face 1 C = {1} 3
4 Composição de eventos Sejam A e B dois eventos de um espaço amostral. A B: união dos eventos A e B. Representa a ocorrência de pelo menos um dos eventos, A ou B. A B: interseção dos eventos A e B. Representa a ocorrência simultânea dos eventos A e B. 4
5 A e B são disjuntos ou mutuamente exclusivos quando não têm elementos em comum, isto é, A B = A e B são complementares se sua interseção é vazia e sua união é o espaço amostral, isto é, A B = e A B = O evento complementar de A, representado por A c, é o evento em que A não ocorre.
6 Probabilidade Medida da incerteza associada aos eventos / resultados do experimento aleatório 6
7 No caso discreto, todo experimento aleatório tem seu modelo probabilístico especificado quando estabelecemos: O espaço amostral = {ω 1, ω,... } A probabilidade P(ω) para cada ponto amostral de tal forma que: 0 P( ) 1 e i i 1 P( ) 1. Neste caso, dado um evento A do experimento aleatório (lembre que A ), temos i P( A) A j P( ) j 7
8 Observação: Na situação de equiprobabilidade, isto é, quando as probabilidades de todos os resultados são iguais, temos: P( A) nº. de elementos de A nº. de elementos de Ω Atenção: Sem equiprobabilidade, a expressão acima NÃO é válida. 8
9 Exemplo: A tabela a seguir apresenta a distribuição de alunos diplomados em 00, segundo nível de ensino e tipo de instituição, no município de São Paulo. Nível Pública Instituição Privada Total Fundamental Médio Superior Total Fonte: Min. Educação/INEP-Inst.Nacion. Estudos e Pesq. Educacionais; Fundação SEADE Um aluno diplomado em 00 do município de São Paulo é selecionado ao acaso. 9
10 : conjunto de alunos diplomados em 00 no município de São Paulo. Definimos os eventos M: aluno se formou no ensino médio; F: aluno se formou no ensino fundamental; S: aluno se formou no ensino superior; G: aluno se formou em instituição pública. Temos ir para a tabela P(M) ,38 P(F) ,49 P(S) ,19 P(G) ,694 10
11 Qual é a probabilidade do aluno escolhido ter se formado no ensino médio e numa instituição pública? M G: aluno formado no ensino médio e em inst.pública P(M G) = ,306 Qual é a probabilidade do aluno ter se formado no ensino médio ou numa instituição pública? ir para a tabela M G: aluno formado no ensino médio ou em inst. pública P(M G) = ( ) / = 0,
12 Regra da adição de probabilidades Sejam A e B eventos de. Então, Casos particulares: P(A B) = P(A) + P(B) P(A B) Se A e B forem eventos disjuntos, então P(A B) = P(A) + P(B). Para qualquer evento A de, P(A) = 1 - P(A c ). 13
13 PROBABILIDADE CONDICIONAL E INDEPENDÊNCIA Probabilidade condicional: Dados dois eventos A e B, a probabilidade condicional de A dado que ocorreu B é denotada por P(A B) e definida por P( A B) P( A B), P( B) 0 P( B) Da definição de probabilidade condicional, obtemos a regra do produto de probabilidades P ( A B) P( B) P( A B).. e P ( A B) P( A) P( B A). 14
14 Qual é a probabilidade do aluno escolhido ser formado no ensino médio sabendo-se que é de instituição pública? Olhando diretamente a tabela, temos P(M G) = ,441 Pela definição, P(M G) P(M G) P(G) ,441 ir para a tabela 1
15 Exemplo: Em uma urna, há bolas: brancas e 3 vermelhas. Duas bolas são sorteadas sucessivamente, sem reposição. A: ª. bola sorteada é branca C: 1ª. bola sorteada é branca P(A) =??? Para representar todas as possibilidades, utilizamos, um diagrama conhecido como diagrama de árvores ou árvore de probabilidades. 16
16 17 3 B V 4 4 V B V B 1 Total V V VB BV BB Probabilidades Resultados e ) ( A P Temos. C A P 4 1 ) (
17 Considere agora que as extrações são feitas com reposição, ou seja, a 1 a. bola sorteada é reposta na urna antes da a. extração. Nesta situação, temos B Resultados BB Probabilidade 4 B 3 V 3 V B BV VB V V Total V 18
18 Neste caso, P(A) = P(branca na ª.) = ou seja, o resultado na a. extração independe do que ocorre na 1 a. extração. 4 P(A C) = P( branca na ª. branca na 1ª.) = P( A) 6 P(A C c ) = P(branca na ª. vermelha na 1ª.) = e P( A) 19
19 Independência de eventos: Dois eventos A e B são independentes se a informação da ocorrência (ou não) de B não altera a probabilidade de ocorrência de A, isto é, P(A B) = P(A), P(B) > 0. Temos a seguinte forma equivalente: P(A B) = P(A) P(B). 0
20 Exemplo: Considere ainda a urna dos dois exemplos anteriores, mas vamos fazer três extrações sem reposição. Indiquemos por V i ou B i a obtenção de bola vermelha ou branca na i-ésima extração, respectivamente, i = 1,, 3. 1
21 Exemplo: A teoria da confiabilidade estuda sistemas e seus componentes, por exemplo, sistemas mecânicos e eletrônicos (um automóvel ou um computador) e sistemas biológicos, como o corpo humano. O objetivo da teoria é estudar as relações entre o funcionamento dos componentes e do sistema.
22 O conceito de independência para três eventos: dizemos que os eventos A, B e C são independentes se, e somente se, Obs: Se apenas as três primeiras relações de (.11) estiverem satisfeitas, dizemos que os eventos A, B e C são mutuamente independentes. É possível que três eventos sejam mutuamente independentes, mas não sejam completamente independentes. 3
23 O Teorema de Bayes A versão mais simples desse teorema é dada pela fórmula (.1): 4
24 O Teorema de Bayes Exemplo: Temos cinco urnas, cada uma com seis bolas. Duas dessas urnas (tipo C1) têm 3 bolas brancas, duas outras (tipo C) têm bolas brancas, e a última urna (tipo C3) tem 6 bolas brancas. Escolhemos uma urna ao acaso e dela retiramos uma bola. Qual a probabilidade de a urna escolhida ser do tipo C3, sabendo-se que a bola sorteada é branca?
25 Exemplo: Para selecionar seus funcionários, uma empresa oferece aos candidatos um curso de treinamento durante uma semana. No final do curso, eles são submetidos a uma prova e % são classificados como bons (B), 0% como médios (M) e os restantes % como fracos (F). Para facilitar a seleção, a empresa pretende substituir o treinamento por um teste contendo questões referentes a conhecimentos gerais e específicos. Para isso, gostaria de conhecer qual a probabilidade de um indivíduo aprovado no teste ser considerado fraco, caso fizesse o curso. Assim, neste ano, antes do início do curso, os candidatos foram submetidos ao teste e receberam o conceito aprovado (A) ou reprovado (R). No final do curso, obtiveram-se as seguintes probabilidades condicionais: 6
26 7
27 Exemplo: A administração de um fundo de investimentos em ações pretende divulgar, após o encerramento do pregão, a probabilidade de queda de um índice da bolsa no dia seguinte, baseando-se nas informações disponíveis até aquele momento. Suponha que a revisão inicial seja de 0,10. Após encerrado o pregão, nova informação sugere uma alta do dólar frente ao real. A experiência passada indica que, quando houve queda da bolsa no dia seguinte, 0% das vezes foram precedidas por esse tipo de notícia, enquanto, nos dias em que a bolsa esteve em alta, apenas em % das vezes houve esse tipo de notícia no dia anterior. E : o evento que indica queda da bolsa, probabilidade a priori é P(E) = 0,10, enquanto a probabilidade de alta é P(E c ) = 0,90. Se B indicar alta do dólar, então as verossimilhanças são dadas por 8
28 Exemplo: Suponha, agora, que horas depois surja nova informação relevante: o Banco Central irá reduzir a taxa de juros vigente a partir do dia seguinte. Denotando-se, agora, por B1 o evento alta do dólar e por B o evento queda na taxa de juros, o interesse será saber como essa nova informação, B, afetará a probabilidade calculada, P(E B1). Segue-se que essa é agora a probabilidade a priori para E com respeito a B. Novamente, informações passadas mostram que, dado que tenha havido alta do dólar e queda da bolsa, 10% das vezes foram precedidas por notícias de queda de juros, enquanto, dado que tenha havido alta do dólar e alta da bolsa, 60% das vezes foram precedidas de queda dos juros. Então, as verossimilhanças agora serão dadas por 9
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 011???? Quem será o próximo prefeito de
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE Fenômeno Aleatório: situação ou acontecimento cujos resultados não podem ser determinados com certeza. Exemplos: 1. Resultado do lançamento de um dado;. Hábito de fumar de um estudante
Noções de Probabilidade
Noções de Probabilidade Bacharelado em Economia - FEA - Noturno 1 o Semestre 2015 Gilberto A. Paula G. A. Paula - MAE0219 (IME-USP) Noções de Probabilidade 1 o Semestre 2015 1 / 59 Objetivos da Aula Sumário
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE ALEATORIEDADE Menino ou Menina me? CARA OU COROA? 3 Qual será o rendimento da Caderneta de Poupança no final deste ano? E qual será a taxa de inflação acumulada em 014? Quem será
Aula 4. NOÇÕES DE PROBABILIDADE
Aula 4. NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 013???? Quem será o próximo prefeito
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? 2 ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 2011???? Quem será o próximo prefeito
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE Experimento Aleatório Experimento Aleatório: procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes Exemplos:. Resultado no lançamento de
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução a Probabilidade Existem dois tipos
PROBABILIDADE PROFESSOR: ANDRÉ LUIS
PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado
Probabilidade - 7/7/2018. Prof. Walter Tadeu
Probabilidade - 7/7/018 Prof. Walter Tadeu www.professorwaltertadeu.mat.br Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado.
Módulo VIII. Probabilidade: Espaço Amostral e Evento
1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.
Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes
Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Para ampliar sua compreensão sobre probabilidade total e Teorema de Bayes, estude este conjunto de exercícios resolvidos sobre o tema.
Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica
Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma
C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7
RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.
MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade
MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos
Eventos independentes
Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos
Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ
Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento
CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos
INTRODUÇÃO À PROAILIDADE Exemplos: O problema da coincidência de datas de aniversário O problema da mega sena A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade
PROBABILIDADE Prof. Adriano Mendonça Souza, Dr.
PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - O intelecto faz pouco na estrada que leva à descoberta, acontece um salto na consciência, chameo de
Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística
Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1
1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1. Origem histórica É possível quantificar o acaso? Para iniciar,
MÓDULO 6 INTRODUÇÃO À PROBABILIDADE
MÓDULO 6 INTRODUÇÃO À PROBBILIDDE Quando estudamos algum fenômeno através do método estatístico, na maior parte das vezes é preciso estabelecer uma distinção entre o modelo matemático que construímos para
7- Probabilidade da união de dois eventos
. 7- Probabilidade da união de dois eventos Sejam A e B eventos de um mesmo espaço amostral Ω. Vamos encontrar uma expressão para a probabilidade de ocorrer o evento A ou o evento B, isto é, a probabilidade
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.) PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de
Regra do Evento Raro p/ Inferência Estatística:
Probabilidade 3-1 Aspectos Gerais 3-2 Fundamentos 3-3 Regra da Adição 3-4 Regra da Multiplicação: 3-5 Probabilidades por Meio de Simulações 3-6 Contagem 1 3-1 Aspectos Gerais Objetivos firmar um conhecimento
Experimentos Aleatórios e Espaços Amostrais
Experimentos Aleatórios e Espaços Amostrais Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Primeiro Semestre, 2012 C.T.Cristino (DEINFO-UFRPE) Experimentos Aleatórios
A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.
Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,
Introdução à Probabilidade e Estatística
Professor Cristian F. Coletti Introdução à Probabilidade e Estatística (1 Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos. a Uma moeda é lançada duas vezes
Probabilidade Condicional
PROBABILIDADES Probabilidade Condicional BERTOLO Exemplo Introdutório Vamos introduzir a noção de probabilidade condicional através de um exemplo. Consideremos 250 estudantes que cursam o 4º ano de Ciências
CAPÍTULO I - ELEMENTOS DE PROBABILIDADE
CAPÍTULO I - ELEMENTOS DE PROBABILIDADE 1.1 INTRODUÇÃO Em geral, um experimento ao ser observado e repetido sob um mesmo conjunto especificado de condições, conduz invariavelmente ao mesmo resultado. São
Lógica e Raciocínio. Decisão sob Risco Probabilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/
Lógica e Raciocínio Universidade da Madeira http://dme.uma.pt/edu/ler/ Decisão sob Risco Probabilidade 1 Probabilidade Em decisões sob ignorância a probabilidade dos diferentes resultados e consequências
Probabilidade. Multiplicação e Teorema de Bayes
robabilidade Multiplicação e Teorema de ayes Regra da Multiplicação Num teste, são aplicadas 2 questões de múltipla escolha. Na primeira questão, as respostas possíveis são V ou F. Na segunda, a, b, c,
I. Experimentos Aleatórios
A teoria do azar consiste em reduzir todos os acontecimentos do mesmo gênero a um certo número de casos igualmente possíveis, ou seja, tais que estejamos igualmente inseguros sobre sua existência, e em
Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira
- Conceitos Básicos Castro Soares de Oliveira é o ramo da matemática que estuda fenômenos aleatórios. está associada a estatística, porque sua teoria constitui a base de estatística inferencial. Conceito
AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos?
Questão 1. Num porta-cds, cabem 10 CDs colocados um sobre o outro, formando uma pilha vertical. Tenho 3 CDs de MPB, 5 de rock e 2 de música clássica. (a) De quantos modos diferentes posso empilhá-los de
Avaliação e Desempenho Aula 4
Avaliação e Desempenho Aula 4 Aulas passadas Motivação para avaliação e desempenho Aula de hoje Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Experimentos Aleatórios
RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1
RESUMO TEÓRICO Experimentos aleatórios: são aqueles que, mesmo repetidos várias vezes sob condições semelhantes, apresentam resultados imprevisíveis. Exemplo: Lançar um dado e verificar qual é a face voltada
Probabilidade - aula I
e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar
O que é a estatística?
Elementos de Estatística Prof. Dr. Clécio da Silva Ferreira Departamento de Estatística - UFJF O que é a estatística? Para muitos, a estatística não passa de conjuntos de tabelas de dados numéricos. Os
Bom serviço dentro da garantia Serviço deficiente dentro da garantia Vendedores de determinada marca de pneus 64 16
Lista de Probabilidade Básica com gabarito 1. Considere a experiência que consiste em pesquisar famílias com três crianças, em relação ao sexo das mesmas, segundo a ordem de nascimento. (a)determine o
Este material traz a teoria necessária à resolução das questões propostas.
Inclui Teoria e Questões Inteiramente Resolvidas dos assuntos: Contagem: princípio aditivo e multiplicativo. Arranjo. Permutação. Combinação simples e com repetição. Lógica sentencial, de primeira ordem
Cap. 4 - Probabilidade
statística para Cursos de ngenharia e Informática edro lberto Barbetta / Marcelo Menezes Reis / ntonio Cezar Bornia São aulo: tlas, 2004 Cap. 4 - robabilidade OIO: undação de Ciência e Tecnologia de Santa
Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá
Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá 2006/2 Unidade 2 - PROBABILIDADE Conceitos básicos * Probabilidade:
UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ ALI UNITAU APOSTILA PROAILIDADES ibliografia: Curso de Matemática Volume Único Autores: ianchini&paccola Ed. Moderna Matemática Fundamental - Volume Único Autores:
1 Probabilidade Condicional - continuação
1 Probabilidade Condicional - continuação Exemplo: Sr. e Sra. Ferreira mudaram-se para Campinas e sabe-se que têm dois filhos sendo pelo menos um deles menino. Qual a probabilidade condicional que ambos
Professor Mauricio Lutz PROBABILIDADE
PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos
O conceito de probabilidade
A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de
1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.
1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3
Calculando probabilidades
A UA UL LA Calculando probabilidades Introdução evento E é: P(E) = Você já aprendeu que a probabilidade de um nº deresultadosfavoráveis nº total de resultados possíveis Nesta aula você aprenderá a calcular
Bioestatística Aula 3
Aula 3 Castro Soares de Oliveira Probabilidade Probabilidade é o ramo da matemática que estuda fenômenos aleatórios. Probabilidade é uma medida que quantifica a sua incerteza frente a um possível acontecimento
Espaços Amostrais e Eventos. Probabilidade 2.1. Capítulo 2. Espaço Amostral. Espaço Amostral 02/04/2012. Ex. Jogue um dado
Capítulo 2 Probabilidade 2.1 Espaços Amostrais e Eventos Espaço Amostral Espaço Amostral O espaço amostral de um experimento, denotado S, é o conjunto de todos os possíveis resultados de um experimento.
Primeira Lista de Exercícios de Estatística
Primeira Lista de Exercícios de Estatística Professor Marcelo Fernandes Monitor: Márcio Salvato 1. Suponha que o universo seja formado pelos naturais de 1 a 10. Sejam A = {2, 3, 4}, B = {3, 4, 5}, C =
CAPÍTULO 04 NOÇÕES DE PROBABILIDADE
CAPÍTULO 0 NOÇÕES DE PROBABILIDADE. ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. No lançamento de uma moeda perfeita (não viciada) o espaço amostral é S =
Probabilidade - aula III
27 de Março de 2014 Regra da Probabilidade Total Objetivos Ao final deste capítulo você deve ser capaz de: Usar a regra da multiplicação para calcular probabilidade de eventos Usar a Regra da Probabilidade
Crédito Estudantil Ibmec
Crédito Estudantil Ibmec Queremos receber bons estudantes e torná-los excelentes alunos. Olhando para o futuro, também queremos que eles sejam os melhores profissionais do mercado. Sabemos que ter uma
Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade
Estatística e Probabilidade Aula 4 Cap 03 Probabilidade Estatística e Probabilidade Método Estatístico Estatística Descritiva Estatística Inferencial Nesta aula... aprenderemos como usar informações para
Um carro do modelo B foi comprado nessa concessionária. Dado que esse carro é de cor prata, qual a probabilidade que seu motor seja 1.0?
PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - ABRIL DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÃO 0) - (UEMS) Uma
CAIXA ECONOMICA FEDERAL
JUROS SIMPLES Juros Simples comercial é uma modalidade de juro calculado em relação ao capital inicial, neste modelo de capitalização, os juros de todos os períodos serão sempre iguais, pois eles serão
Política de Bolsas e Financiamentos
Política de Bolsas e Financiamentos Queremos receber bons estudantes e torná-los excelentes alunos. Olhando para o futuro, também queremos que eles sejam os melhores profissionais do mercado. Sabemos que
Probabilidade. Distribuição Binomial
Probabilidade Distribuição Binomial Distribuição Binomial (Experimentos de Bernoulli) Considere as seguintes experimentos/situações práticas: Conformidade de itens saindo da linha de produção Tiros na
AULA 6 LÓGICA DOS CONJUNTOS
Disciplina: Matemática Computacional Crédito do material: profa. Diana de Barros Teles Prof. Fernando Zaidan AULA 6 LÓGICA DOS CONJUNTOS Intuitivamente, conjunto é a coleção de objetos, que em geral, tem
Francisco Ramos. 100 Problemas Resolvidos de Matemática
Francisco Ramos 100 Problemas Resolvidos de Matemática SUMÁRIO Questões de vestibulares... 1 Matrizes e Determinantes... 25 Geometria Plana e Espacial... 39 Aritmética... 61 QUESTÕES DE VESTIBULARES
Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft
Universidade Federal do ABC Sinais Aleatórios Prof. Marcio Eisencraft São Paulo 2011 Capítulo 1 Probabilidades Neste curso, trata-se dos fenômenos que não podem ser representados de forma determinística
Princípio da contagem e Probabilidade: conceito
Princípio da contagem e Probabilidade: conceito característica do que é provável perspectiva favorável de que algo venha a ocorrer; possibilidade, chance. Ex.: há pouca possibilidade de chuva grau de segurança
3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes
3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes 1) Quatro moedas são lançadas e observa-se a seqüência de caras e coroas
UNIVERSIDADE DO ALGARVE
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA C.E.T. EM TOPOGRAFIA E CADASTRO REGIME DIURNO - 2º SEMESTRE - 1º ANO - 2007 / 2008 DISCIPLINA DE NOÇÕES DE PROBABILIDADES E ESTATÍSTICA Ficha nº2 -
INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE
INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.
Aula 1: Introdução à Probabilidade
Aula 1: Introdução à Probabilidade Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 07 de Março de 2012 Experimento Aleatório Um experimento é qualquer processo
CURSO ON-LINE PROFESSOR: VÍTOR MENEZES. Comentários sobre as provas de estatística e financeira ICMS RJ
Comentários sobre as provas de estatística e financeira ICMS RJ Caríssimos, Acabei de voltar de uma longa auditoria em que visitamos inúmeros assentamentos federais do INCRA no interior do estado. Ou seja:
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA 1 o Semestre Ficha de Exercícios - Teoria das Probabilidades 2009/2010
1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo.
1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo. A B C Homens 42 36 26 Mulheres 28 24 32 Escolhendo-se uma aluna desse curso, a probabilidade de ela ser da turma A é:
Reflexões sobre Probabilidade, Estatística e Modelamento Matemático
Reflexões sobre Probabilidade, Estatística e Modelamento Matemático Por: Armando Z. Milioni Instituto Tecnológico de Aeronáutica MPEP - BSB Agosto 2013 1 Resumo do que fizemos Um Jogador lançou 30 dados
Distribuições: Binomial, Poisson e Normal. Distribuição Binomial
Distribuições: Binomial, Poisson e Normal Distribuição Binomial Monitor Adan Marcel e Prof. Jomar 1. Uma remessa de 800 estabilizadores de tensão é recebida pelo controle de qualidade de uma empresa. São
Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO
PROBBILIDDE Introdução teoria da probabilidade é o ramo da matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos aleatórios ou não determinísticos.
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 2 Grupo I
ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A TESTE Nº Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,
EXERCÍCIOS BINOMIAL. X 0 1 2 3 4 P(X=x) 0.00390625 0.046875 0.2109375 0.421875 0.3164063
EXERCÍCIOS BINOMIAL Prof. Jomar 1. Num determinado processo de fabricação, 10% das peças são consideradas defeituosas. As peças são acondicionadas em caixas com 5 unidades cada uma. Então: a) Qual a probabilidade
Contagem I. Figura 1: Abrindo uma Porta.
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?
Lista 5 - Introdução à Probabilidade e Estatística
UNIVERSIDADE FEDERAL DO ABC Lista 5 - Introdução à Probabilidade e Estatística Variáveis Aleatórias 1 Duas bolas são escolhidas aleatoriamente de uma urna que contém 8 bolas brancas, 4 pretas e 2 laranjas.
PROVA DO BANCO DO BRASIL - 2010 - MATEMÁTICA E RACIOCÍNIO LÓGICO RESOLVIDA E COMENTADA Professor Joselias [email protected].
Professor Joselias Abril de2010 MATEMÁTICA 11- Um investidor aplicou certa quantia em um fundo de ações. Nesse fundo, das ações eram da empresa A, eram da empresa B e as restantes, da empresa C. Em um
1 cartão de crédito mais de 1 cartão de crédito Renda até 10 S.M. 250 80 20 10 a 20 S.M. 100 200 40 20 a 30 S.M. 50 40 60 mais de 30 S.M.
([HUFtFLRVÃÃ&DStWXORÃÃ Ã Tomou-se uma amostra de 000 pessoas num shopping center com o objetivo de verificar a relação entre o número de cartões de crédito e a renda familiar (em salários mínimos). Os
LISTA DE EXEMPLOS - PROBABILIDADE
LISTA DE EXEMPLOS - PROBABILIDADE EXEMPLO 1 CONVERTENDO UM ARREMESSO LIVRE Ache a probabilidade de que o jogador de basquete da NBA, Reggie Miller, converta um arremesso livre depois de sofrer uma falta.
Política de Bolsas e Financiamentos
Política de Bolsas e Financiamentos Queremos receber bons estudantes e torná-los excelentes alunos. Olhando para o futuro, também queremos que eles sejam os melhores profissionais do mercado. Sabemos que
Aula 11 Esperança e variância de variáveis aleatórias discretas
Aula 11 Esperança e variância de variáveis aleatórias discretas Nesta aula você estudará os conceitos de média e variância de variáveis aleatórias discretas, que são, respectivamente, medidas de posição
ESTATÍSTICA APLICADA À ADMINISTRAÇÃO
ESTATÍSTICA APLICADA À ADMINISTRAÇÃO Thiago Marzagão 1 1 [email protected] PROBABILIDADE Thiago Marzagão (IDP) ESTATÍSTICA APLICADA À ADMINISTRAÇÃO 1/2016 1 / 51 o que é probabilidade? Thiago Marzagão
Exercícios sobre probabilidades Matemática aula por aula Benigno Barreto Filho/Cláudio Xavier Toledo da Silva vol. 2 Ensino Médio.
Atividade sobre Probabilidades 4 o bim. 2009 2 os anos 1) No lançamento simultâneo de 2 dados, considere as faces voltadas para cima e determine a) espaço amostral S. b) evento E 1 : números cuja soma
Esmiuçando o Teorema de Bayes e fazendo exercícios
PROAILIDADES Esmiuçando o Teorema de ayes e fazendo exercícios ERTOLO Lembrando as Aulas Anteriores Probabilidade Condicional: Teorema do Produto: Se os eventos e E 1 forem INDEPENDENTES: 11/09/2012 ertolo
Resumo do enquadramento de operações para procedimentos especiais
Funcionamento dos Leilões da Bovespa Denomina-se apregoação por leilão aquela realizada com destaque das demais, mencionando-se, obrigatoriamente, o Ativo, o lote e o preço. As apregoações por leilão poderão
Lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes (com respostas)
Lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes (com respostas) 1. Quais dos valores abaixo não podem ser probabilidades? 0,
OBS.: Usem as funções rand() e srand(). Qualquer duvida, http://www.cplusplus.com
QUESTÃO 1-Escreva um programa que faça o jogo de adivinhar um número. Seu programa escolhe um numero aleatoriamente, entre 1 e 1000, e o usuário deverá adivinhar conforme exemplo abaixo: Tenho um numero
Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.
9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel
Módulo X. Querido aluno(a)!!!
1 Módulo X Querido aluno(a)!!! É o que deseja a equipe www.somaticaeducar.com.br 2 Exercícios 1) Um grupo de 15 elementos apresenta a seguinte composição: Um elemento é escolhido as acaso. Pergunta-se:
Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE
Estatística 2 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira Probabilidade Espaço Amostral Em cada um dos exercícios a 0. Determine o espaço amostral.. Uma letra é escolhida entre as letras da palavra PROBABILIDADE
BRINCANDO COM GRÁFICOS E MEDINDO A SORTE
BRINCANDO COM GRÁFICOS E MEDINDO A SORTE Elizabeth Pastor Garnier SEE/RJ Pedro Carlos Pereira - FAETEC Projeto Fundão IM/UFRJ Os Parâmetros Curriculares Nacionais propõem a introdução do tópico Tratamento
TESTE QUI - QUADRADO DE UMA AMOSTRA (também chamado TESTE DE ADERÊNCIA ou TESTE DE EFICIÊNCIA DE AJUSTE)
TESTE QUI - QUADRADO DE UMA AMOSTRA (também chamado TESTE DE ADERÊNCIA ou TESTE DE EFICIÊNCIA DE AJUSTE) O Teste Qui-quadrado de uma amostra é utilizado em pesquisa de marketing para verificar se a distribuição
Raciocínio Lógico para o INSS Resolução de questões Prof. Adeilson de melo REVISÃO 01 - conjuntos e porcentagens
APRESENTAÇÃO Olá, prezados concursandos! Sejam bem-vindos à resolução de questões de Raciocínio Lógico preparatório para o INSS. Mais uma vez, agradeço ao convite do prof. Francisco Júnior pela oportunidade
SISTEMAS ESPECIALISTAS
SISTEMAS ESPECIALISTAS Pasteur Ottoni de Miranda Junior DCC PUC Minas Postado em www.pasteurjr.blogspot.com Sistemas especialistas (SE) representam o comportamento de um especialista humano em determinada
