Avaliação e Desempenho Aula 4
|
|
|
- Raphael Amaro Ferretti
- 10 Há anos
- Visualizações:
Transcrição
1 Avaliação e Desempenho Aula 4 Aulas passadas Motivação para avaliação e desempenho Aula de hoje Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional
2 Experimentos Aleatórios O que é um experimento aleatório? Experimento que nem sempre dá o mesmo resultado! Exemplos: Resultado de jogar um dado Palavra de busca submetida ao Google Tempo de espera no ponto de ônibus Vivemos num mundo aleatório...
3 Caracterizando Aleatoriedade Como caracterizar um experimento aleatório? Ingredientes necessários... Possíveis resultados do experimento Probabilidade de ocorrer cada um dos resultados Modelos Probabilísticos
4 Modelo Probabilístico Componentes Espaço amostral (S): conjunto de eventos elementares que podem ocorrer a partir de um experimento aleatório Probabilidade de eventos (P): quantificação da chance que cada evento ocorra Conjunto de eventos (E): subconjunto de eventos que são de nosso interesse
5 Exemplo: Dado Espaço amostral (S): cada uma das faces do dado S= {1, 2, 3, 4, 5, 6} Probabilidade de eventos (P): chance de que cada face ocorra: P(1) = 1/6, P(2) = 1/6, etc. Conjunto de eventos (E): números pares, E = {2, 4, 6}
6 Exemplo: Tempo Esperando um Ônibus Espaço amostral (S): tempo de espera até a chegada de um ônibus (medido em segundos), S = {0, 1, 2,...} Probabilidade de eventos (P): chance de que uma pessoa espere exatamente x segundos, P(0), P(1), P(2), etc. Conjunto de eventos (E): tempo de espera menor que 1 minuto, E = {x x < 60}
7 O que é Probabilidade? Chance de que um evento ocorra Fração de ocorrência ou frequência relativa contagem de eventos número de ocorrências divido por número total de eventos Exemplo: A frequência relativa de uma das faces de um dado é em torno de 1/6
8 Álgebra de Eventos Diagrama de eventos Espaço amostral S Evento A Evento B Evento C Conjunto de eventos (resultados) elementares Ex. evento A, evento B, etc Evento ocorre quando um de seus elementos é o resultado do experimento aleatório Operações de união, interseção e complemento
9 Exemplo: Dois dados Considere dois dados jogados simultaneamente Qual é o espaco amostral? S = { (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),... } Evento A : os dois dados são pares A = { (2, 2), (2, 4), (2, 6), (4, 2), (4, 4), (4, 6), (6,2), (6,4), (6,6)} Evento B : soma é menor que 7 B = { (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1)}
10 Exemplo: Dois dados Evento A : os dois dados são pares A = { (2, 2), (2, 4), (2, 6), (4, 2), (4, 4), (4, 6),(6,2), (6,4), (6,6)} Evento B : soma é menor que 7 B = { (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1)} Evento C : soma é menor que 7 e ambos dados são pares A B = { (2, 2), (2, 4), (4, 2)}
11 Exclusão Mútua Dois eventos A e B são mutuamente exclusivos se A B= conjunto vazio Exemplos? Evento A: os dois dados são pares Evento B: os dois dados são ímpares
12 Axiomas de Probabilidade (A1): para cada evento A, 0 <= P(A) <= 1 (A2): P(S) = 1, onde S é o espaço amostral (A3): se A e B são mutuamente exclusivos, então P(A U B) = P(A) + P(B) Consequências? Teoria de Probabilidade!
13 Exemplo de Confiabilidade Sistema com 2 discos idênticos Sistema operacional quando ao menos 1 disco está funcionando Qual probabilidade do sistema estar operacional? Modelo p: prob. de um disco falhar Falhas ocorrem de forma independente
14 Exemplo de Confiabilidade Qual é o experimento aleatório? Qual é o espaço amostral? estado do disco 1, estado do disco 2 f = disco falhou, o = disco operacional S = { (f, f), (f, o), (o, f), (o, o) } Qual é o conjunto de eventos de interesse? (ao menos 1 disco está operacional) A = { (f, o), (o, f), (o, o) } Qual é a probabilidade de ocorrer o evento de interesse?
15 Probabilidade Condicional Relacionamento entre a ocorrência de um evento e outros eventos S Evento A Evento B Qual a probabilidade do evento A dado que o evento B ocorreu? Dado que o resultado do experimento aleatório é elemento de B, qual a probabilidade deste ser também elemento de A? Espaço amostral passa a ser o evento B
16 Exemplo: Dois dados Evento A : os dois dados são pares Evento B : soma é menor que 7 Dado o evento B, qual a probabilidade do evento A? A = { (2, 2), (2, 4), (2, 6), (4, 2), (4, 4), (4, 6),(6,2), (6,4), (6,6)} B = { (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1)}
17 Probabilidade Condicional Definição P [ A B]= P [ A B] P [ B] Probabilidade de A dado B Caso A e B sejam mutuamente exclusivos?
18 Eventos Independentes Sejam A e B dois eventos sobre o mesmo espaço amostral S A e B são independentes se P [ A B]= P[ A] P[ B] Note que se A e B são independentes, então P [ A B]= P [ A B] P [ B] = P [ A] P [ B] P[ B ] =P [ A] 2 eventos são independentes se a ocorrência de um não altera a probabilidade do outro
19 Exemplo: Dois dados Evento A : os dois dados são pares Evento B : soma dos dados é menor que 7 A e B são independentes? A = { (2, 2), (2, 4), (2, 6), (4, 2), (4, 4), (4, 6),(6,2), (6,4), (6,6)} B = { (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1)} A B = {(2,2), (2,4), (4,2) } P [ A B ] = 3/36 = 1/9 P[A] = 9/36=1/4, P[B]=15/36=5/12 P [ A B ] P[ A] P[ B] A e B não são independentes!
20 Eventos: Mutuamente Exclusivos x Independentes Experimento Aletório: Jogar um dado e uma moeda S={(1,Ca),(1,Co),(2,Ca),(2,Co),(3,Ca),(3,Co), (4,Ca),(4,Co),(5,Ca),(5,Co),(6,Ca),(6,Co)} Evento A: resultado da moeda é cara Evento B: resultado da moeda é coroa Eventos A e B são independentes ou mutuamente exclusivos? A B = A e B são mutuamente exclusivos!
21 Eventos: Mutuamente Exclusivos x Independentes Evento A: resultado do dado é ímpar Evento B: resultado da moeda é cara Eventos A e B são independentes ou mutuamente exclusivos? S={(1,Ca),(1,Co),(2,Ca),(2,Co),(3,Ca),(3,Co), (4,Ca),(4,Co),(5,Ca),(5,Co),(6,Ca),(6,Co)} A B = {(1,Ca), (3,Ca), (5,Ca) } P [ A B ] = 3/12 = 1/4 P[A] = 1/2, P[B] = 1/2 P [ A B ]=P [ A ]P [ B ]=1 /4 A e B são independentes!
22 Eventos: Mutuamente Exclusivos x Independentes Evento A: resultado do dado é maior do que 2 Evento B: resultado da moeda é cara S={(1,Ca),(1,Co),(2,Ca),(2,Co),(3,Ca),(3,Co), (4,Ca),(4,Co),(5,Ca),(5,Co),(6,Ca),(6,Co)} A B = { (3,Ca), (4,Ca), (5,Ca), (6,Ca)} P [ A B ] = 4/12 = 1/3 P[A] = 8/12 = 2/3, P[B] = 1/2 P [ A B ]=1/3 P [ A] P[ B ]=2/6 A e B são independentes!
23 Condicionamento Relacionar eventos para calcular probabilidade Sejam A e B dois eventos, temos que P [ A ] = = P [ A B A B ] P [ A B] P[ A B] definição dos conjuntos mutuamente exclusivos = P [ A B] P [ B] P[ A B ] P[ B] Conhecendo P[B] e a condicional P[A B], podemos calcular P[A] Definição de probabilidade condicional
24 Exemplo Técnica (imperfeita) para acusar defeitos em processadores 95% verdadeiro positivo 2% falso positivo 1% dos processadores possuem defeitos Qual a probabilidade de um processador ser defeituoso dado que o teste foi positivo? Eventos D : processador defeituoso T : resultado do teste é positivo teste acusa defeito quando processador está defeituoso teste acusa defeito quando processador está ok
25 Exemplo (continuação) D : processador defeituoso T : resultado do teste é positivo Pergunta: P[D T]? P [ D]=0.01 P [T D ]=0.95 P [T D]=0.02 P [ D T ]= P [ D T ] P [T ] = P [T D ] P[ D] P [T ] P [T ]=P [T D] P [D ] P [T D] P [D]
26 Teorema da Probabilidade Total Generalização do conceito Seja A i (i=1,...,n) uma partição do espaço amostral mutuamente exclusivos, união é igual ao espaço amostral A 1 A 2 A 3 B... A n-1 A n Considere o evento B probabilidade de B ocorrer (em função de A i )? i =n P [ B ]= i=1 P [B A i ] P [ A i ] Teorema da Probabilidade Total
Probabilidade. Definições, Notação, Regra da Adição
Probabilidade Definições, Notação, Regra da Adição Definições básicas de probabilidade Experimento Qualquer processo de observação ou medida que permita ao pesquisador fazer coleta de informações. Evento
Espaços Amostrais e Eventos. Probabilidade 2.1. Capítulo 2. Espaço Amostral. Espaço Amostral 02/04/2012. Ex. Jogue um dado
Capítulo 2 Probabilidade 2.1 Espaços Amostrais e Eventos Espaço Amostral Espaço Amostral O espaço amostral de um experimento, denotado S, é o conjunto de todos os possíveis resultados de um experimento.
Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica
Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma
Princípio da contagem e Probabilidade: conceito
Princípio da contagem e Probabilidade: conceito característica do que é provável perspectiva favorável de que algo venha a ocorrer; possibilidade, chance. Ex.: há pouca possibilidade de chuva grau de segurança
PROBABILIDADE Prof. Adriano Mendonça Souza, Dr.
PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - O intelecto faz pouco na estrada que leva à descoberta, acontece um salto na consciência, chameo de
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 011???? Quem será o próximo prefeito de
Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade
Estatística e Probabilidade Aula 4 Cap 03 Probabilidade Estatística e Probabilidade Método Estatístico Estatística Descritiva Estatística Inferencial Nesta aula... aprenderemos como usar informações para
Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ
Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento
Eventos independentes
Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução a Probabilidade Existem dois tipos
CAPÍTULO I - ELEMENTOS DE PROBABILIDADE
CAPÍTULO I - ELEMENTOS DE PROBABILIDADE 1.1 INTRODUÇÃO Em geral, um experimento ao ser observado e repetido sob um mesmo conjunto especificado de condições, conduz invariavelmente ao mesmo resultado. São
CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos
INTRODUÇÃO À PROAILIDADE Exemplos: O problema da coincidência de datas de aniversário O problema da mega sena A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade
Aula 1: Introdução à Probabilidade
Aula 1: Introdução à Probabilidade Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 07 de Março de 2012 Experimento Aleatório Um experimento é qualquer processo
Noções de Probabilidade
Noções de Probabilidade Bacharelado em Economia - FEA - Noturno 1 o Semestre 2015 Gilberto A. Paula G. A. Paula - MAE0219 (IME-USP) Noções de Probabilidade 1 o Semestre 2015 1 / 59 Objetivos da Aula Sumário
Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá
Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá 2006/2 Unidade 2 - PROBABILIDADE Conceitos básicos * Probabilidade:
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aulas passadas Espaço Amostral Álgebra de Eventos Axiomas de Probabilidade Análise Aula de hoje Probabilidade Condicional Independência de Eventos Teorema
RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1
RESUMO TEÓRICO Experimentos aleatórios: são aqueles que, mesmo repetidos várias vezes sob condições semelhantes, apresentam resultados imprevisíveis. Exemplo: Lançar um dado e verificar qual é a face voltada
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Espaço Amostral, Eventos, Álgebra de eventos Aula de hoje Probabilidade Análise Combinatória Independência Probabilidade Experimentos
Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira
- Conceitos Básicos Castro Soares de Oliveira é o ramo da matemática que estuda fenômenos aleatórios. está associada a estatística, porque sua teoria constitui a base de estatística inferencial. Conceito
UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ ALI UNITAU APOSTILA PROAILIDADES ibliografia: Curso de Matemática Volume Único Autores: ianchini&paccola Ed. Moderna Matemática Fundamental - Volume Único Autores:
PROBABILIDADE. Aula 5
Curso: Psicologia Disciplina: Métodos Quantitativos Profa. Valdinéia Data: 28/10/15 PROBABILIDADE Aula 5 Geralmente a cada experimento aparecem vários resultados possíveis. Por exemplo ao jogar uma moeda,
CAPÍTULO 04 NOÇÕES DE PROBABILIDADE
CAPÍTULO 0 NOÇÕES DE PROBABILIDADE. ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. No lançamento de uma moeda perfeita (não viciada) o espaço amostral é S =
1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas.
GET007 Métodos Estatísticos Aplicados à Economia I Lista de Exercícios - variáveis Aleatórias Discretas Profa. Ana Maria Farias. Cinco cartas são extraídas de um baralho comum ( cartas, de cada naipe sem
C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7
RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.
Experimentos Aleatórios e Espaços Amostrais
Experimentos Aleatórios e Espaços Amostrais Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Primeiro Semestre, 2012 C.T.Cristino (DEINFO-UFRPE) Experimentos Aleatórios
MÓDULO 6 INTRODUÇÃO À PROBABILIDADE
MÓDULO 6 INTRODUÇÃO À PROBBILIDDE Quando estudamos algum fenômeno através do método estatístico, na maior parte das vezes é preciso estabelecer uma distinção entre o modelo matemático que construímos para
PROBABILIDADE PROFESSOR: ANDRÉ LUIS
PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado
Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes
Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Para ampliar sua compreensão sobre probabilidade total e Teorema de Bayes, estude este conjunto de exercícios resolvidos sobre o tema.
7- Probabilidade da união de dois eventos
. 7- Probabilidade da união de dois eventos Sejam A e B eventos de um mesmo espaço amostral Ω. Vamos encontrar uma expressão para a probabilidade de ocorrer o evento A ou o evento B, isto é, a probabilidade
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos
Espaço Amostral ( ): conjunto de todos os
PROBABILIDADE Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado. = {1,, 3, 4,, 6}. Doador de sangue (tipo sangüíneo). = {A, B,
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1
1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1. Origem histórica É possível quantificar o acaso? Para iniciar,
I. Experimentos Aleatórios
A teoria do azar consiste em reduzir todos os acontecimentos do mesmo gênero a um certo número de casos igualmente possíveis, ou seja, tais que estejamos igualmente inseguros sobre sua existência, e em
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aulas passadas Espaço Amostral Álgebra de Eventos Axiomas de Probabilidade Análise Combinatória Aula de hoje Probabilidade Condicional Independência de Eventos
Excel Básico e Avançado. Aula 6
Excel Básico e Avançado Aula 6 Prof. Dr. Marco Antonio Leonel Caetano Mudanças Abruptas www.mudancasabruptas.com.br TABELA DE FREQUÊNCIAS Objetivos Quantificar repetições de experimentos e eventos Ajudar
Tipos de Modelos. Exemplos. Modelo determinístico. Exemplos. Modelo probabilístico. Causas Efeito. Determinístico. Sistema Real.
Tipos de Modelos Sistema Real Determinístico Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM M /r Causas Efeito Aceleração
MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS
MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias
Probabilidade - aula I
e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar
Processos Estocásticos
Processos Estocásticos Segunda Lista de Exercícios 01 de julho de 2013 1 Uma indústria fabrica peças, das quais 1 5 são defeituosas. Dois compradores, A e B, classificam os lotes de peças adquiridos em
Modelos de Probabilidade e Inferência Estatística
Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Avaliações de Testes Diagnósticos 03/14 1 / 17 Uma aplicação
Probabilidade e Estatística I Antonio Roque Aula 11 Probabilidade Elementar: Novos Conceitos
Probabilidade Elementar: Novos Conceitos Vamos começar com algumas definições: Experimento: Qualquer processo ou ação bem definida que tenha um conjunto de resultados possíveis 1) Lançamento de um dado;
1 Axiomas de Probabilidade
1 Axiomas de Probabilidade 1.1 Espaço amostral e eventos seja E um experimento aleatório Ω = conjunto de todos os resultados possíveis de E. Exemplos 1. E lançamento de uma moeda Ω = {c, c} 2. E retirada
PROBABILIDADES E ESTATÍSTICA
PROBABILIDADES E ESTATÍSTICA Ao conjunto de todos os resultados possíveis, de uma eperiência aleatória, chamamos espaço amostral e representamos por S. Define-se acontecimento como sendo um subconjunto
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.) PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de
Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística
Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos
AULA 2 AULA4 Introdução à Teoria das Probabilidades
UL UL4 Introdução à Teoria das robabilidades rof. itor Hugo Lahos Davila Coneitos ásios Experimento leatório ou Fenômeno leatório Situações ou aonteimentos ujos resultados não podem ser previstos om erteza.
Lógica e Raciocínio. Decisão sob Risco Probabilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/
Lógica e Raciocínio Universidade da Madeira http://dme.uma.pt/edu/ler/ Decisão sob Risco Probabilidade 1 Probabilidade Em decisões sob ignorância a probabilidade dos diferentes resultados e consequências
Regra do Evento Raro p/ Inferência Estatística:
Probabilidade 3-1 Aspectos Gerais 3-2 Fundamentos 3-3 Regra da Adição 3-4 Regra da Multiplicação: 3-5 Probabilidades por Meio de Simulações 3-6 Contagem 1 3-1 Aspectos Gerais Objetivos firmar um conhecimento
MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade
MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos
ESTATÍSTICA APLICADA À ADMINISTRAÇÃO
ESTATÍSTICA APLICADA À ADMINISTRAÇÃO Thiago Marzagão 1 1 [email protected] PROBABILIDADE Thiago Marzagão (IDP) ESTATÍSTICA APLICADA À ADMINISTRAÇÃO 1/2016 1 / 51 o que é probabilidade? Thiago Marzagão
A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.
Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,
Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense
Teoria das Probabilidades I Ana Maria Lima de Farias Universidade Federal Fluminense Conteúdo 1 Probabilidade - Conceitos Básicos 1 1.1 Introdução....................................... 1 1.2 Experimento
Teoria das Probabilidades
Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário
23/03/2014. Tratamento de Incertezas TIC-00.176. Aula 4. Conteúdo Espaços Amostrais e Probabilidade. O princípio da contagem Métodos de contagem
Tratamento de Incertezas TIC-00.176 Aula 4 Conteúdo Espaços Amostrais e Probabilidade Professor Leandro Augusto Frata Fernandes [email protected] Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2014.1/tic-00.176
MÉTODOS ESTATÍSTICOS I 3ª. AVALIAÇÃO PRESENCIAL 1º Semestre de 2010 Prof. Moisés Lima de Menezes (pode usar calculadora) Versão Tutor
MÉTODOS ESTATÍSTICOS I ª. AVALIAÇÃO PRESENCIAL º Semestre de 00 Prof. Moisés Lima de Menezes (pode usar calculadora) Versão Tutor. (,0 pontos) Em uma cidade onde se publicam jornais: A, B e C, constatou-se
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE Fenômeno Aleatório: situação ou acontecimento cujos resultados não podem ser determinados com certeza. Exemplos: 1. Resultado do lançamento de um dado;. Hábito de fumar de um estudante
Universidade Federal do ABC. Sinais Aleatórios. Prof. Marcio Eisencraft
Universidade Federal do ABC Sinais Aleatórios Prof. Marcio Eisencraft São Paulo 2011 Capítulo 1 Probabilidades Neste curso, trata-se dos fenômenos que não podem ser representados de forma determinística
Estatística Aplicada às Ciências Sociais e Ambientais. Organização da Disciplina. Conteúdo da Aula. Contextualização. Farmácia Industrial UFPR
Estatística Aplicada às Ciências Sociais e Ambientais Apresentação Aula 1 Prof. Daniel de Christo Farmácia Industrial UFPR Mestrado em Genética UFPR Lecionando no Ensino Superior desde 2003 Organização
Professor Mauricio Lutz PROBABILIDADE
PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos
CAP5: Amostragem e Distribuição Amostral
CAP5: Amostragem e Distribuição Amostral O que é uma amostra? É um subconjunto de um universo (população). Ex: Amostra de sangue; amostra de pessoas, amostra de objetos, etc O que se espera de uma amostra?
CONJUNTOS. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais. Uma breve história. Alguns conceitos primitivos CONJUNTOS ELEMENTOS
PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais [email protected] 1 Uma breve história e administrar os seus bens de forma a não ser enganado. O homem sempre teve a necessidade de se
Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE
Estatística 2 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira Probabilidade Espaço Amostral Em cada um dos exercícios a 0. Determine o espaço amostral.. Uma letra é escolhida entre as letras da palavra PROBABILIDADE
Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo:
Lista 05 Questão 1: Em uma turma escolar 60% dos alunos são homens e 40% são mulheres. Dentre os homens, 25% são loiros, enquanto que 45% das mulheres são loiras. Um aluno desta turma foi sorteado de maneira
O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.
ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.
1 Um pouco de história. 2 Análise Combinatória. 2.1 Princípio básico da contagem:
1 Um pouco de história Início da Probabilidade: 1654 com a troca de cartas entre Pascal e Fermat sobre o Problema dos Pontos colocado para Pascal por Chevalier de Méré. A e B jogam dados, vamos supor que
Distribuição de probabilidades
Luiz Carlos Terra Para que você possa compreender a parte da estatística que trata de estimação de valores, é necessário que tenha uma boa noção sobre o conceito de distribuição de probabilidades e curva
24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18
/Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis
Raciocínio Lógico para o INSS Resolução de questões Prof. Adeilson de melo REVISÃO 01 - conjuntos e porcentagens
APRESENTAÇÃO Olá, prezados concursandos! Sejam bem-vindos à resolução de questões de Raciocínio Lógico preparatório para o INSS. Mais uma vez, agradeço ao convite do prof. Francisco Júnior pela oportunidade
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos
Exercícios Resolvidos da Distribuição Binomial
. a. Estabeleça as condições exigidas para se aplicar a distribuição binomial? b. Qual é a probabilidade de caras em lançamentos de uma moeda honesta? c. Qual é a probabilidade de menos que caras em lançamentos
CONCURSO PETROBRAS DRAFT. Pesquisa Operacional, TI, Probabilidade e Estatística. Questões Resolvidas. Produzido por Exatas Concursos www.exatas.com.
CONCURSO PETROBRAS ENGENHEIRO(A) DE PRODUÇÃO JÚNIOR ENGENHEIRO(A) JÚNIOR - ÁREA: PRODUÇÃO Pesquisa Operacional, TI, Probabilidade e Estatística Questões Resolvidas QUESTÕES RETIRADAS DE PROVAS DA BANCA
1 CIRCUITOS COMBINACIONAIS
Curso Técnico em Eletrotécnica Disciplina: Automação Predial e Industrial Professor: Ronimack Trajano 1 CIRCUITOS COMBINACIONAIS Um circuito digital é dito combinacional quando em um dado instante de tempo
Probabilidade. Distribuições Uniforme, Geométrica, Hipergeométrica e Multinomial
Probabilidade Distribuições Uniforme, Geométrica, Hipergeométrica e Multinomial Distribuição Uniforme Usada comumente nas situações em que não há razão para atribuir probabilidades diferentes a um conjunto
Módulo VIII. Probabilidade: Espaço Amostral e Evento
1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.
UNIVERSIDADE DOS AÇORES CURSO DE SOCIOLOGIA E SERVIÇO SOCIAL ESTATÍSTICA I Ficha de Exercícios nº 2- Probabilidades
UNIVERSIDADE DOS AÇORES CURSO DE SOCIOLOGIA E SERVIÇO SOCIAL ESTATÍSTICA I Ficha de Exercícios nº 2- Probabilidades 1. Numa entrevista, um economista afirmou que considerava a melhoria da situação económica
Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas
Aula 05 Raciocínio Lógico p/ INSS - Técnico do Seguro Social - Com Videoaulas Professor: Arthur Lima AULA 05: RESUMO Caro aluno, Para finalizar nosso curso, preparei um resumo de toda a teoria vista nas
Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade:
Exame MACS- Probabilidades Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Nos modelos de probabilidade: há uma primeira fase em que colocamos
Probabilidade Condicional
PROBABILIDADES Probabilidade Condicional BERTOLO Exemplo Introdutório Vamos introduzir a noção de probabilidade condicional através de um exemplo. Consideremos 250 estudantes que cursam o 4º ano de Ciências
Aula 4 Estatística Conceitos básicos
Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/59 2 - FUNDAMENTOS 2.1) Teoria dos Conjuntos 2.2) Números
Processos Estocásticos
Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte
Probabilidade. Multiplicação e Teorema de Bayes
robabilidade Multiplicação e Teorema de ayes Regra da Multiplicação Num teste, são aplicadas 2 questões de múltipla escolha. Na primeira questão, as respostas possíveis são V ou F. Na segunda, a, b, c,
Com base nos slides vistos em sala de aula resolva os seguintes exercícios:
Com base nos slides vistos em sala de aula resolva os seguintes exercícios: 1. Dê ao menos cinco exemplos de cada um dos conceitos básicos da abordagem ER apresentados nesta aula: entidade, relacionamento,
Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO
PROBBILIDDE Introdução teoria da probabilidade é o ramo da matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos aleatórios ou não determinísticos.
FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO
FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO TEMA PRIAD PROBABILIDADES E APLICAÇÕES PRÁTICAS DATA / / ALUNO RA TURMA 1) Num levantamento realizado
Regras Métodos Identificadores Variáveis Constantes Tipos de dados Comandos de atribuição Operadores aritméticos, relacionais e lógicos
Lógica Aula 2 Técnicas de Programação Criando algoritmos Regras Métodos Identificadores Variáveis Constantes Tipos de dados Comandos de atribuição Operadores aritméticos, relacionais e lógicos Criando
Estatística Empresarial. Fundamentos de Probabilidade
Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação
3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes
3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes 1) Quatro moedas são lançadas e observa-se a seqüência de caras e coroas
1 Probabilidade Condicional - continuação
1 Probabilidade Condicional - continuação Exemplo: Sr. e Sra. Ferreira mudaram-se para Campinas e sabe-se que têm dois filhos sendo pelo menos um deles menino. Qual a probabilidade condicional que ambos
Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 5 - Variáveis Aleatórias e Distribuição Binomial C A S A
Exercício 1. (2,0 pontos). Dados sobre acidentes automobilísticos levantados por uma companhia de seguros informaram o seguinte: a probabilidade de que um motorista segurado sofra um acidente automobilístico
Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ
Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,
MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03
MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03 1 1) (FGV-SP 2008) Há apenas dois modos de Cláudia ir para o trabalho: de ônibus ou de moto. A probabilidade de ela ir de ônibus é 30% e, de moto,
