UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS
|
|
|
- Brenda Pinheiro Belo
- 9 Há anos
- Visualizações:
Transcrição
1 ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ ALI UNITAU APOSTILA PROAILIDADES ibliografia: Curso de Matemática Volume Único Autores: ianchini&paccola Ed. Moderna Matemática Fundamental - Volume Único Autores: Giovanni/onjorno&Givanni Jr. Ed. FTD Contexto&Aplicações Volume Único Autor: Luiz Roberto Dante Ed. Ática PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br/capitcar
2 PROAILIDADES Probabilidade é um conceito filosófico e matemático que permite a quantificação da incerteza, permitindo que ela seja aferida, analisada e usada para a realização de previsões para a orientação de intervenções. É aquilo que torna possível se lidar de forma racional com problemas envolvendo o imprevisível. A probabilidade teve o inicio de seus estudos nos jogos de azar Vejamos agora alguns conceitos importantes para o estudo da teoria das probabilidades: Experimento Aleatório: É todo experimento que produz resultados imprevisíveis, dentre os possíveis, mesmo quando repetido em semelhantes condições. Ex: No lançamento de um dado honesto, podese obter os resultados,, 3, 4,5 e 6, seja, o resultado é incerto. Espaço Amostral: É o conjunto de todos os resultados possíveis de um determinado experimento aleatório. Indicaremos por U. Vejamos alguns exemplos Lançamento de um dado honesto: U {,, 3, 4, 5, 6, } Lançamento de uma moeda: U { cara, coroa} Sexo de um recém nascido: U {masculino, feminino} Evento: É todo subconjunto do espaço amostral relacionado a um experimento aleatório. Considere o experimento aleatório, do lançamento de um dado honesto U {,, 3, 4, 5, 6}, vejamos agora os seguintes eventos: A : Um número par, A {, 4, 6} : Um número par e primo, {} ( evento simples elementar) C: Um número maior que 6, C Ø (evento impossível) D: Um número menor que 7, D {,,3,4,5,6} (evento certo) D U E : Um número menor igual 4 e F: um número maior igual a 4. Então: E {,,3,4} e F { 4,5,6}, observe que E U F U, logo, E e F são chamados de eventos complementares. Indicaremos o complementar de um evento A por Ā G: Um número menor que 3 e H: um número maior que 3. Então: G {,} e H {4,5,6}, observe que G H Ø, logo, G e H são chamados de eventos mutuamente exclusivos. PROAILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO Seja U um espaço amostral equiprovável e A um de seus eventos. Denomina-se probabilidade do evento A o número P( tal que: P( U ), onde : U) nº de elementos do evento A nº de elementos do espaço amostral U blog.portalpositivo.com.br/capitcar
3 PROAILIDADE DA UNIÃO DE DOIS EVENTOS: Se A e são dois eventos do mesmo espaço amostral S, então: P(A U P( A ) + P( ) P (A Se A ø, teremos: P(A U P( A ) + P( ) PROAILIDADE DO EVENTO COMPLEMENTAR: Sejam A um evento de um espaço amostral U e Ā o seu evento complementar, então: P( + P(Ā) P(Ā) P( MULTIPLICAÇÃO DE PROAILIDADES: Se um acontecimento é composto por vários eventos sucessivos e independentes de modo que: - O º evento é A e sua probabilidade é P(; - O º evento é e sua probabilidade é P(; - O 3º evento é C e sua probabilidade é P(C); - O n-ésimo evento é N e sua probabilidade é P(N), então a probabilidade de os eventos A,, C e N ocorram nessa ordem é: P P( A ). P( ). P( C )...P(N) PROAILIDADE CONDICIONAL: Denomina-se probabilidade de A condicionada a a probabilidade de ocorrência do evento A sabendo-se que ocorreu vai ocorrer o evento, e é dada por: P(A/ A ) / n ( EXEMPLOS ) No lançamento de um dado, determinar a probabilidade de se obter um número múltiplo de 3. SOLUÇÃO: O espaço amostral é U {,, 3, 4, 5, 6}, portanto U) 6 A ocorrência de um múltiplo de 3 é A {3, 6}, portanto P( U ) ,33% blog.portalpositivo.com.br/capitcar 3
4 ) Numa urna existem bolas numeradas de a. Retirando-se bola ao acaso, qual probabilidade de que seu número múltiplo de 4 de 5. SOLUÇÃO: O espaço amostral é U {,, 3,..., }, portanto U) A ocorrência de um múltiplo de 4 é A {4, 8,, 6, 0, 4, 8}, portanto 7 P( n ( U ) 7 A ocorrência de um múltiplo de 5 é {5, 0, 5, 0, 5, }, portanto 6 P( n ( U ) 6 A { 0 }, portanto n ( A ) AI P( AI U ) P(A U P( A ) + P( ) P (A % 3) Se a probabilidade de um piloto ganhar uma corrida é de /5. Qual a probabilidade desse piloto não ganhar essa corrida? SOLUÇÃO: Seja P( /5, probabilidade de ganhar a corrida e P(Ā) a probabilidade de não ganhar a corrida, então: P( + P(Ā) /5 + P(Ā) P(Ā) /5 4/5 80% 4) De um baralho de 5 cartas extraem-se duas cartas sucessivamente e sem reposição. Qual a probabilidade se obter um ás e um valete nessa ordem? SOLUÇÃO : Considere os eventos : A :sair um ás na ª retirada, então P( :sair um Logo a probabilidade de ocorrer ás na ª P P(.P( valete na ª retirada, então P( ,60% retirada e valete na ª retirada sem reposição, é dada por : blog.portalpositivo.com.br/capitcar 4
5 5) Lança-se um par de dados não viciados. Se a soma dos pontos nos dois dados foi 8, calcule a probabilidade de ocorrer a face 5 em um deles. SOLUÇÃO : Considere os eventos : A :O 5 em uma das faces, então A { (, ), (, ), (3, 3), (4, 4), 5)}, logo: 9 :A soma dos pontos igual a 8, então {(, 6), (6, ), (3, 3), (4, 4)}, logo : 5 A I {(3, 3)}, então A I Logo a probabilidade de ocorrer A dado que ocorreu é : n ( A I ) P(A/ 40% n ( ) 5 EXERCÍCIOS DE FIXAÇÃO DA APRENDIZAGEM ) Mariana (Ma), runa (r) e Marcela (Mr) disputam uma corrida. Obtenha, levando em consideração a ordem de chegada: a) O espaço amostral da corrida. Resp: E{MarMr; MaMrr; rmamr; rmrma; MrMa; MrrMa} b) O evento A: runa chega na frente de Mariana. Resp: A {rmamr; rmrma; MrrMa} c) O evento : Marcela venceu a corrida. Resp: {MarMr; MaMrr} ) Considere o experimento: A retirada de bolas simultâneas de uma urna com 5 bolas numeradas. Determine: a) O espaço amostral E. Resp: E {b b ; b b 3 ; b b 4 ; b b 5 ; b b 3 ; b b 4 ; b b 5 ; b 3 b 4 ; b 3 b 5 ; b 4 b 5 } b) O evento A: as duas bolas são ímpares. Resp: A { b b 3 ; b b 5 ; b 3 b 5 } c) O evento : a soma dos números das bolas é maior que 7. Resp: { b 3 b 5 ; b 4 b 5 } d) O evento. Resp: {b b ; b b 3 ; b b 4 ; b b 5 ; b b 3 ; b b 4 ; b b 5 ; b 3 b 4 } 3) Determine a probabilidade de ganhar na mega sena com um cartão de 6 números.resp: ) Uma urna contém bolas brancas, 6 vermelhas e duas azuis. Qual a probabilidade de retirar uma bola vermelha uma bola azul. Resp: 40% 5) Uma moeda é lançada vezes. Calcule a probabilidade de que: a) não ocorra cara em nenhum dos lançamentos. Resp: 5% b) se obtenha cara na ª na ª jogada. Resp: 75% 6) Joga-se um dado vezes. Calcule a probabilidade de se obter na ª jogada, sabendo que a soma dos resultados das duas jogadas de 7. Resp: /6 7) Retiram-se 3 cartas de um baralho de 5 cartas. Após cada retirada, a carta é recolocada. Nessas condições, pede-se a probabilidade de que seja(m): a) 3 cartas de copas. Resp: /64 b) nenhuma carta de copas. Resp: Resp: 7/64 blog.portalpositivo.com.br/capitcar 5
6 8) Qual a probabilidade de um número inteiro n, n 999, ser múltiplo de 9. Resp: /9 9) Se um certo casal tem 3 filhos, calcule a probabilidade de os três serem do mesmo sexo, dado que o primeiro filho é homem. Resp: /4 0) No lançamento simultâneo de dados, calcule a probabilidade de ocorrer: a) dois números iguais. resp: /6 b) a soma dos pontos ser igual a 6. resp: 5/36 ) (Unesp) Após uma partida de futebol, em que as equipes jogaram com as camisas numeradas de a e não hve substituições, procede-se ao sorteio de dois jogadores de cada equipe para exame anti-doping. Os jogadores da primeira equipe são representados por bolas numeradas de a de uma urna A e os da segunda, da mesma maneira, por bolas de uma urna. Sorteia-se primeiro, ao acaso e simultaneamente, uma bola de cada urna. Depois, para o segundo sorteio, o processo deve ser repetido com as 0 bolas restantes de cada urna. Se na primeira extração foram sorteados dois jogadores de números iguais, a probabilidade de que aconteça o mesmo na segunda extração é de: a) 0,09 b) 0, c) 0, d) 0, e) 0,5 Resp: b ) (Pucsp) Uma urna contém apenas cartões marcados com números de três algarismos distintos, escolhidos de a 9. Se, nessa urna, não há cartões com números repetidos, a probabilidade de ser sorteado um cartão com um número menor que 500 é: a) 3/4 b) / c) 8/ d) 4/9 e) /3 Resp: d 3 ) (Unesp) Num grupo de 00 pessoas da zona rural, 5 estão afetadas por uma parasitose intestinal A e por uma parasitose intestinal, não se verificando nenhum caso de incidência conjunta de A e. Duas pessoas desse grupo são escolhidas, aleatoriamente, uma após a tra.determine a probabilidade de que, dessa dupla, a primeira pessoa esteja afetada por A e a segunda por. Resp: /36 4) (Unesp) Numa gaiola estão 9 camundongos rotulados,,3,...,9. Selecionando-se conjuntamente camundongos ao acaso (todos têm igual possibilidade de ser escolhidos), a probabilidade de que na seleção ambos os camundongos tenham rótulo impar é: a) 0, b) 0,47 c) 0,7 d) 0, e) 0, Resp: d 5) (Unesp) Lançando-se simultaneamente dois dados não viciados, a probabilidade de que suas faces superiores exibam soma igual a 7 9 é: a) /6 b) 4/9 c) / d) 5/8 e) 3/7 Resp: d 6) (Cesgranrio) Uma urna contém 4 bolas brancas e 5 bolas pretas. Duas bolas, escolhidas ao acaso, são sacadas dessa urna, sucessivamente e sem reposição. A probabilidade de que ambas sejam brancas vale: a) /6 b) /9 c) 4/9 d) 6/8 e) 0/8 Resp: a blog.portalpositivo.com.br/capitcar 6
7 7) (Fatec) Considere todos os números de cinco algarismos distintos obtidos pela permutação dos algarismos 4, 5, 6, 7 e 8. Escolhendo-se um desses números, ao acaso, a probabilidade dele ser um número ímpar é: a) b) / c) /5 d) /4 e) /5 Resp: c 8) (Puccamp) O número de fichas de certa urna é igual ao número de anagramas da palavra VESTIULAR. Se em cada ficha escrevermos apenas um dos anagramas, a probabilidade de sortearmos uma ficha dessa urna e no anagrama marcado as vogais estarem juntas é: a) /5040 b) /60 c) /60 d) / e) /5 Resp: d 9) (Unesp) Um baralho tem cartas, das quais 4 são ases. Retiram-se 3 cartas ao acaso. Qual a probabilidade de haver pelo menos um ás entre as cartas retiradas? Resp:4/45 0) (Unesp) Dois jogadores A e vão lançar um par de dados. Eles combinam que se a soma dos números dos dados for 5, A ganha e se a soma for 8, é quem ganha. Os dados são lançados. Sabe-se que A não ganh. Qual a probabilidade de ter ganho? a) 0/36 b) 5/3 c) 5/36 d) 5/35 e) Não se pode calcular sem saber os números sorteados. Resp: b ) Num grupo de 80 alunos, 50 jogam futebol, 40 jogam vôlei e 0 jogam futebol e vôlei. Escolhendo ao acaso um desses alunos, qual a probabilidade de ele: a) jogar vôlei futebol resp: 7/8 b) jogar somente futebol resp: 3/8 c) não praticar nenhum desses esportes resp: /8 ) De um lote de 4 peças das quais 5 são defeituosas, escolhemos aleatoriamente duas. Determine: a) a probabilidade de que ambas sejam defeituosas. resp: 0/9 b) a probabilidade de que ambas não sejam defeituosas. resp: 36/9 c) a probabilidade de que uma seja defeituosa. resp: 55/9 3) Considere duas caixas, I e II. Na caixa I há 4 bolas pretas e 6 azuis e na caixa II há 8 bolas pretas e azuis. Escolhi ao acaso uma caixa e, em seguida, tirei uma bola. Qual a probabilidade desta bola ser: a) preta resp: 3/5 b) azul resp: /5 4) Um grupo de pessoas apresenta a seguinte composição: 0 italianos e 0 portugueses; 5 homens e 5 mulheres; 5 casados e 5 solteiros. Determine a probabilidade de que uma pessoa escolhida ao acaso seja um homem casado e português. resp: /36 blog.portalpositivo.com.br/capitcar 7
Módulo VIII. Probabilidade: Espaço Amostral e Evento
1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.
RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1
RESUMO TEÓRICO Experimentos aleatórios: são aqueles que, mesmo repetidos várias vezes sob condições semelhantes, apresentam resultados imprevisíveis. Exemplo: Lançar um dado e verificar qual é a face voltada
Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica
Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma
Professor Mauricio Lutz PROBABILIDADE
PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos
FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO
FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO TEMA PRIAD PROBABILIDADES E APLICAÇÕES PRÁTICAS DATA / / ALUNO RA TURMA 1) Num levantamento realizado
CAPÍTULO 04 NOÇÕES DE PROBABILIDADE
CAPÍTULO 0 NOÇÕES DE PROBABILIDADE. ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. No lançamento de uma moeda perfeita (não viciada) o espaço amostral é S =
Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE
Estatística 2 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira Probabilidade Espaço Amostral Em cada um dos exercícios a 0. Determine o espaço amostral.. Uma letra é escolhida entre as letras da palavra PROBABILIDADE
C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7
RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.
PROBABILIDADE PROFESSOR: ANDRÉ LUIS
PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1
1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1. Origem histórica É possível quantificar o acaso? Para iniciar,
PROBABILIDADE Prof. Adriano Mendonça Souza, Dr.
PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - O intelecto faz pouco na estrada que leva à descoberta, acontece um salto na consciência, chameo de
CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos
INTRODUÇÃO À PROAILIDADE Exemplos: O problema da coincidência de datas de aniversário O problema da mega sena A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade
É o conjunto de todos os resultados possíveis de um experimento aleatório. A notação que vamos usar é S.
PROBABILIDADES Historicamente, a teoria da probabilidade começou com o estudo de jogos de azar, como a roleta e as cartas. O cálculo das probabilidades nos permite encontrar um número que mostra a chance
Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira
- Conceitos Básicos Castro Soares de Oliveira é o ramo da matemática que estuda fenômenos aleatórios. está associada a estatística, porque sua teoria constitui a base de estatística inferencial. Conceito
7- Probabilidade da união de dois eventos
. 7- Probabilidade da união de dois eventos Sejam A e B eventos de um mesmo espaço amostral Ω. Vamos encontrar uma expressão para a probabilidade de ocorrer o evento A ou o evento B, isto é, a probabilidade
MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03
MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03 1 1) (FGV-SP 2008) Há apenas dois modos de Cláudia ir para o trabalho: de ônibus ou de moto. A probabilidade de ela ir de ônibus é 30% e, de moto,
Eventos independentes
Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos
I. Experimentos Aleatórios
A teoria do azar consiste em reduzir todos os acontecimentos do mesmo gênero a um certo número de casos igualmente possíveis, ou seja, tais que estejamos igualmente inseguros sobre sua existência, e em
Matemática. Resolução das atividades complementares. M16 Probabilidade
Resolução das atividades complementares Matemática M Probabilidade p. 7 (FGV-SP) Uma urna contém quinze bolinhas numeradas de a. a) Se uma bolinha for sorteada, qual a probabilidade de que o número observado
Espaços Amostrais e Eventos. Probabilidade 2.1. Capítulo 2. Espaço Amostral. Espaço Amostral 02/04/2012. Ex. Jogue um dado
Capítulo 2 Probabilidade 2.1 Espaços Amostrais e Eventos Espaço Amostral Espaço Amostral O espaço amostral de um experimento, denotado S, é o conjunto de todos os possíveis resultados de um experimento.
Probabilidade. Definições, Notação, Regra da Adição
Probabilidade Definições, Notação, Regra da Adição Definições básicas de probabilidade Experimento Qualquer processo de observação ou medida que permita ao pesquisador fazer coleta de informações. Evento
Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO
Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 3º Bimestre/2013 Aluno(a): Número: Turma: 1) Resolva
Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO
PROBBILIDDE Introdução teoria da probabilidade é o ramo da matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos aleatórios ou não determinísticos.
EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE 3 a SÉRIE ENSINO MÉDIO
EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE a SÉRIE ENSINO MÉDIO ======================================================================= ) (UF SC) Em uma caixa há 8 bombons, todos com forma,
A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.
Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,
CAPÍTULO I - ELEMENTOS DE PROBABILIDADE
CAPÍTULO I - ELEMENTOS DE PROBABILIDADE 1.1 INTRODUÇÃO Em geral, um experimento ao ser observado e repetido sob um mesmo conjunto especificado de condições, conduz invariavelmente ao mesmo resultado. São
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.) PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução a Probabilidade Existem dois tipos
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 011???? Quem será o próximo prefeito de
Teoria das Probabilidades
Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário
Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis
Módulo de Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades a série E.M. Professores Tiago Miranda e Cleber Assis Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades 1 Exercícios
Exercícios sobre probabilidades Matemática aula por aula Benigno Barreto Filho/Cláudio Xavier Toledo da Silva vol. 2 Ensino Médio.
Atividade sobre Probabilidades 4 o bim. 2009 2 os anos 1) No lançamento simultâneo de 2 dados, considere as faces voltadas para cima e determine a) espaço amostral S. b) evento E 1 : números cuja soma
a) ½ b) 1/3 c) 14 d) 1/5 e) 1/6
PROBABILIDADE 1) (ANEEL) Ana tem o estranho costume de somente usar blusas brancas ou pretas. Por ocasião de seu aniversário, Ana ganhou de sua mãe quatro blusas pretas e cinco brancas. Na mesma ocasião,
Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ
Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento
MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO
MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO Como pode cair no enem (ENEM) Em um jogo disputado em uma mesa de sinuca, há 16 bolas: 1 branca e 15 coloridas, as quais, de acordo com
Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá
Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá 2006/2 Unidade 2 - PROBABILIDADE Conceitos básicos * Probabilidade:
100 QUESTÕES DE PROBABILIDADE PARA CONCURSOS
100 QUESTÕES DE PROBABILIDADE PARA CONCURSOS R E S O L U Ç Ã O D E E X E R C ÍC IO S R A C IO C ÍN IO L Ó G IC O M A T E M Á T IC A F ÍS IC A /Q U ÍM IC A E m a il g a b a r ito c e rto @ h o tm a il.c
Avaliação e Desempenho Aula 4
Avaliação e Desempenho Aula 4 Aulas passadas Motivação para avaliação e desempenho Aula de hoje Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Experimentos Aleatórios
Noções de Probabilidade
Noções de Probabilidade Bacharelado em Economia - FEA - Noturno 1 o Semestre 2015 Gilberto A. Paula G. A. Paula - MAE0219 (IME-USP) Noções de Probabilidade 1 o Semestre 2015 1 / 59 Objetivos da Aula Sumário
O conceito de probabilidade
A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de
Probabilidade Condicional
PROBABILIDADES Probabilidade Condicional BERTOLO Exemplo Introdutório Vamos introduzir a noção de probabilidade condicional através de um exemplo. Consideremos 250 estudantes que cursam o 4º ano de Ciências
PROBABILIDADE. Aula 5
Curso: Psicologia Disciplina: Métodos Quantitativos Profa. Valdinéia Data: 28/10/15 PROBABILIDADE Aula 5 Geralmente a cada experimento aparecem vários resultados possíveis. Por exemplo ao jogar uma moeda,
RACIOCÍNIO LÓGICO PROF PEDRÃO TABELA-VERDADE
TABELA-VERDADE 01) A negação da afirmação se o cachorro late então o gato mia é: A) se o gato não mia então o cachorro não late. B) o cachorro não late e o gato não mia. C) o cachorro late e o gato não
1 Axiomas de Probabilidade
1 Axiomas de Probabilidade 1.1 Espaço amostral e eventos seja E um experimento aleatório Ω = conjunto de todos os resultados possíveis de E. Exemplos 1. E lançamento de uma moeda Ω = {c, c} 2. E retirada
ESTATÍSTICA APLICADA À ADMINISTRAÇÃO
ESTATÍSTICA APLICADA À ADMINISTRAÇÃO Thiago Marzagão 1 1 [email protected] PROBABILIDADE Thiago Marzagão (IDP) ESTATÍSTICA APLICADA À ADMINISTRAÇÃO 1/2016 1 / 51 o que é probabilidade? Thiago Marzagão
1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas.
GET007 Métodos Estatísticos Aplicados à Economia I Lista de Exercícios - variáveis Aleatórias Discretas Profa. Ana Maria Farias. Cinco cartas são extraídas de um baralho comum ( cartas, de cada naipe sem
Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo:
Lista 05 Questão 1: Em uma turma escolar 60% dos alunos são homens e 40% são mulheres. Dentre os homens, 25% são loiros, enquanto que 45% das mulheres são loiras. Um aluno desta turma foi sorteado de maneira
Introdução à Probabilidade e Estatística
Professor Cristian F. Coletti Introdução à Probabilidade e Estatística (1 Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos. a Uma moeda é lançada duas vezes
MÉTODOS ESTATÍSTICOS I 3ª. AVALIAÇÃO PRESENCIAL 1º Semestre de 2010 Prof. Moisés Lima de Menezes (pode usar calculadora) Versão Tutor
MÉTODOS ESTATÍSTICOS I ª. AVALIAÇÃO PRESENCIAL º Semestre de 00 Prof. Moisés Lima de Menezes (pode usar calculadora) Versão Tutor. (,0 pontos) Em uma cidade onde se publicam jornais: A, B e C, constatou-se
MÓDULO 6 INTRODUÇÃO À PROBABILIDADE
MÓDULO 6 INTRODUÇÃO À PROBBILIDDE Quando estudamos algum fenômeno através do método estatístico, na maior parte das vezes é preciso estabelecer uma distinção entre o modelo matemático que construímos para
CAP5: Amostragem e Distribuição Amostral
CAP5: Amostragem e Distribuição Amostral O que é uma amostra? É um subconjunto de um universo (população). Ex: Amostra de sangue; amostra de pessoas, amostra de objetos, etc O que se espera de uma amostra?
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução Exercícios de exames e testes intermédios 1. Como o zero é o elemento neutro da multiplicação, o produto dos números saídos
UNIVERSIDADE DO ALGARVE
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA C.E.T. EM TOPOGRAFIA E CADASTRO REGIME DIURNO - 2º SEMESTRE - 1º ANO - 2007 / 2008 DISCIPLINA DE NOÇÕES DE PROBABILIDADES E ESTATÍSTICA Ficha nº2 -
UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007
UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007 Ficha de Exercícios nº 5 Distribuições Importantes 1. A probabilidade de os doentes de uma determinada
Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42
Probabilidades Duds 1. (Upe 2013) Em uma turma de um curso de espanhol, três pessoas pretendem fazer intercâmbio no Chile, e sete na Espanha. Dentre essas dez pessoas, foram escolhidas duas para uma entrevista
MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade
MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos
Matemática Profª Valéria Lanna
Matemática Profª Valéria Lanna Para responder a questão 01, utilize os dados da tabela abaixo, que apresenta as freqüências acumuladas das notas de 20 alunos entre 14 e 20 pontos. Notas (em pontos) Frequência
Princípio da contagem e Probabilidade: conceito
Princípio da contagem e Probabilidade: conceito característica do que é provável perspectiva favorável de que algo venha a ocorrer; possibilidade, chance. Ex.: há pouca possibilidade de chuva grau de segurança
Probabilidade parte 2. Robério Satyro
Probabilidade arte Robério Satyro Definição de robabilidade Vamos analisar o fenômeno aleatório lançamento de uma moeda erfeita. Nesse caso, temos: = {C, C} () = Os subconjuntos de são, {C}, { C} e {C,
23/03/2014. Tratamento de Incertezas TIC-00.176. Aula 4. Conteúdo Espaços Amostrais e Probabilidade. O princípio da contagem Métodos de contagem
Tratamento de Incertezas TIC-00.176 Aula 4 Conteúdo Espaços Amostrais e Probabilidade Professor Leandro Augusto Frata Fernandes [email protected] Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2014.1/tic-00.176
Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística
Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos
Módulo X. Querido aluno(a)!!!
1 Módulo X Querido aluno(a)!!! É o que deseja a equipe www.somaticaeducar.com.br 2 Exercícios 1) Um grupo de 15 elementos apresenta a seguinte composição: Um elemento é escolhido as acaso. Pergunta-se:
Regra do Evento Raro p/ Inferência Estatística:
Probabilidade 3-1 Aspectos Gerais 3-2 Fundamentos 3-3 Regra da Adição 3-4 Regra da Multiplicação: 3-5 Probabilidades por Meio de Simulações 3-6 Contagem 1 3-1 Aspectos Gerais Objetivos firmar um conhecimento
COLETÂNEA DE PROBLEMAS PARA TREINAMENTO (*) NÍVEL I (ENSINO FUNDAMENTAL: 5 a e 6 a Séries)
COLETÂNEA DE PROBLEMAS PARA TREINAMENTO (*) NÍVEL I (ENSINO FUNDAMENTAL: 5 a e 6 a Séries) PROBLEMA 1 Numa loteria, todos os prêmios em reais são potências de 13 (isto é, R$ 1,00, R$ 13,00, R$ 169,00 etc.)
Espaço Amostral ( ): conjunto de todos os
PROBABILIDADE Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado. = {1,, 3, 4,, 6}. Doador de sangue (tipo sangüíneo). = {A, B,
elementos. Caso teremos: elementos. Também pode ocorrer o seguinte fato:. Falsa. Justificativa: Caso, elementos.
Soluções dos Exercícios de Vestibular referentes ao Capítulo 1: 1) (UERJ, 2011) Uma máquina contém pequenas bolas de borracha de 10 cores diferentes, sendo 10 bolas de cada cor. Ao inserir uma moeda na
1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo.
1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo. A B C Homens 42 36 26 Mulheres 28 24 32 Escolhendo-se uma aluna desse curso, a probabilidade de ela ser da turma A é:
Probabilidade. Multiplicação e Teorema de Bayes
robabilidade Multiplicação e Teorema de ayes Regra da Multiplicação Num teste, são aplicadas 2 questões de múltipla escolha. Na primeira questão, as respostas possíveis são V ou F. Na segunda, a, b, c,
4) Quais dos seguintes pares de eventos são mutuamente exclusivos:
INE 7002 LISTA DE EXERCÍCIOS PROBABILIDADE Lista de Exercícios - Probabilidade 1 1) Lâmpadas que se apresentam em perfeitas condições são ensaiadas quanto ao tempo de vida. Um instrumento é acionado no
Um carro do modelo B foi comprado nessa concessionária. Dado que esse carro é de cor prata, qual a probabilidade que seu motor seja 1.0?
PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - ABRIL DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÃO 0) - (UEMS) Uma
2º ano do Ensino Médio
2º ano do Ensino Médio Instruções: 1. Você deve estar recebendo um caderno com dez questões na 1ª parte da prova, duas questões na 2ª parte e duas questões na 3ª parte. Verifique, portanto, se está completo
PROPOSTAS DE TRABALHO PARA OS ALUNOS A PARTIR DE JOGOS 2º ANO. Adriana da Silva Santi Coordenação Pedagógica de Matemática
PROPOSTAS DE TRABALHO PARA OS ALUNOS A PARTIR DE JOGOS 2º ANO Adriana da Silva Santi Coordenação Pedagógica de Matemática Piraquara Abril/214 1 JOGOS E PROPOSTAS DE TRABALHO PARA OS ALUNOS JOGO DOS 6 PALITOS
PROBABILIDADES PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO
PROBABILIDADES Probabilidade é um conceito filosófico e matemático que permite a quantificação da incerteza, permitindo que ela seja aferida, analisada e usada para a realização de previsões ou para a
Matemática SSA 2 REVISÃO GERAL 1
1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base
Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO
RACIOCÍNIO LÓGICO-QUANTITATIVO 1 - Um viajante, a caminho de determinada cidade, deparou-se com uma bifurcação onde estão três meninos e não sabe que caminho tomar. Admita que estes três meninos, ao se
Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo
1. (Uerj 015) Uma criança ganhou seis picolés de três sabores diferentes: baunilha, morango e chocolate, representados, respectivamente, pelas letras B, M e C. De segunda a sábado, a criança consome um
Noções de Probabilidade e Estatística CAPÍTULO 2
Noções de Probabilidade e Estatística Resolução dos Exercícios Ímpares CAPÍTULO 2 Felipe E. Barletta Mendes 8 de outubro de 2007 Exercícios da seção 2.1 1 Para cada um dos casos abaixo, escreva o espaço
Aula 1: Introdução à Probabilidade
Aula 1: Introdução à Probabilidade Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 07 de Março de 2012 Experimento Aleatório Um experimento é qualquer processo
Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%)
Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 17 de outubro de 2012 Nome: N.º Turma: Classificação:
Matemática. Resolução das atividades complementares. M6 Probabilidade
Resolução das atividades complementares Matemática M Probabilidade p. Numa urna há seis bolas numeradas de 0 a. a) Dê o espaço amostral nesta situação: retirar uma bola da urna. b) Descreva o evento A:
Experimentos Aleatórios e Espaços Amostrais
Experimentos Aleatórios e Espaços Amostrais Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Primeiro Semestre, 2012 C.T.Cristino (DEINFO-UFRPE) Experimentos Aleatórios
ANÁLISE COMBINATÓRIA. Ex: 1) Para a eleição da associação de Pais e Mestres da Escola, há três candidatos a presidente e dois a vice-presidente.
ANÁLISE COMBINATÓRIA A Análise Combinatória é uma parte da Matemática que estuda e desenvolve métodos para a resolução de problemas que envolvem contagem. A origem dos problemas de contagem está ligada
Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade
Estatística e Probabilidade Aula 4 Cap 03 Probabilidade Estatística e Probabilidade Método Estatístico Estatística Descritiva Estatística Inferencial Nesta aula... aprenderemos como usar informações para
Atividade à Distância Avaliativa - Probabilidade. 1 Probabilidade - Operações e Propriedades
Universidade Estadual de Santa Cruz UESC Professora: Camila M. L Nagamine Bioestatística Atividade à Distância Avaliativa - Probabilidade Se ouço, esqueço; se vejo, recordo; se faço, aprendo. (Provérbio
37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO
GABARITO NÍVEL 1 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO 1) C 6) A 11) D 16) C 2) D 7) C 12) C 17) D 3) E 8) B 13) E 18) A 4) E 9) B 14)
Cap. 4 - Probabilidade
statística para Cursos de ngenharia e Informática edro lberto Barbetta / Marcelo Menezes Reis / ntonio Cezar Bornia São aulo: tlas, 2004 Cap. 4 - robabilidade OIO: undação de Ciência e Tecnologia de Santa
PRINCÍPIO DA CASA DOS POMBOS
PRINCÍPIO DA CASA DOS POMBOS 1) Certa noite, Carlos Eduardo resolveu ir ao cinema, mas descobriu que não tinha meias limpas pra calçar. Foi então ao quarto do pai, que estava na escuridão. Ele sabia que
3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes
3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes 1) Quatro moedas são lançadas e observa-se a seqüência de caras e coroas
AULA 9 - PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA
AULA 9 - PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE Fenômeno Aleatório: situação ou acontecimento cujos resultados não podem ser determinados com certeza. Exemplos: 1. Resultado do lançamento de um dado;. Hábito de fumar de um estudante
Matemática em Toda Parte II
Matemática em Toda Parte II Episódio: Matemática nas Brincadeiras Resumo O episódio Matemática nas Brincadeiras explora o mundo dos jogos para identificar o uso dos conceitos de combinatória e probabilidade.
ANÁLISE ESTATÍSTICA Uanderson Rebula de Oliveira
ANÁLISE ESTATÍSTICA de Oliveira [email protected] www.uandersonrebula.blogspot.com CADERNO DE EXERCÍCIOS Tabelas e Gráficos Estatísticos 1) Classifique as Séries abaixo: ) Construção de tabelas: a)
(Testes intermédios e exames 2007/2008)
(Testes intermédios e exames 2007/2008) 14. Uma caixa 1 tem uma bola verde e três bolas amarelas. Uma caixa 2 tem apenas uma bola verde. Considere a experiência que consiste em tirar, simultaneamente e
Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ
Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,
AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos?
Questão 1. Num porta-cds, cabem 10 CDs colocados um sobre o outro, formando uma pilha vertical. Tenho 3 CDs de MPB, 5 de rock e 2 de música clássica. (a) De quantos modos diferentes posso empilhá-los de
Os dados expostos nesse levantamento têm consequências sociais relacionadas ao trabalho, à família, à educação e a muitos outros temas importantes.
Introdução De acordo com um estudo realizado pelo IBGE (Instituto Brasileiro de Geografia e Estatística), a quantidade de mulheres no Brasil é maior que a de homens. As informações de 2007 destacam que
Estatística II. Capítulo 1:
1 Estatística II Capítulo 1: Consciente ou inconsciente, a probabilidade é usada por qualquer individuo que toma decisão em situações de incerteza. Conhecendo ou não regras para seu cálculo, muitas pessoas
I.MATEMÁTICA FINANCEIRA
I.MATEMÁTICA FINANCEIRA 1. CONCEITOS BÁSICOS Aplicações: no atual sistema econômico, como financiamentos de casa e carros, realizações de empréstimos, compras a crediário ou com cartão de crédito, aplicações
Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade
Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Você aprendeu o que é função probabilidade e função densidade de probabilidade e viu como esses conceitos são importantes
Prova Escrita de Matemática Aplicada às Ciências Sociais
Exame Final Nacional do Ensino Secundário Prova Escrita de Matemática Aplicada às Ciências Sociais 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 835/2.ª Fase 15 Páginas Duração
