Módulo X. Querido aluno(a)!!!
|
|
|
- Isabella Barroso Galindo
- 10 Há anos
- Visualizações:
Transcrição
1 1 Módulo X Querido aluno(a)!!! É o que deseja a equipe
2 2 Exercícios 1) Um grupo de 15 elementos apresenta a seguinte composição: Um elemento é escolhido as acaso. Pergunta-se: a) Qual a probabilidade de ser homem? b) Qual a probabilidade de ser adulto? c) Qual a probabilidade de menor e mulher? d) Sabendo-se que o elemento escolhido é adulto, qual a probabilidade de ser homem? e) Dado que a escolhida é mulher, qual a probabilidade de ser menor? 2) Em uma caixa temos 10 peças, das quais 4 são defeituosas. São retiradas duas peças, uma após a outra, com reposição. Calcular a probabilidade de ambas serem boas. 3) Dois dados são lançados simultaneamente. Qual a probabilidade de: a) a soma ser menor que 4 b) a soma ser 9 c) o primeiro resultado ser maior do que o segundo 4) Um número inteiro é escolhido aleatoriamente dentre os números 1, 2, 3,..., 50. Qual a probabilidade de:
3 3 a) o número ser divisível por 5 b) terminar em 3 c) ser primo d) ser divisível por 6 ou por 8 5) Uma caixa contém 25 bolas numeradas de 1 a 25. Extraindo-se uma bola ao acaso, qual a probabilidade de que seu número seja: a) par b) ímpar c) par e maior que 10 d) primo e maior que 3 e) múltiplo de 3 e 5 6) Uma caixa tem 3 bolas brancas e 2 bolas pretas. Extraindo-se duas bolas, calcule a probabilidade de serem: a) uma de cada cor b) ambas da mesma cor 7) Resolver o exercício anterior admitindo que as duas bolas são extraídas uma a uma com reposição. 8) Três lâmpadas são escolhidas aleatoriamente dentre 15 lâmpadas, das quais 5 são defeituosas. Encontre a probabilidade de que: a) nenhuma seja defeituosa; b) exatamente uma defeituosa c) pelo menos uma seja defeituosa.
4 4 9) Três parafusos e três porcas são colocados numa caixa. Se duas peças são retiradas aleatoriamente, encontre a probabilidade de uma ser parafuso e a outra ser porca. 10) Num lote de 12 peças, 4 são peças defeituosas. Três peças são retiradas ao acaso, uma após a outra. Encontre a probabilidade de todas as três peças serem não-defeituosas. 11) Uma classe tem 12 meninos e 4 meninas. Se três estudantes são selecionados aleatoriamente, qual é a probabilidade de serem todos meninos? 12) Um lote é formado por 10 peças boas, 4 com defeitos e 2 com defeitos graves. Uma peça é escolhida aleatoriamente. Calcule a probabilidade de que: a) ela não tenha defeitos graves b) ela não tenha defeitos c) ela ou seja boa ou tenha defeitos graves. 13) São dadas três caixas, como segue: A caixa I tem 10 lâmpadas, das quais 4 são defeituosas A caixa II tem 6 lâmpadas, das quais 1 é defeituosa A caixa III tem 8 lâmpadas, das quais 3 são defeituosas. Selecionamos uma caixa aleatoriamente e então retiramos uma lâmpada, também aleatoriamente. Qual a probabilidade dela ser defeituosa? 14) Três máquinas A, B e C, produzem 50%, 30% e 20%, respectivamente do total de peças de uma fábrica. As porcentagens de produção
5 5 defeituosas destas máquinas são 3%, 4% e 5%. Se uma peça é selecionada ao acaso, ache a probabilidade dela ser defeituosa. 15) Três departamentos A, B e C de uma escola têm, respectivamente, a seguinte composição: 2 doutores, 3 mestres e 4 especialistas; 3 doutores, 2 mestres e 2 especialistas; 4 doutores, 1 mestre e 1 especialista. Escolhe-se um departamento ao acaso e sorteiam-se dois professores. Se os professores são um especialista e um doutor, qual a probabilidade que tenham vindo o departamento A? 16) Uma urna contem 12 bolas; 5 brancas, 4 vermelhas e 3 pretas. Outra contém 18 bolas; 5 brancas, 6 vermelhas e 7 pretas. Uma bola é retirada de cada urna. Qual é a probabilidade de que as duas bolas sejam de mesma cor? 17) Uma urna contém 5 bolas pretas, 3 vermelhas e 2 brancas. Foram extraídas 3 bolas com reposição. Qual a probabilidade de terem sido duas bolas pretas e uma vermelha? 18) Uma caixa A contém 8 peças, das quais 3 são defeituosas e uma caixa B contém 5 peças, das quais 2 são defeituosas. Uma peça é retirada aleatoriamente de cada caixa: I) Qual a probabilidade p de que ambas as peças não sejam defeituosas? II) Qual a probabilidade p de que uma peça seja defeituosa e a outra não? III) Se uma peça é defeituosa e a outra não, qual é a probabilidade p de que a peça defeituosa venha da caixa A?
6 6 19) Em certo colégio, 5% dos homens e 2% das mulheres têm mais do que 1,80m de altura. Por outro lado, 60% dos estudantes são homens. Se um estudante é selecionado aleatoriamente e tem mais de 1,80m de altura, qual a probabilidade de que o estudante seja mulher? 20) Três máquinas, A, B e C produzem respectivamente 40%, 50% e 10% do total de peças de uma fábrica. As porcentagens de peças defeituosas nas respectivas máquinas são 3%, 5% e 2%. Uma peça é sorteada ao acaso e verifica-se que é defeituosa. Qual a probabilidade de que a peça tenha vindo da máquina B?
7 7 Probabilidades Solução de Exercícios 1. a) P ( A ) = 10 /15 = 0,67 ou 67%. A probabilidade de ser homem é de 67% b) P ( A ) = 7 /15 = 0, 47 ou 47%. A probabilidade de ser adulto é de 47% c) P ( m e M )= 3/15 = 0, 20 ou 20%. A probabilidade de ser menor e mulher é de 20%. d) P ( H A) 5 P( H A) 15 5 / = = = = 0,71 ou 71%. A probabilidade de ser P( A) homem, sabendo que é adulto é de 71%. e) P ( m M ) 3 P( m M ) 15 3 / = = = = 0,60 ou 60%. A probabilidade de ser P ( M ) menor, dado que é mulher é de 60%. 2.
8 8 3. a) P = 3/ 36 = 0,08 ou 8%. b) P = 4 / 36 = 0,11 ou 11%. c) P = 15 / 36 = 0,42 ou 42%. A probabilidade da soma ser menor do que 4 é de 8%. Da soma ser 9 é de 11% e do primeiro resultado ser maior do que o segundo é de 42%. 4. a) A = { 5,10,15, 20, 25,30,35, 40, 45,50} p = 10 / 50 = 1/ 5 = 0,20 ou 20%. A probabilidade do número ser divisível por 5 é de 20%. b) B = { 3,13, 23,33, 43} p = 5/ 50 = 1/10 = 0,10 ou 10%. A probabilidade de terminar em 3 é de 10%. c) C = { 2,3,5, 7,11,13,17,19, 23, 29,31,37, 41, 43, 47} p = 15/ 50 = 0,30 ou 30%. A probabilidade do número ser primo é de 30%.
9 9 d) D = { 6,8,12,16,18, 24,30,32,36, 40, 42, 48} p = 12 / 50 = 0,24 ou 24%. A probabilidade do número ser divisível por 6 ou por 8 é de 24%. 5. a) A = { 2, 4, 6,8,10,12,14,16,18, 20, 22, 24} p = 12 / 25 = 0,48 ou 48%. A probabilidade do número ser par é de 48%. b) B = { 1,3,5, 7,9,11,13,15,17,19, 21, 23, 25} p = 13/ 25 = 0,52 ou 52%. A probabilidade do número ser ímpar é de 52%. c) C = { 12,14,16,18, 20, 22, 24} p = 7 / 25 = 0, 28 ou 28%. A probabilidade do número ser par e maior do que 10 é 28%. d) D = { 5, 7,11,13,17,19, 23} p = 7 / 25 / 0,28 ou 28%. A probabilidade do número ser primo e maior do que 3 é 28%. e) E = { 15}
10 10 p = 1/ 25 = 0,04 ou 4%. A probabilidade do número ser múltiplo de 3 e 5 é 4%. 6. a) BP ou PB = 2 = = 0,60 ou 60% = + = + = = 0, 40 ou 40% b) BB ou PP P ( BB) P( PP) A probabilidade de ser uma de cada cor é de 60%. A probabilidade de serem ambas da mesma cor é de 40%. 7. a) p = 2 = = 0, 48 ou 48% b) p = + = = = 0,52 ou 52% A probabilidade de ser uma de cada cor é de 48%. A probabilidade de serem ambas da mesma cor é de 52%. 8.
11 11 a) p (nenhuma defeituosa) = p ( ppp) = = = = 0, 26 ou 26% b) p (uma defeituosa) = P ( dpp) + P ( pdp) + P ( ppd ) p = 3 = = 0, 49 ou 49% c) P (pelo menos uma defeituosa) = P (1 defeituosa) + P (2 defeituosas) + P (3 defeituosas) = 1 P (nenhuma defeituosa) = 1 P (ppp) = 1 = = 0, 736 ou 74% A probabilidade de que nenhuma seja defeituosa é de 26%. A probabilidade de exatamente uma ser defeituosa é de 49%. A probabilidade de que pelo menos uma seja defeituosa é de 74%. 9. P (1 parafuso e 1 porca) = P ( Pa Po ) = P (1 parafuso e 2ª porca) + P (1ª porca 2 parafuso) = 2 P (1 parafuso 2 ª porca) = = = = 0,60 ou 60%. A probabilidade de uma ser parafuso e a outra porca é de 60%. 10.
12 12 P (3 não defeituosas) = P (3 perfeitas) = ( ) P ppp = = 14 = 0, ou 25%. A probabilidade de todas as três peças serem defeituosas é de 25%. 11. P ( Mo Mo Mo ) = = = 0,39 = 39% A probabilidade de serem todos meninos é de 39%. 12. a) P (não ter defeitos graves) = P (Ser boa ou apenas defeituosa) = P ( B D) = P( B) + P ( D) = + = = = 0,88 ou 88% b) P (não ter defeitos) = P (ser boa) = 10 = 5 = 0,62 ou 62% 16 8 c) P (ou seja boa ou tenha defeitos graves) = P ( B Dg ) = P( B) P ( Dg ) = + = = = 0,75 ou 75%
13 13 A probabilidade de que a peça não tenha defeitos graves é de 88%. A probabilidade de que a peça não tenha nenhum defeito é de 62%. A probabilidade de que ou ela seja boa ou tenha defeitos graves é de 75%. 13. P (defeituosa) = ( ) P D = + + = = + + = = 0,314 ou 31, 4 ou 31% A probabilidade de que a lâmpada seja defeituosa é de 31%. 14. P ( D ) = 0,50 0,03 + 0,30 0,04 + 0,20 0,05 = 0,037 ou 4% A probabilidade da peça ser defeituosa é de 4%.
14 P( A ED) ( / ) = ; P ( A ED) 2 P ( ED) P A ED = = = 0, ; P ( ED ) = + + = + + = P ( ED ) = 0, , , = 0, , P ( A/ ED ) = = 0, 2971 ou 30% 0, A probabilidade de que os dois professores tenham vindo do departamento A é de 30%.
15 P (duas da mesma cor) = P ( BB ou VV ou PP ) = P ( BB) + P( VV ) P( PP) = + + = = = 0,324 ou 32% A probabilidade de que as duas bolas sejam da mesma cor é de 32%. 17. P (duas pretas e uma vermelha) = P ( PPV ou PVP ou VPP ) = = 3 P( PPV ) = 3 = = 0, 225 ou 22% A probabilidade de terem sido extraídas duas bolas pretas e uma vermelha é de 22%.
16 Ι. P (não defeituosas) = ( ) 5 3 P PP = = 0,375 ou 38%. A probabilidade de 8 5 que ambas as peças sejam não defeituosas é de 38%. ΙΙ. P (uma defeituosa e outra perfeita) = P ( DP ou PD ) = = = = 0, 475 ou 48%. A probabilidade de que uma peça seja defeituosa e a outra não é de 48%. ΙΙΙ. P (uma peça ser defeituosa e vir da caixa A sabendo que a outra é perfeita) = P ( DA / DP )
17 P( DA DP ) P ( DA DP) = = 8 5 = = = 0, 474 ou 47% P ( DP) A probabilidade de que, se uma peça é defeituosa e a outra não, a peça defeituosa tenha vindo da caixa A é de 47%. 19. P (ser mulher sabendo que tem + de 1,80m) = P ( M / + 1,80 ) = ( + 1,80 ) P ( + 1,80 ) P M 0,04 0,02 0,0008 P ( M / + 1,80 ) = = = 0, 21 ou 21%. A 0,60 0,05 + 0, 40 0,02 0,038 probabilidade de que o estudante seja mulher, com mais de 1,80m de altura, é de 21%. 20. P (Ter vindo da máquina B sabendo que é defeituosa) = P ( B / D ) = ( D) P( D) P B
18 18 ( / ) P B D 0,641 ou 64%. ( D) P( D) P B 0,05 0,05 0, = = = = = 0, 40 0,03 + 0,50 0, ,10 0,02 0, A probabilidade de que a peça, sendo defeituosa, tenha vindo da máquina B é de 64%. - os exercícios n 0 01 ao n 0 20, tem como Fonte Bibliográfica:Gonçalves, Cristina F. Fidelis. Estatística Londrina: Ed. UEL, 2002.
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA 1 o Semestre Ficha de Exercícios - Teoria das Probabilidades 2009/2010
UNIVERSIDADE DO ALGARVE
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA C.E.T. EM TOPOGRAFIA E CADASTRO REGIME DIURNO - 2º SEMESTRE - 1º ANO - 2007 / 2008 DISCIPLINA DE NOÇÕES DE PROBABILIDADES E ESTATÍSTICA Ficha nº2 -
PROBABILIDADE PROFESSOR: ANDRÉ LUIS
PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado
3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes
3ª lista de exercícios sobre cálculo de probabilidades, axiomas, propriedades, teorema da probabilidade total e teorema de Bayes 1) Quatro moedas são lançadas e observa-se a seqüência de caras e coroas
Introdução à Probabilidade e Estatística
Professor Cristian F. Coletti Introdução à Probabilidade e Estatística (1 Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos. a Uma moeda é lançada duas vezes
Módulo VIII. Probabilidade: Espaço Amostral e Evento
1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.
Professor Mauricio Lutz PROBABILIDADE
PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos
Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO
PROBBILIDDE Introdução teoria da probabilidade é o ramo da matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos aleatórios ou não determinísticos.
7- Probabilidade da união de dois eventos
. 7- Probabilidade da união de dois eventos Sejam A e B eventos de um mesmo espaço amostral Ω. Vamos encontrar uma expressão para a probabilidade de ocorrer o evento A ou o evento B, isto é, a probabilidade
C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7
RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.
FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO
FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO TEMA PRIAD PROBABILIDADES E APLICAÇÕES PRÁTICAS DATA / / ALUNO RA TURMA 1) Num levantamento realizado
Esmiuçando o Teorema de Bayes e fazendo exercícios
PROAILIDADES Esmiuçando o Teorema de ayes e fazendo exercícios ERTOLO Lembrando as Aulas Anteriores Probabilidade Condicional: Teorema do Produto: Se os eventos e E 1 forem INDEPENDENTES: 11/09/2012 ertolo
Noções de Probabilidade e Estatística CAPÍTULO 2
Noções de Probabilidade e Estatística Resolução dos Exercícios Ímpares CAPÍTULO 2 Felipe E. Barletta Mendes 8 de outubro de 2007 Exercícios da seção 2.1 1 Para cada um dos casos abaixo, escreva o espaço
Lista 05. Devemos calcular a probabilidade de ser homem dado que é loiro, sendo:
Lista 05 Questão 1: Em uma turma escolar 60% dos alunos são homens e 40% são mulheres. Dentre os homens, 25% são loiros, enquanto que 45% das mulheres são loiras. Um aluno desta turma foi sorteado de maneira
Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos
Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Organização: Airton Kist Digitação: Guilherme Ludwig Exercício Se X b(n, p), sabendo-se que E(X ) = 12 e σ 2 = 3, determinar:
Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE
Estatística 2 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira Probabilidade Espaço Amostral Em cada um dos exercícios a 0. Determine o espaço amostral.. Uma letra é escolhida entre as letras da palavra PROBABILIDADE
UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ ALI UNITAU APOSTILA PROAILIDADES ibliografia: Curso de Matemática Volume Único Autores: ianchini&paccola Ed. Moderna Matemática Fundamental - Volume Único Autores:
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1
1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1. Origem histórica É possível quantificar o acaso? Para iniciar,
1 Axiomas de Probabilidade
1 Axiomas de Probabilidade 1.1 Espaço amostral e eventos seja E um experimento aleatório Ω = conjunto de todos os resultados possíveis de E. Exemplos 1. E lançamento de uma moeda Ω = {c, c} 2. E retirada
Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%)
Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 17 de outubro de 2012 Nome: N.º Turma: Classificação:
LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS
LISTA DE EXERCÍCIOS VARIÁVEIS ALEATÓRIAS 1. Construir um quadro e o gráfico de uma distribuição de probabilidade para a variável aleatória X: número de coroas obtidas no lançamento de duas moedas. 2. Fazer
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução a Probabilidade Existem dois tipos
Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística
Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos
Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá
Unidade de Ensino Descentralizada de Colatina Coordenadoria de Informática Disciplina: Probabilidade e Estatística Prof. Leandro Melo de Sá 2006/2 Unidade 2 - PROBABILIDADE Conceitos básicos * Probabilidade:
Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42
Probabilidades Duds 1. (Upe 2013) Em uma turma de um curso de espanhol, três pessoas pretendem fazer intercâmbio no Chile, e sete na Espanha. Dentre essas dez pessoas, foram escolhidas duas para uma entrevista
4) Quais dos seguintes pares de eventos são mutuamente exclusivos:
INE 7002 LISTA DE EXERCÍCIOS PROBABILIDADE Lista de Exercícios - Probabilidade 1 1) Lâmpadas que se apresentam em perfeitas condições são ensaiadas quanto ao tempo de vida. Um instrumento é acionado no
UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI NÚCLEO DE EDUCAÇÃO À DISTÂNCIA CURSO DE GRADUAÇÃO EM ADMINISTRAÇÃO PÚBLICA GABARITO
UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI NÚCLEO DE EDUCAÇÃO À DISTÂNCIA CURSO DE GRADUAÇÃO EM ADMINISTRAÇÃO PÚBLICA GABARITO GRUPO: ESTATÍSTICA DATA: HORÁRIO: NOME DO CANDIDATO: CPF: ASSINATURA: INSTRUÇÕES:
CAPÍTULO I - ELEMENTOS DE PROBABILIDADE
CAPÍTULO I - ELEMENTOS DE PROBABILIDADE 1.1 INTRODUÇÃO Em geral, um experimento ao ser observado e repetido sob um mesmo conjunto especificado de condições, conduz invariavelmente ao mesmo resultado. São
Primeira Lista de Exercícios de Estatística
Primeira Lista de Exercícios de Estatística Professor Marcelo Fernandes Monitor: Márcio Salvato 1. Suponha que o universo seja formado pelos naturais de 1 a 10. Sejam A = {2, 3, 4}, B = {3, 4, 5}, C =
100 QUESTÕES DE PROBABILIDADE PARA CONCURSOS
100 QUESTÕES DE PROBABILIDADE PARA CONCURSOS R E S O L U Ç Ã O D E E X E R C ÍC IO S R A C IO C ÍN IO L Ó G IC O M A T E M Á T IC A F ÍS IC A /Q U ÍM IC A E m a il g a b a r ito c e rto @ h o tm a il.c
EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE 3 a SÉRIE ENSINO MÉDIO
EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE a SÉRIE ENSINO MÉDIO ======================================================================= ) (UF SC) Em uma caixa há 8 bombons, todos com forma,
Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG
Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas
Exercícios sobre probabilidades Matemática aula por aula Benigno Barreto Filho/Cláudio Xavier Toledo da Silva vol. 2 Ensino Médio.
Atividade sobre Probabilidades 4 o bim. 2009 2 os anos 1) No lançamento simultâneo de 2 dados, considere as faces voltadas para cima e determine a) espaço amostral S. b) evento E 1 : números cuja soma
Bom serviço dentro da garantia Serviço deficiente dentro da garantia Vendedores de determinada marca de pneus 64 16
Lista de Probabilidade Básica com gabarito 1. Considere a experiência que consiste em pesquisar famílias com três crianças, em relação ao sexo das mesmas, segundo a ordem de nascimento. (a)determine o
Teorema da Probabilidade Total e Teorema de Bayes
PROBABILIDADES Teorema da Probabilidade Total e Teorema de Bayes BERTOLO Lembrando a Aula Anterior Probabilidade Condicional: Teorema do Produto:. ) Se os eventos B e E 1 forem INDEPENDENTES:. ) 06/09/2012
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE Fenômeno Aleatório: situação ou acontecimento cujos resultados não podem ser determinados com certeza. Exemplos: 1. Resultado do lançamento de um dado;. Hábito de fumar de um estudante
RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1
RESUMO TEÓRICO Experimentos aleatórios: são aqueles que, mesmo repetidos várias vezes sob condições semelhantes, apresentam resultados imprevisíveis. Exemplo: Lançar um dado e verificar qual é a face voltada
Probabilidade. Multiplicação e Teorema de Bayes
robabilidade Multiplicação e Teorema de ayes Regra da Multiplicação Num teste, são aplicadas 2 questões de múltipla escolha. Na primeira questão, as respostas possíveis são V ou F. Na segunda, a, b, c,
MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03
MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03 1 1) (FGV-SP 2008) Há apenas dois modos de Cláudia ir para o trabalho: de ônibus ou de moto. A probabilidade de ela ir de ônibus é 30% e, de moto,
CAPÍTULO 04 NOÇÕES DE PROBABILIDADE
CAPÍTULO 0 NOÇÕES DE PROBABILIDADE. ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. No lançamento de uma moeda perfeita (não viciada) o espaço amostral é S =
Disciplina Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE DSITRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DISCRETAS
Disciplina Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE DSITRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DISCRETAS 1) Devido às altas taxas de juros, uma firma informa que 30% de suas
CURSO ON-LINE PROFESSOR GUILHERME NEVES
Olá pessoal! Resolverei neste ponto mais uma prova da FUNIVERSA. Desta vez é a prova para Economista do CEB Distribuição S/A realizada em fevereiro de 2010. Aproveito a oportunidade para falar dos cursos
Matemática. Resolução das atividades complementares. M16 Probabilidade
Resolução das atividades complementares Matemática M Probabilidade p. 7 (FGV-SP) Uma urna contém quinze bolinhas numeradas de a. a) Se uma bolinha for sorteada, qual a probabilidade de que o número observado
Probabilidade parte 2. Robério Satyro
Probabilidade arte Robério Satyro Definição de robabilidade Vamos analisar o fenômeno aleatório lançamento de uma moeda erfeita. Nesse caso, temos: = {C, C} () = Os subconjuntos de são, {C}, { C} e {C,
I. Experimentos Aleatórios
A teoria do azar consiste em reduzir todos os acontecimentos do mesmo gênero a um certo número de casos igualmente possíveis, ou seja, tais que estejamos igualmente inseguros sobre sua existência, e em
Espaço Amostral ( ): conjunto de todos os
PROBABILIDADE Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado. = {1,, 3, 4,, 6}. Doador de sangue (tipo sangüíneo). = {A, B,
Probabilidade Condicional
PROBABILIDADES Probabilidade Condicional BERTOLO Exemplo Introdutório Vamos introduzir a noção de probabilidade condicional através de um exemplo. Consideremos 250 estudantes que cursam o 4º ano de Ciências
A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.
Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,
MÉTODOS ESTATÍSTICOS I 3ª. AVALIAÇÃO PRESENCIAL 1º Semestre de 2010 Prof. Moisés Lima de Menezes (pode usar calculadora) Versão Tutor
MÉTODOS ESTATÍSTICOS I ª. AVALIAÇÃO PRESENCIAL º Semestre de 00 Prof. Moisés Lima de Menezes (pode usar calculadora) Versão Tutor. (,0 pontos) Em uma cidade onde se publicam jornais: A, B e C, constatou-se
1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo.
1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo. A B C Homens 42 36 26 Mulheres 28 24 32 Escolhendo-se uma aluna desse curso, a probabilidade de ela ser da turma A é:
1 Probabilidade Condicional - continuação
1 Probabilidade Condicional - continuação Exemplo: Sr. e Sra. Ferreira mudaram-se para Campinas e sabe-se que têm dois filhos sendo pelo menos um deles menino. Qual a probabilidade condicional que ambos
Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO
Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 3º Bimestre/2013 Aluno(a): Número: Turma: 1) Resolva
Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica
Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma
Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira
- Conceitos Básicos Castro Soares de Oliveira é o ramo da matemática que estuda fenômenos aleatórios. está associada a estatística, porque sua teoria constitui a base de estatística inferencial. Conceito
O conceito de probabilidade
A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 2 Grupo I
ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A TESTE Nº Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,
Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis
Módulo de Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades a série E.M. Professores Tiago Miranda e Cleber Assis Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades 1 Exercícios
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.) PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de
Eventos independentes
Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos
UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2
UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 LISTA N O 2 Prof.: William Morán Sem. I - 2011 1) Considere a seguinte função distribuição conjunta: 1 2 Y 0 0,7 0,0
Resolução da prova de Raciocínio Lógico APO 2010 (ESAF)
Resolução da prova de Raciocínio Lógico APO 2010 (ESAF) Questão 01) Um viajante, a caminho de determinada cidade, deparou-se com uma bifurcação onde estão três meninos e não sabe que caminho tomar. Admita
PROBABILIDADE: TABELAS
PROBABILIDADE: TABELAS Enunciados dos problemas Ana Maria Lima de Farias Departamento de Estatística (GET/UFF) 1. Entre os pacientes de um endocrinologista, há 35 homens e 45 mulheres. 25 desses pacientes
Raciocínio Lógico-Quantitativo Correção da Prova APO 2010 Gabarito 1 Prof. Moraes Junior RACIOCÍNIO LÓGICO-QUANTITATIVO
RACIOCÍNIO LÓGICO-QUANTITATIVO 1 - Um viajante, a caminho de determinada cidade, deparou-se com uma bifurcação onde estão três meninos e não sabe que caminho tomar. Admita que estes três meninos, ao se
a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36
MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade
Modelo Binomial. 1º semestre de 2009- Gabarito 2. Distribuição Binomial ME323
Exercício 01 Acredita-se que 20% dos moradores das proximidades de uma grande indústria siderúrgica tem alergia aos poluentes lançados ao ar. Admitindo que este percentual de alérgicos é real (correto),
Lista 5 - Introdução à Probabilidade e Estatística
UNIVERSIDADE FEDERAL DO ABC Lista 5 - Introdução à Probabilidade e Estatística Variáveis Aleatórias 1 Duas bolas são escolhidas aleatoriamente de uma urna que contém 8 bolas brancas, 4 pretas e 2 laranjas.
ANÁLISE ESTATÍSTICA Uanderson Rebula de Oliveira
ANÁLISE ESTATÍSTICA de Oliveira [email protected] www.uandersonrebula.blogspot.com CADERNO DE EXERCÍCIOS Tabelas e Gráficos Estatísticos 1) Classifique as Séries abaixo: ) Construção de tabelas: a)
AULA 9 - PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA
AULA 9 - PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado
UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007
UNIVERSIDADE DOS AÇORES Cursos de Sociologia e de Serviço Social Estatística I 1º Semestre 2006/2007 Ficha de Exercícios nº 5 Distribuições Importantes 1. A probabilidade de os doentes de uma determinada
RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria
Processos Estocásticos
Processos Estocásticos Segunda Lista de Exercícios 01 de julho de 2013 1 Uma indústria fabrica peças, das quais 1 5 são defeituosas. Dois compradores, A e B, classificam os lotes de peças adquiridos em
Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade:
Exame MACS- Probabilidades Probabilidades: Função massa de probabilidades ou função distribuição de probabilidade ou modelo de probabilidade: Nos modelos de probabilidade: há uma primeira fase em que colocamos
Noções de Probabilidade
Noções de Probabilidade Bacharelado em Economia - FEA - Noturno 1 o Semestre 2015 Gilberto A. Paula G. A. Paula - MAE0219 (IME-USP) Noções de Probabilidade 1 o Semestre 2015 1 / 59 Objetivos da Aula Sumário
Aula de Exercícios - Testes de Hipóteses
Aula de Exercícios - Testes de Hipóteses Organização: Airton Kist Digitação: Guilherme Ludwig Testes de Hipóteses Exemplo Para decidirmos se os habitantes de uma ilha são descendentes da civilização A
a) ½ b) 1/3 c) 14 d) 1/5 e) 1/6
PROBABILIDADE 1) (ANEEL) Ana tem o estranho costume de somente usar blusas brancas ou pretas. Por ocasião de seu aniversário, Ana ganhou de sua mãe quatro blusas pretas e cinco brancas. Na mesma ocasião,
2ª LISTA DE EXERCÍCIOS
DISCIPLINA: ESTATÍSTICA VITAL PROF. TARCIANA LIBERAL PERÍODO: 2014.2 2ª LISTA DE EXERCÍCIOS 1) Descreva o espaço amostral para cada um dos seguintes experimentos: a) Lançamento de um dado e de uma moeda;
Um carro do modelo B foi comprado nessa concessionária. Dado que esse carro é de cor prata, qual a probabilidade que seu motor seja 1.0?
PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - ABRIL DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÃO 0) - (UEMS) Uma
PROVA DO BANCO DO BRASIL - 2010 - MATEMÁTICA E RACIOCÍNIO LÓGICO RESOLVIDA E COMENTADA Professor Joselias [email protected].
Professor Joselias Abril de2010 MATEMÁTICA 11- Um investidor aplicou certa quantia em um fundo de ações. Nesse fundo, das ações eram da empresa A, eram da empresa B e as restantes, da empresa C. Em um
Distribuições de Probabilidade Distribuição Binomial
PROBABILIDADES Distribuições de Probabilidade Distribuição Binomial BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas
Exercícios de Probabilidades e Estatística. Departamento de Matemática Escola Superior de Tecnologia de Setúbal Instituto Politécnico de Setúbal
Exercícios de Probabilidades e Estatística Departamento de Matemática Escola Superior de Tecnologia de Setúbal Instituto Politécnico de Setúbal Março de 2009 1 Elementos da Teoria das Probabilidades Exercício
INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO LISTA DE EXERCÍCIOS (VARIÁVEIS ALEATÓRIAS) ALUNO(A):
INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO LISTA DE EXERCÍCIOS (VARIÁVEIS ALEATÓRIAS) ALUNO(A): 1) A demanda quotidiana por um determinado produto no mercadinho
MATEMÁTICA PROVA DO VESTIBULAR ESAMC-2003-2 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA. 26. A expressão numérica ( ) RESOLUÇÃO:
PROVA DO VESTIULAR ESAMC-003- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA MATEMÁTICA 3 3 3 6. A epressão numérica ( ) 3.( ).( ).( ) equivale a: A) 9 ) - 9 C) D) - E) 6 3 3 3 3 ( ).( ).( ).(
Exercícios resolvidos sobre Definição de Probabilidade
Exercícios resolvidos sobre Definição de Probabilidade Nesta Unidade de estudo, até este ponto você aprendeu definições de probabilidade e viu como os conceitos se aplicam a várias situações. Observe agora
Lista de Exercícios. Vetores
Lista de Exercícios Vetores LINGUAGEM DE PROGRAMAÇÃO PROF. EDUARDO SILVESTRI. WWW.EDUARDOSILVESTRI.COM.BR ATUALIZADO EM: 13/03/2007 Página 1/1 1. Faça um programa que crie um vetor de inteiros de 50 posições
94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)
Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)
Matemática. Resolução das atividades complementares. M6 Probabilidade
Resolução das atividades complementares Matemática M Probabilidade p. Numa urna há seis bolas numeradas de 0 a. a) Dê o espaço amostral nesta situação: retirar uma bola da urna. b) Descreva o evento A:
MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade
MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos
ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.
AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos?
Questão 1. Num porta-cds, cabem 10 CDs colocados um sobre o outro, formando uma pilha vertical. Tenho 3 CDs de MPB, 5 de rock e 2 de música clássica. (a) De quantos modos diferentes posso empilhá-los de
MAE116 Noções de Estatística
MAE6 Noções de Estatística Grupo A - º semestre de 007 Exercício ( pontos) Uma máquina de empacotar um determinado produto o faz segundo uma distribuição normal, com média µ e desvio padrão 0g. (a) Em
elementos. Caso teremos: elementos. Também pode ocorrer o seguinte fato:. Falsa. Justificativa: Caso, elementos.
Soluções dos Exercícios de Vestibular referentes ao Capítulo 1: 1) (UERJ, 2011) Uma máquina contém pequenas bolas de borracha de 10 cores diferentes, sendo 10 bolas de cada cor. Ao inserir uma moeda na
1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas.
GET007 Métodos Estatísticos Aplicados à Economia I Lista de Exercícios - variáveis Aleatórias Discretas Profa. Ana Maria Farias. Cinco cartas são extraídas de um baralho comum ( cartas, de cada naipe sem
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 011???? Quem será o próximo prefeito de
Revisão de combinatória
A UA UL LA Revisão de combinatória Introdução Nesta aula, vamos misturar os vários conceitos aprendidos em análise combinatória. Desde o princípio multiplicativo até os vários tipos de permutações e combinações.
PRINCÍPIO DA CASA DOS POMBOS
PRINCÍPIO DA CASA DOS POMBOS 1) Certa noite, Carlos Eduardo resolveu ir ao cinema, mas descobriu que não tinha meias limpas pra calçar. Foi então ao quarto do pai, que estava na escuridão. Ele sabia que
Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática
Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 4 Disciplina: matemática Prova: desafio nota: QUESTÃO Como prêmio de final de ano, o dono de uma loja quer dividir uma
Combinatória. Matemática Professor: Paulo César 04/12/2014. Lista de Exercícios
Combinatória 1. (Espcex (Aman) 2015) De uma caixa contendo 50 bolas numeradas de 1 a 50 retiram-se duas bolas, sem reposição. A probabilidade do número da primeira bola ser divisível por 4 e o número da
RACIOCÍNIO LÓGICO PROF PEDRÃO TABELA-VERDADE
TABELA-VERDADE 01) A negação da afirmação se o cachorro late então o gato mia é: A) se o gato não mia então o cachorro não late. B) o cachorro não late e o gato não mia. C) o cachorro late e o gato não
Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.
9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel
Prof. Paulo Henrique Raciocínio Lógico
Prof. Paulo Henrique Raciocínio Lógico Comentário da prova de Agente Penitenciário Federal Funrio 01. Uma professora formou grupos de 2 e 3 alunos com o objetivo de conscientizar a população local sobre
