Avaliação e Desempenho Aula 5
|
|
|
- Sara Alvarenga Bernardes
- 7 Há anos
- Visualizações:
Transcrição
1 Avaliação e Desempenho Aula 5 Aula passada Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Aula de hoje Variáveis aleatórias discretas e contínuas PMF, CDF e função densidade Exemplos de v. a. Esperança, Variância
2 Variáveis Aleatórias Necessidade de expressar eventos de forma precisa Interesse não no resultado aleatório, mas numa função do resultado Idéia: Mapear eventos em números reais! A B C D E reais
3 Exemplo: 1 dado Considere um dado Ganha 10 se o resultado é 6, zero se o resultado é 4 ou 5, e perde 5 se o resultado é 1, 2 ou
4 Definição de V.A. Uma variável aleatória X é uma função sobre um espaço amostral S que associa um número real a cada elemento de S X : S R v.a. é uma função (e não uma variável) imagem de X é o espaço amostral (discreto ou contínuo) função não precisa ser bijetora (um para um)
5 Exemplo: 2 dados Considere dois dados (vermelho e preto) Espaço amostral: S = { (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),... } Seja X uma v.a. que representa a soma dos dois dados X i, j =i j Inversa de X eventos que levam a um certo valor de X X = 4 : {(1, 3), (2, 2), (3, 1)}
6 Função de probabilidade de massa (pmf) Associar probabilidade a valores de uma v.a. Seja X uma v.a. (discreta) Qual a probabilidade de X = x? {s X s = x} Conjunto de eventos elementares que são mapeados no valor x p X x =P [ X =x]= P[{s X s = x}]= X s = x P [s] notação de pmf (probability mass function)
7 Exemplo: 2 dados Seja X uma v.a. que representa a soma de dois dados Defina a pmf de X p X x = P[ X =x] Qual é o domínio de X (valores que X pode assumir)? p X 2 =P [ X =2 ] = 1/36 X=2 : {(1,1)} p X 3 =P [ X =3 ] = 2/36 X=3 : {(1,2), (2,1)} p X 4 =P [ X =4 ] = 3/36... X=4 : {(1,3), (2,2), (3,1)}
8 Exemplo: 2 dados pmf, graficamente P [X = x] x (valor que X pode assumir)
9 Função de distribuição cumulativa (cdf) Probabilidade cumulativa (ao invés de pontual) Dada v.a. X, temos F X x =P [ X x]= P[{s X s x}]= X s x notação da cdf (cumulative distribution function) F X (x) é não decrescente Limite quando x tende a infinito é 1 P [s]
10 Exemplo: 2 dados Seja X uma v.a. que representa a soma de dois dados Defina a cdf de X F X x = P[ X x] F X 2 =P [ X 2 ]= 1/36 F X 3 =P [ X 3 ]= 3/36 F X 4 =P [ X 4 ]= 6/36... X=2 : {(1,1)} X=3 : {(1,1), (1,2), (2,1)} X=4 : {(1,1),..., (1,3)}
11 cdf, graficamente Exemplo: 2 dados P [X <= x] x (valor que X pode assumir)
12 Espaço Amostral não Contável Espaço amostral é contínuo (não contável) não podemos enumerar o espaço Exemplo de espaço amostral contínuo? Exemplo de experimento aleatório? medir intervalo de tempo com precisão infinita! Associar probabilidade a cada possível resultado? Não! Um dado resultado irá possuir probabilidade zero! Idéia: Associar probabilidade a conjuntos de resultados ex. intervalo de tempo entre 1 e 1.1 segundos
13 Variável Aleatória Contínua Aplica se quando espaço amostral não é contável Mesma idéia da v.a. discreta mapear o espaço amostral nos números reais X :S R Exemplo de experimento aleatório tempo até uma lâmpada queimar (medido com precisão infinita) X é uma v.a. que indica exatamente este tempo
14 Variável Aleatória Contínua Função de probabilidade de massa não faz sentido probabilidade de um elemento do espaço amostral é zero Função de distribuição cumulativa faz sentido probabilidade de uma região do espaço mapeado ex. prob. da lâmpada queimar em menos de 1 dia F X x =P [ X x ]
15 Função de Densidade de Probabilidade (pdf) Aplicada a v.a. contínuas (facilita os cálculos) Define probabilidade da v.a. através de integrais f X x x = b P [a X b ]= x =a f X x d x Relação com cdf (função cumulativa) d d x F X x = f X x função de densidade da v.a. X pdf é a derivada da cdf
16 Função de Densidade de Probabilidade (pdf) 2 P [1 X 2]= 1 f X x dx
17 Distribuições Importantes v.a. discretas Bernoulli Binomial Geométrica Poisson v.a. contínuas Uniforme Exponencial Erlang Normal Usadas para modelar eventos que ocorrem na natureza Representam v.a. que iremos usar Relativamente fáceis de manipular
18 Bernoulli Somente dois eventos podem ocorrer cara ou coroa, sucesso ou falha, par ou ímpar, etc. v.a. binária (evento 0 ou evento 1) Parâmetro p, ocorrência de um dos eventos) pmf: p X 0 =1 p p X 1 = p
19 Binomial Contagem de eventos de Bernoulli eventos independentes Número de sucessos dado N experimentos Dois parâmetros p: prob. de ocorrência do evento (sucesso) pmf: N: número de experimentos p k = N X k pk 1 p N k Número de vezes que exatamente k eventos podem ocorrer Prob. que exatamente k eventos ocorram
20 Geométrica Sequência de eventos de Bernoulli até que ocorra um sucesso Parâmetros pmf: p: prob. de ocorrência do evento (sucesso) N: número de experimentos p X k = p 1 p k 1 Prob. de um evento de sucesso Prob. de exatamente k-1 eventos de falha
21 Poisson Número de eventos que ocorrem em um determinado intervalo de tempo Parâmetros t: intervalo de tempo : taxa média de ocorrência de eventos por unidade de tempo pmf: p X k = e l t l t k k! Siméon-Denis Poisson ( )
22 Exemplo com Poisson Chegada de chamadas a um call center segue a distribuição de Poisson Taxa média de chegada é de 3 chamadas por minuto Qual a probabilidade de não haver nenhuma chamada em 1 minuto? Qual a probabilidade de termos mais de 100 chamadas em 1 hora?
23 Exemplo com Poisson Qual a probabilidade de não haver nenhuma chamada em 1 minuto? 3 chamadas /minuto p X 0 = e ! =e 3
24 Exemplo com Poisson Qual a probabilidade de termos mais de 100 chamadas em 1 hora? 3 chamadas /minuto 1 P[ X 100]=1 F X k =0 k =100 e k k!
25 Uniforme Valores podem ocorrer com a mesma probabilidade Parâmetros cdf: [a, b] : intervalo onde v.a. pode ocorrer F X x = x a b a Onde ocorre o evento (em relação ao começo do intervalo) Tamanho do intervalo
26 Exponencial Tempo até que um evento ocorra Relacionada com Poisson (tempo entre eventos) Parâmetros : taxa de ocorrência de eventos cdf: F X t =1 e l t pdf: f X t =l e l t
27 Exponencial cdf pdf P[X <= t] f X (x) diferentes valores do parâmetro t t
28 Erlang Tempo até que um evento ocorra Sequência de v.a. Exponenciais Parâmetro : taxa de ocorrência de eventos r: número de estágios (de v.a. exponenciais) CDF: F X t =1 k =0,..., r 1 l t k k! e l t
29 Normal Distribuição fundamental em estatística resultado do teorema do limite central Aplicada a muitos fenômenos físicos Parâmetros u: média s: desvio padrão Normal padrão (média 0, desvio padrão 1) F X x = 1 x 2 e u 2 / 2 du Não possui forma fechada (consultar tabela)
30 Valor Esperado, Média, Esperança Variável aleatória discreta E [ X ]= k x k p X x k Variável aleatória contínua E [ X ]= x f X x dx
31 Variância Variável aleatória discreta ou contínua Var[ X ]=E [ X E [ X ] 2 ]=E [ X 2 ] E [ X ] 2 Segundo momento v.a. contínua E [ X 2 ]= x 2 f X x dx
32 Propriedades da Média Linearidade: E [ X Y ]=E [ X ] E [Y ] Produto: E [ XY ]=E [ X ] E [Y ], se X ey sãoindependentes.
33 Propriedade da Variância Soma de variância de duas v.a. Var [ X Y ]=Var [ X ] Var [Y ], se X ey sãoindependentes. Se X e Y não são independentes: Var [ X Y ]=Var [ X ] Var [Y ] 2Cov X,Y, onde Cov X,Y =E [ X E [ X ] Y E [Y ] ]
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08
Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aula passada Probabilidade Condicional Independência de Eventos Teorema da Probabilidade Total Lei de Bayes Aula de hoje Exemplo Lei de Bayes Variáveis Aleatórias
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aulas passadas Espaço Amostral Álgebra de Eventos Axiomas de Probabilidade Análise Combinatória Aula de hoje Probabilidade Condicional Independência de Eventos
Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal
Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:
UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros
UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade
Distribuições Discretas
META: Estudar o comportamento das Variáveis Aleatórias Discretas, bem como das Distribuições Binomial e Poisson e suas aplicações. Entender o comportamento de uma Variável aleatória Contínua. OBJETIVOS:
EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G.
EELT-7035 Processos Estocásticos em Engenharia Variáveis Aleatórias Discretas 21 de março de 2019 Variáveis Aleatórias Variável aleatória, X( ): função que mapeia o espaço amostral (S) em números pertencentes
Distribuições de Probabilidade
Distribuições de Probabilidade 7 6 5 4 3 2 1 0 Normal 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Temperatura do ar 20 18 16 14 12 10 8 6 4 2 0 Assimetrica Positiva 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Precipitação
Estatística (MAD231) Turma: IGA. Período: 2018/2
Estatística (MAD231) Turma: IGA Período: 2018/2 Aula #03 de Probabilidade: 19/10/2018 1 Variáveis Aleatórias Considere um experimento cujo espaço amostral é Ω. Ω contém todos os resultados possíveis: e
Modelos de Distribuição PARA COMPUTAÇÃO
Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO
Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS
Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial
VARIÁVEIS ALEATÓRIAS 1
VARIÁVEIS ALEATÓRIAS 1 Na prática é, muitas vezes, mais interessante associarmos um número a um evento aleatório e calcularmos a probabilidade da ocorrência desse número do que a probabilidade do evento.
Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto
Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Distribuição Geométrica Considere novamente uma sequência
Estatística (MAD231) Turma: IGA. Período: 2017/2
Estatística (MAD231) Turma: IGA Período: 2017/2 Aula #03 de Probabilidade: 04/10/2017 1 Variáveis Aleatórias Considere um experimento cujo espaço amostral é Ω. Ω contém todos os resultados possíveis: e
Conceitos Básicos, Básicos,Básicos de Probabilidade
Conceitos Básicos, Básicos,Básicos de Probabilidade Espaço Amostral Base da Teoria de Probabilidades Experimentos são realizados resultados NÃO conhecidos previamente Experimento aleatório Exemplos: Determinar
CE Estatística I
CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,
Distribuição de Probabilidade. Prof. Ademilson
Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.
Estatística Descritiva e Exploratória
Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução
Probabilidade e Estatística
Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis
VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL
VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL Variável Aleatória Uma função X que associa a cada elemento ω do espaço amostral Ω um valor x R é denominada uma variável aleatória. A variável aleatória pode
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição
ESTATÍSTICA. x(s) W Domínio. Contradomínio
Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.
Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos
AULA 16 - Distribuição de Poisson e Geométrica
AULA 16 - Distribuição de Poisson e Geométrica Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuição de Poisson Em muitas situações nos deparamos com a situação em que o número de ensaios
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari [email protected] Distribuições Discretas Uniforme Bernoulli Binomial Poisson
Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos
Processos Estocásticos. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema
AULA 15 - Distribuição de Bernoulli e Binomial
AULA 15 - Distribuição de Bernoulli e Binomial Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Variável Aleatória de Bernoulli Podemos dizer que as variáveis aleatórias mais simples entre as
Distribuições de Probabilidade
Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais
TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.
TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X
1 Variáveis Aleatórias
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis
Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias
Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para
a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B.
Universidade de Brasília Departamento de Estatística 5 a Lista de PE. Um time de basquete irá jogar uma temporada de 44 jogos. desses jogos serão disputados contra times da classe A e os 8 restantes contra
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Variáveis Aleatórias Ao descrever um espaço
Aula 5. Como gerar amostras de uma distribuição qualquer a partir de sua CDF e de um gerador de números aleatórios?
Aula 5 Como gerar amostras de uma distribuição qualquer a partir de sua CDF e de um gerador de números aleatórios? Processo de chegada: o Chegadas em grupo ocorrem segundo um processo Poisson com taxa.
Distribuição de Probabilidade Variáveis Aleatórias Discretas. Prof.: Joni Fusinato
Distribuição de Probabilidade Variáveis Aleatórias Discretas Prof.: Joni Fusinato [email protected] [email protected] Distribuição de Probabilidade Descreve a chance que uma variável pode assumir
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória
SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20
SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17
Variáveis Aleatórias - VA
Variáveis Aleatórias - VA cc ck kc kk 0 1 2 1/4 1/2 Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - Introdução Se entende por VA ou V. indicadoras uma lista de valores
Teorema do Limite Central
Teorema do Limite Central Bacharelado em Economia - FEA - Noturno 1 o Semestre 2014 MAE0219 (IME-USP) Teorema do Limite Central 1 o Semestre 2014 1 / 47 Objetivos da Aula Sumário 1 Objetivos da Aula 2
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aula passada Introdução à simulação Geração de números aleatórios Lei dos Grandes Números Aula de hoje Geração de variáveis aleatórias: Transformada Inversa
Probabilidade e Estatística
Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 1 Leitura obrigatória: Devore, 3.1, 3.2 e 3.3 Chap 5-1 Objetivos Nesta parte, vamos aprender: Como representar a distribuição
Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades
Aula de Estatística 13/10 à 19/10 Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades 4.1 Distribuições de probabilidades Variáveis Aleatórias Geralmente, o resultado de um experimento de probabilidades
Principais distribuições discretas Distribuição de Bernoulli sucesso fracasso X = 1, se sucesso X = 0, se fracasso P(X) TOTAL 1 Exemplo 5:
Principais distribuições discretas Na prática, sempre se procura associar um fenômeno aleatório a ser estudado, a uma forma já conhecida de distribuição de probabilidade (distribuição teórica) e, a partir
Variáveis Aleatórias Discretas e Distribuição de Probabilidade
Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das
Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB
Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja
Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB
Variáveis Aleatórias Esperança e Variância Prof. Luiz Medeiros Departamento de Estatística - UFPB ESPERANÇA E VARIÂNCIA Nos modelos matemáticos aleatórios parâmetros podem ser empregados para caracterizar
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Modelos de distribuição Para utilizar a teoria
Revisões de Matemática e Estatística
Revisões de Matemática e Estatística Joaquim J.S. Ramalho Contents 1 Operadores matemáticos 2 1.1 Somatório........................................ 2 1.2 Duplo somatório....................................
SUMÁRIO. 1.1 Introdução, Conceitos Fundamentais, 2
SUMÁRIO 1 CONCEITOS BÁSICOS, 1 1.1 Introdução, 1 1.2 Conceitos Fundamentais, 2 1.2.1 Objetivo, 2 1.2.2 População e amostra, 2 1.3 Processos estatísticos de abordagem, 2 1.4 Dados estatísticos, 3 1.5 Estatística
Variáveis Aleatórias. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Variáveis Aleatórias Variável Aleatória Variável aleatória (VA) é uma função que associa a cada
PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos
PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal
Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008
Variável Aleatória Gilson Barbosa Dourado [email protected] 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória
