PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES
|
|
|
- Heitor Amorim
- 6 Há anos
- Visualizações:
Transcrição
1 PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial Distribuição de Poisson se v.a. contínua Distribuição exponencial Distribuição normal
2 1) Distribuição de Bernoulli Considere um ensaio de Bernoulli: a) um fenômeno aleatório é realizado uma única vez b) há somente dois resultados possíveis: Defina: 1, se sucesso X={ 0, se fracasso Ou seja, X : n o de sucessos em 1 tentativa sucesso fracasso Notação: p = P(X = 1) probabilidade de sucesso em 1 tentativa q = 1 p = P(X = 0) probabilidade de fracasso em 1 tentativa
3 Então X tem distribuição de Bernoulli com parâmetro p NOTAÇÃO: X Bernoulli( p) Função de probabilidades de X: p( x)= p x q 1 x para x=0, 1 Esperança e Variância de X: E( X )= p Var( X )= p q
4 Exemplo 1 (opinião do eleitor - cont.) Considere: X n o de eleitores que acham o governo bom em uma única observação aleatória a) Calcule P(X = 0) b) Determine E(X) e Var(X) probabilidade de sucesso X Bernoulli( p) sucesso eleitor acha governo bom segundo a pesquisa: p = 0,3 a) p( x)=0,3 x 0,7 1 x para x=0; 1 P( X =0)=p(0)=0,3 0 0,7 1 0 =0,7 b) E( X )= p=0,3 sucesso Var ( X )= pq=0,21 sucesso 2
5 2) Distribuição binomial Considere que: a) ocorrem n tentativas independentes de um mesmo ensaio de Bernoulli; b) probabilidade de sucesso, p, é constante em cada tentativa Defina: X : n o de sucessos em n tentativas Então X tem distribuição binomial com parâmetros n e p NOTAÇÃO: X B(n ; p)
6 Função de probabilidades de X: p( x)= n! x!(n x)! px q n x Esperança e Variância de X: para x=0, 1, 2,, n E( X )=n p Var ( X )=n p q C n x = ( n x)
7 Exemplo 2 Considere: X n o de caras em 3 lançamentos imparciais de uma moeda equilibrada a) Qual a probabilidade de ocorrem 2 caras? b) E a média e variância do número de caras? X B(n; p) número de tentativas sucesso sair cara n = 3 e como moeda é equilibrada: p = 0,5 a) p( x)= 3! x!(3 x)! 0,5x 0,5 3 x para x=0, 1, 2, 3 P( X =2)=p(2)= 3! 2!(3 2)! 0,52 0,5 3 2 =0,375 b) E( X )=n p=1,5 cara Var ( X )=n p q=0,75 cara 2
8 3) Distribuição de Poisson Defina: X : n o de sucessos em um determinado intervalo de tempo (de profundidade, de área, de distância, de volume) λ : taxa de sucesso constante no intervalo Então X tem distribuição de Poisson com parâmetro λ NOTAÇÃO: X Po(λ)
9 Função de probabilidades de X: p( x)= λ x e λ para x=0, 1, 2, x! Esperança e Variância de X: E( X )=λ Var( X )=λ
10 Exemplo 3: Seja X n o de erros de digitação em uma página de folha A4, com taxa de erro de 0,5 erro por página a) Calcule a probabilidade de não ocorrer nenhum erro de digitação em 1 página escolhida ao acaso b) Encontre μ e σ de X X Po(λ) a) p( x)= 0,5x e 0,5 x! taxa de sucesso para x=0, 1, 2, P( X =0)=p(0)= 0,50 e 0,5 =0,6065 0! sucesso erro de digitação segundo enunciado: = 0,5 por página b) μ=e( X )=0,5erro σ= Var ( X )= 0,5=0,707 erro
11 Duas observações sobre distribuição de Poisson: não sabemos quantos fracassos ocorrem no intervalo, porque não foi fixado o número de tentativas; foi fixado o tamanho do intervalo a taxa λ muitas vezes é referida como o número esperado de sucessos ou a média de sucessos em um determinado intervalo
12 Exercícios: 1. Uma caixa tem 20 bolas azuis e 30 verdes. Retira-se uma bola dessa caixa. Defina X como o número de bolas verdes em uma única retirada ao acaso. Determine a função de probabilidades de X, E(X) e Var(X) 2. Num município, a probabilidade de cada empresa de materiais recicláveis ter seguro contra incêndio é de 70%. Qual a probabilidade de que, dentre cinco empresas desse tipo: a) nenhuma ter seguro contra incêndio? b) quatro ou mais tenham seguro contra incêndio?
13 3. Sabe-se que 5% das válvulas fabricadas em uma indústria são defeituosas. Em um lote de 4 válvulas: a) calcular a probabilidade de exatamente 2 serem defeituosas b) qual a média e o desvio padrão do número de válvulas defeituosas? 4. Certo posto de bombeiros recebe em média três chamadas por dia Calcular a probabilidade do posto receber em um dia: a) quatro chamadas b) duas ou menos chamadas c) mais de uma chamada
14 5. Verificou-se que a taxa de falha de um transistor em um instrumento eletrônico, durante uma hora de operação é igual a 0,005 a) Calcular a probabilidade de não haver falhas em 60 horas de operação? b) Qual a média e a variância do número de falhas em 60 horas?
15 4) Distribuição exponencial Se X é uma v.a. contínua que pode assumir valores entre 0 e +, e, se X tem função densidade de probabilidades: f ( x)=θ e θ x, para x 0 Então X tem distribuição exponencial com parâmetro θ NOTAÇÃO: E( X )= 1 θ X Exp(θ) Var ( X )= 1 θ 2 taxa de sucesso no intervalo de tempo, de distância,...
16 X segue uma distribuição exponencial de parâmetro θ quando, por exemplo, X : tempo até ocorrer o sucesso θ : taxa de sucesso constante em qualquer intervalo de tempo X : distância até encontrar a sucesso θ : taxa de sucesso constante em qualquer intervalo de distância
17 Exemplo 4 (calouros da UFPR - cont.) X : distância, em km, entre a residência do calouro selecionado aleatoriamente e a do seus pais Calcule a média, a variância de X e a probabilidade de X ser maior que a média f (x)=0,05 e 0,05 x ; x 0 por suposição X Exp(θ) θ=0,05 por km E ( X )= 1 1 =20 km Var( X )= =400 km2 2 0,05 0,05
18 P( X μ) = P( X 20) = 0,05e 0,05 x dx 20 = ( du=0,05dx) x = e u du 1 = e u 1 = (e e 1 )= 1 e =0,36789
19 5) Distribuição normal Se X é uma v.a. contínua que pode assumir valores entre e +, e, se X tem função densidade de probabilidades: f ( x)= 1 ( x μ ) 2 ) 2 π σ 2 e( 2 σ 2, para x R Então X tem distribuição normal com parâmetros μ e σ 2 NOTAÇÃO: X N(μ;σ 2 ) E(X) = μ Var(X) = σ 2
20 Características da distribuição normal a) curva de f (x) tem forma de sino, e é simétrica em torno de μ b) média = mediana = moda
21 c) área sob a curva f (x) entre μ ± 1σ é aproximadamente igual a 0,68; entre μ ± 2σ é de 0,95
22 Em geral, X segue uma distribuição normal quando a variável é o resultado de uma soma de vários fatores, por exemplo: a) variáveis biológicas (nível de ácido úrico, nível de colesterol, pressão sanguínea, altura e peso) b) variáveis físicas (temperatura e umidade) teve origem no estudo de erros de mensuração: Erros de mensuração próximos a zero tem alta probabilidade de ocorrer; a medida que o erro se afasta de zero, a probabilidade diminui (erros grandes são raros) tem papel preponderante na Inferência Estatística
23 estão tabeladas algumas probabilidades para v.a. que segue a distribuição normal com média 0 e variância 1 distribuição normal padrão É comum representar por Z (ao invés de X) a v.a. que segue a distribuição normal padrão: Z N(0 ;1) Função densidade de probabilidades de Z: f (z)= 1 2 π e( z 2 ) 2
24 a Tabela da distribuição normal padrão apresenta algumas probabilidades do tipo P(0 Z z) f (z) tipo de área calculada na Tabela
25 Exercícios (normal padrão) 6. Calcule: a) P(0 Z 0,45) b) P(0 < Z < 0,45) c) P( Z 1) d) P( Z < -1) e) P(-2 Z 2) f) P( Z -0,53)
26 Exemplo 5: Suponha que nível de QI tenha distribuição normal com média 100 e desvio padrão 20 entre as mulheres, e média 100 e desvio padrão 25 entre os homens É mais fácil encontrar um gênio (QI maior que 150), entre os homens ou entre as mulheres? P(QI M > 150) =? P(QI M > 150) =? probabilidades tabeladas só para Z!! Solução: Se X ~ N(μ ; σ 2 ) usar a transformação X μ σ = Z
27 QI M ~ N(100; 20 2 ) P(QI M > 150) = P( QI M μ σ > 150 μ σ ) P( = Z > ) =P(Z >2,5) 20 QI H ~ N(100; 25 2 ) P(QI H > 150) P( = Z > ) =P(Z >2) 25
28 Exercícios: 7. As vendas diárias de uma confeitaria no centro de uma cidade têm distribuição normal, com média diária de 450,00 reais e desvio padrão diário de 95,00 reais Qual é a probabilidade das vendas excederem 700,00 reais em determinado dia? 8. Suponha que entre certos pacientes o nível de glicose tenha uma distribuição aproximadamente normal de média 105 mg por 100 ml e um desvio padrão 9 mg por 100 ml Qual a proporção de pacientes que tem níveis entre 90 e 125 mg por 100 ml?
29 9. A média pluviométrica durante o mês de janeiro em uma cidade é de 86,8 mm Suponha que uma distribuição normal seja aplicável e que o desvio padrão seja de 20,30 mm Qual a probabilidade da quantidade de chuva em janeiro, ser inferior a 76 mm? 10. O tempo de espera para cada cliente que entra na fila do caixa de uma loja, segue uma distribuição de probabilidade exponencial com taxa igual a 0,2 por minuto Calcule: a) tempo médio de espera e desvio padrão do tempo de espera b) a probabilidade de um cliente selecionado ao acaso, ficar até 20 minutos na fila
Modelos de Distribuição PARA COMPUTAÇÃO
Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO
Professora Ana Hermínia Andrade. Período
Distribuições de probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Modelos de distribuição Para
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08
Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Bioestatística e Computação I
Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Probabilidade. 1 Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson. Renata Souza
Probabilidade Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson Renata Souza Distribuição de Bernoulli Uma lâmpada é escolhida ao acaso Ensaio de Bernoulli A lâmpada
Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias
Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para
Teorema do Limite Central
Teorema do Limite Central Bacharelado em Economia - FEA - Noturno 1 o Semestre 2014 MAE0219 (IME-USP) Teorema do Limite Central 1 o Semestre 2014 1 / 47 Objetivos da Aula Sumário 1 Objetivos da Aula 2
Principais distribuições discretas Distribuição de Bernoulli sucesso fracasso X = 1, se sucesso X = 0, se fracasso P(X) TOTAL 1 Exemplo 5:
Principais distribuições discretas Na prática, sempre se procura associar um fenômeno aleatório a ser estudado, a uma forma já conhecida de distribuição de probabilidade (distribuição teórica) e, a partir
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Distribuição Normal Motivação: Distribuição
Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva pessoal.utfpr.edu.
Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva pessoal.utfpr.edu.br/ngsilva Distribuição Uniforme Uma variável aleatória contínua X está
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Modelos de distribuição Para utilizar a teoria
Variável Aleatória Contínua:
Distribuição Contínua Normal Luiz Medeiros de Araujo Lima Filho Departamento de Estatística UFPB Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,
ESTATÍSTICA. x(s) W Domínio. Contradomínio
Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.
Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral
Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades
EST012 - Estatística Econômica I Turma A - 1 o Semestre de 2019 Lista de Exercícios 3 - Variável aleatória
Exercício 1. Considere uma urna em que temos 4 bolas brancas e 6 bolas pretas. Vamos retirar, ao acaso, 3 bolas, uma após a outra e sem reposição. Sejam X: o número de bolas brancas e Y : o número de bolas
Métodos Estatísticos
Métodos Estatísticos 5 - Distribuição Normal Referencia: Estatística Aplicada às Ciências Sociais, Cap. 7 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Distribuição de Probabilidades A distribuição
Probabilidade e Estatística
Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Inferência Estatística stica e Distribuições Amostrais Inferência Estatística stica O objetivo
Tiago Viana Flor de Santana
ESTATÍSTICA BÁSICA DISTRIBUIÇÃO NORMAL DE PROBABILIDADE (MODELO NORMAL) Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ [email protected] sala 07 Curso: MATEMÁTICA Universidade Estadual
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Variáveis Aleatórias Contínuas
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Variáveis Aleatórias Contínuas Professora Renata Alcarde Piracicaba abril 2014 Renata Alcarde Estatística Geral 24 de Abril de 2014
1 Distribuição de Bernoulli
Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 6 Professor: Carlos Sérgio Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas
Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal
Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:
3 a Lista de PE Solução
Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes
Variáveis Aleatórias Contínuas
Variáveis Aleatórias Contínuas Bacharelado em Administração - FEA - Noturno 2 o Semestre 2017 MAE0219 (IME-USP) Variáveis Aleatórias Contínuas 2 o Semestre 2017 1 / 35 Objetivos da Aula Sumário 1 Objetivos
Aproximação da binomial pela normal
Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição
Aproximação da binomial pela normal
Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição
Avaliação e Desempenho Aula 5
Avaliação e Desempenho Aula 5 Aula passada Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Aula de hoje Variáveis aleatórias discretas e contínuas PMF, CDF e função densidade
Distribuições de Probabilidade Contínuas 1/19
all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte
Modelos básicos de distribuição de probabilidade
Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de
Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011
Distribuição Normal Prof a Dr a Alcione Miranda dos Santos Universidade Federal do Maranhão Programa de Pós-Graduação em Saúde Coletiva email:[email protected] Abril, 2011 1 / 18 Sumário Introdução
Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008
Variável Aleatória Gilson Barbosa Dourado [email protected] 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória
Estatística Descritiva e Exploratória
Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução
Distribuição de Probabilidade. Prof. Ademilson
Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.
AULA 16 - Distribuição de Poisson e Geométrica
AULA 16 - Distribuição de Poisson e Geométrica Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuição de Poisson Em muitas situações nos deparamos com a situação em que o número de ensaios
AULA 15 - Distribuição de Bernoulli e Binomial
AULA 15 - Distribuição de Bernoulli e Binomial Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Variável Aleatória de Bernoulli Podemos dizer que as variáveis aleatórias mais simples entre as
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL Variável Aleatória Uma função X que associa a cada elemento ω do espaço amostral Ω um valor x R é denominada uma variável aleatória. A variável aleatória pode
1 Distribuições Discretas de Probabilidade
1 Distribuições Discretas de Probabilidade A distribuição discreta descreve quantidades aleatórias (dados de interesse) que podem assumir valores particulares e os valores são finitos. Por exemplo, uma
Stela Adami Vayego DEST/UFPR
Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis
Nome: N. o : f(u) du para todo o x (V) d) Se F (x) tiver pontos de descontinuidade, então X é discreta (F)
ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época Normal Duração: 2 horas 1. a Parte Teórica N. o de Exame: RESOLUÇÃO 09.01.2015 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação:
Métodos Experimentais em Ciências Mecânicas
Métodos Experimentais em Ciências Mecânicas Professor Jorge Luiz A. Ferreira Função que descreve a chance que uma variável pode assumir ao longo de um espaço de valores. Uma distribuição de probabilidade
Aproximação da binomial pela normal
Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição
Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.
Prof. Lorí Viali, Dr. [email protected] http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada
Sumário. 2 Índice Remissivo 11
i Sumário 1 Principais Distribuições Contínuas 1 1.1 Distribuição Uniforme................................. 1 1.2 A Distribuição Normal................................. 2 1.2.1 Padronização e Tabulação
AULA 17 - Distribuição Uniforme e Normal
AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço
Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.
Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável
a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B.
Universidade de Brasília Departamento de Estatística 5 a Lista de PE. Um time de basquete irá jogar uma temporada de 44 jogos. desses jogos serão disputados contra times da classe A e os 8 restantes contra
Variáveis Aleatórias Discretas e Distribuições de 3Probabilidade
Variáveis Aleatórias Discretas e Distribuições de 3Probabilidade Variáveis Aleatórias Discretas e Distribuições de Probabilidade Objetivos do aprendizado 3 Como determinar se um experimento é Binomial.
VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL
VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1
VARIÁVEIS ALEATÓRIAS 1
VARIÁVEIS ALEATÓRIAS 1 Na prática é, muitas vezes, mais interessante associarmos um número a um evento aleatório e calcularmos a probabilidade da ocorrência desse número do que a probabilidade do evento.
Distribuições de Probabilidade. Distribuição Uniforme Distribuição Exponencial Distribuição Normal
Distribuições de Probabilidade Distribuição Uniforme Distribuição Exponencial Distribuição Normal 1 Distribuição Uniforme A distribuição Uniforme atribui uma densidade igual ao longo de um intervalo (a,b).
Variáveis Aleatórias Contínuas e Distribuição de Probabilidad
Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado
Revisão de Probabilidade
05 Mat074 Estatística Computacional Revisão de Probabilidade Prof. Lorí Viali, Dr. [email protected] http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito
Verificar como a distribuição normal pode ser utilizada para calcular, l de forma aproximada, probabilidades associadas a uma variável aleatória com
Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, l de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição
Processos Estocásticos
Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama
Variável Aleatória Contínua:
Distribuição Contínua Normal Prof. Tarciana Liberal Departamento de Estatística UFPB x x Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,
A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ).
Capítulo 5 Distribuição Normal Muitas variáveis aleatórias contínuas, tais como altura, comprimento, peso, entre outras, podem ser descritas pelo modelo Normal de probabilidades. Este modelo é, sem dúvida,
Aula 6 - Variáveis aleatórias contínuas
Aula 6 - Variáveis aleatórias contínuas PhD. Wagner Hugo Bonat Laboratório de Estatística e Geoinformação-LEG Universidade Federal do Paraná 1/2017 Bonat, W. H. (LEG/UFPR) 1/2017 1 / 18 Variáveis aleatórias
Distribuições de Probabilidade. Distribuição Normal
Distribuições de Probabilidade Distribuição Normal 1 Distribuição Normal ou Gaussiana A distribuição Normal ou Gaussiana é muito utilizada em análises estatísticas. É uma distribuição simétrica em torno
Processos Estocásticos. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama
Variáveis Aleatórias Contínuas e Distribuição de Probabilidad
Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz
Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017
padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Variáveis Aleatórias Ao descrever um espaço
Variáveis Aleatórias Contínuas e Distribuições de Probabilidade
Variáveis Aleatórias Contínuas e Distribuições de Probabilidade Motivação A quantidade de oxigênio dissolvido é importante para aferir a qualidade de um regato. Os níveis aceitáveis de oxigênio variam
Lucas Santana da Cunha 12 de julho de 2017
DISTRIBUIÇÃO NORMAL Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 12 de julho de 2017 Distribuição Normal Dentre todas as distribuições de probabilidades,
Probabilidade e Estatística
Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis
Distribuições Amostrais e Estimação Pontual de Parâmetros
Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 19 de Maio de 2011 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição
DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON
DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 05 de julho de 2017 Distribuição Bernoulli Exemplo Nos experimentos de Bernoulli, o espaço
Introdução à Bioestatística
Instituto Nacional de Cardiologia February 22, 2016 1 2 3 4 Existem dois tipos de variáveis aleatórias Variáveis aleatórias discretas Variáveis aleatórias contínuas discreta Assume um número nito ou innito
Distribuições de Probabilidade
Distribuições de Probabilidade Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Distribuições de Probabilidade 2007/2008 1 / 31 Introdução Introdução Já vimos como caracterizar
5- Variáveis aleatórias contínuas
5- Variáveis aleatórias contínuas Para variáveis aleatórias contínuas, atribuímos probabilidades a intervalos de valores. Exemplo 5.1 Seja a variável correspondente ao tempo de vida útil de determinado
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades Prof. Gabriel Bádue Teoria A distribuição de Poisson é uma distribuição discreta de probabilidade, aplicável a ocorrências de um evento
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória
Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas
1. ANPEC 2018 Questão 3 Considere um indivíduo procurando emprego. Para cada entrevista de emprego (X) esse indivíduo tem um custo linear (C) de 10,00 Reais. Suponha que a probabilidade de sucesso em uma
Capítulo 3. Introdução à Probabilidade E à Inferência Estatística
Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos
Cap. 6 Variáveis aleatórias contínuas
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de
EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G.
EELT-7035 Processos Estocásticos em Engenharia Variáveis Aleatórias Discretas 21 de março de 2019 Variáveis Aleatórias Variável aleatória, X( ): função que mapeia o espaço amostral (S) em números pertencentes
Distribuições Amostrais e Estimação Pontual de Parâmetros
Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 2012/02 1 Introdução 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição
Um conceito importante em Probabilidades e Estatística é o de
Variáveis Aleatórias Um conceito importante em Probabilidades e Estatística é o de Variável Aleatória. Variável Aleatória Seja (Ω, A) um espaço de acontecimentos. À função X : Ω IR chamamos variável aleatória.
Modelos de Distribuições
7/5/017 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 05/07/017 19: ESTATÍSTICA APLICADA
Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto
Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades
PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades
PRO71 ESTATÍSTICA 3.1 PRO 71 ESTATÍSTICA I 3. Distribuições de Probabilidades Variáveis Aleatórias Variáveis Aleatórias são valores numéricos que são atribuídos aos resultados de um eperimento aleatório.
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Distribuição Geométrica Considere novamente uma sequência
14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas
4. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas Os valores assumidos por uma variável aleatória contínua podem ser associados com medidas em uma escala contínua como, por exemplo,
UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II
UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II Segunda lista de Exercícios - Variáveis Aleatórias Professora Fernanda 1. Uma máquina caça níquel de cassino possui três roletas. Na primeira e segunda
