Distribuições de Probabilidade. Distribuição Normal
|
|
|
- Giulia Ana Sofia Gesser Beretta
- 9 Há anos
- Visualizações:
Transcrição
1 Distribuições de Probabilidade Distribuição Normal 1
2 Distribuição Normal ou Gaussiana A distribuição Normal ou Gaussiana é muito utilizada em análises estatísticas. É uma distribuição simétrica em torno da sua média e em forma de sino. Depende de dois parâmetros que são a média e a variância da distribuição. X ~ N(µ, σ) significa que X tem distribuição Normal com média µ e desvio padrão σ. Nota: alguns autores utilizam a notação N(µ, σ 2 ) sendo o segundo parâmetro a variância em vez do desvio padrão. 2
3 Curva de densidade da Normal 3
4 Densidades Normais N(0,0.7) N(0,1) N(0,1.2) 4
5 Normal standard ou padrão Quando µ = 0 e σ = 1 temos a distribuição Normal standard (também se diz Normal padrão ou Normal centrada e reduzida). Os valores da função de distribuição, F(x), e os valores de certos quantis mais utilizados encontram-se tabelados. 5
6 Normal Standard Habitualmente utiliza-se: a letra Z para representar uma Normal Standard. A designação Φ(z) para representar F(z). A designação z p para representar o quantil de ordem p. Atenção que os quantis têm diferentes representações de autor para autor. Muitos utilizam z p para representar o quantil de ordem 1-p, ou ainda (1-p)/2. 6
7 Normal Standard quantil de ordem 0.95 z
8 Normal Standard quantis de ordem e z e z
9 Cálculo de probabilidades da Normal Para calcular probabilidades associadas a uma distribuição Normal qualquer, podemos recorrer às tabelas ou a software ou a máquinas de calcular. No SPSS as funções associadas à distribuição Normal são: Cdf.Normal(x,µ,σ) para a função de distribuição no ponto x, F(x); Idf.Normal(p,µ,σ) para o quantil de ordem p, x p. 9
10 Cálculo de probabilidades da Normal: Normalização Para recorrer às tabelas é necessário normalizar a variável antes de calcular uma probabilidade (ou um quantil). Se X ~ N(µ,σ) então Z = (X-µ) / σ ~ N(0,1). 10
11 11 Cálculo de probabilidades da Normal: Normalização Por exemplo, se X tem distribuição N(5,2) e queremos calcular P(X 7): ( ) , ) ( ) ( = = Φ = = Z P X P X P
12 Propriedades da Normal Se adicionarmos uma constante b a uma variável Normal X ~ N(µ,σ), obtemos uma nova variável Normal, Y=X+b ~ N(µ+b, σ). Se multiplicarmos uma variável Normal por uma constante a obtemos uma nova variável Normal, Y=aX ~ N(aµ,aσ). 12
13 Propriedades da Normal A soma de variáveis aleatórias Normais é ainda Normal com média igual à soma das médias. Se as variáveis forem independentes a variância é igual à soma das variâncias. Em particular a média X de n variáveis Normais independentes e com a mesma distribuição é ainda Normal ( ) n X ~ N µ, σ / 13
14 Resultados Importantes Lei dos Grandes Números Teorema do Limite Central 14
15 Lei dos grandes números A média de um conjunto de n variáveis aleatórias independentes e identicamente distribuídas, com média µ e desvio padrão σ, converge para µ à medida que n aumenta. A partir deste resultado podemos dizer que a frequência relativa de um certo acontecimento de interesse num conjunto de n experiências independentes, converge para a probabilidade do acontecimento à medida que n aumenta. 15
16 Estabilização das frequências relativas no lançamento sucessivo de uma moeda ao ar 16
17 Teorema do Limite Central Vimos anteriormente que a média de uma conjunto de variáveis aleatórias Normais, é ainda Normal: ( µ, ) n X ~ N( µ, σ ) X ~ N σ / O Teorema do Limite Central permite dizer que a média de um conjunto de variáveis aleatórias com uma qualquer distribuição é aproximadamente Normal (cada vez mais Normal à medida que o nº de variáveis aumenta) ( µ, σ ) n X F( x) X ~ N / apr ~. 17
18 Teorema do Limite Central Se tivermos n variáveis aleatórias X 1,X 2,X n independentes e com a mesma distribuição de média µ e variância σ 2,então quando n cresce para infinito, X σ / µ n ou equivalentemente dist N( 01, ) X i n nµ σ dist N( 0, 1) 18
19 Ilustrações do TLC e da LGN Alguns sites para explorar o TLC e a LGN (dados) (bolinhas a cair) heorem_(inverse).htm (texto com pequena simulação) inks/samplingapplet/samplingapplet.html 19
20 Aproximações baseadas no TLC Podemos efectuar cálculos de probabilidades aproximadas com base no TLC. Ilustramos esta situação com dois exemplos: Probabilidades associadas a distribuições Binomiais; Probabilidades associadas a distribuições de Poisson. 20
21 Aproximações baseadas no TLC: Binomial - Normal Probabilidades associadas a uma distribuição Binomial, B(n,p), podem ser aproximadas utilizando uma distribuição Normal, N(µ,σ), com µ=np e σ = np(1-p). Para que a aproximação não seja muito má, devemos ter np 5 e n (1-p) 5. 21
22 Aproximações baseadas no TLC: Binomial - Normal Quando usamos a distribuição Normal (que é uma distribuição contínua) para aproximar a distribuição Binomial (que é uma distribuição discreta), fazemos uma correção de continuidade ao valor discreto x na distribuição binomial representando o valor x pelo intervalo de x 0.5 a x
23 Aproximações baseadas no TLC: Binomial - Normal 23
24 Aproximações baseadas no TLC: Binomial - Normal 24
25 Aproximações baseadas no TLC: Poisson - Normal Probabilidades associadas a uma distribuição de Poisson, P(λ), podem ser aproximadas utilizando uma distribuição Normal, N(µ,σ), com µ= λ e σ =λ. A aproximação será tanto melhor quanto maior for λ. 25
Distribuições de Probabilidade. Distribuição Uniforme Distribuição Exponencial Distribuição Normal
Distribuições de Probabilidade Distribuição Uniforme Distribuição Exponencial Distribuição Normal 1 Distribuição Uniforme A distribuição Uniforme atribui uma densidade igual ao longo de um intervalo (a,b).
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Aproximação da Distribuição Binomial pela Distribuição Normal
Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.
Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva pessoal.utfpr.edu.
Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva pessoal.utfpr.edu.br/ngsilva Distribuição Uniforme Uma variável aleatória contínua X está
Teorema do Limite Central
Teorema do Limite Central Bacharelado em Economia - FEA - Noturno 1 o Semestre 2014 MAE0219 (IME-USP) Teorema do Limite Central 1 o Semestre 2014 1 / 47 Objetivos da Aula Sumário 1 Objetivos da Aula 2
Distribuições Importantes. Distribuições Contínuas
Distribuições Importantes Distribuições Contínuas Distribuição Normal ou de Gauss Definição Diz-se que uma v.a. X contínua tem distribuição normal ou de Gauss, X Nor(µ,σ), se a sua função densidade de
Distribuição Normal. Estatística Aplicada I DISTRIBUIÇÃO NORMAL. Algumas característica importantes. 2πσ
Estatística Aplicada I DISTRIBUIÇÃO NORMAL Prof a Lilian M. Lima Cunha AULA 5 09/05/017 Maio de 017 Distribuição Normal Algumas característica importantes Definida pela média e desvio padrão Media=mediana=moda
Variáveis Aleatórias Contínuas e Distribuição de Probabilidad
Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas
LEEC Probabilidades e Estatística 1 a Chamada 13/06/2005. Parte Prática C (C) M 1% 9% 10% (M) 4% 86% 90% 5% 95% 100%
. Definição dos acontecimentos: M T-shirt tem manchas C T-shirt tem costuras defeituosas D T-shirt é defeituosa A Preço da t-shirt é alterado a) PM) = % PC) = 5% PM C) = % LEEC Probabilidades e Estatística
Um conceito importante em Probabilidades e Estatística é o de
Variáveis Aleatórias Um conceito importante em Probabilidades e Estatística é o de Variável Aleatória. Variável Aleatória Seja (Ω, A) um espaço de acontecimentos. À função X : Ω IR chamamos variável aleatória.
Lucas Santana da Cunha 12 de julho de 2017
DISTRIBUIÇÃO NORMAL Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 12 de julho de 2017 Distribuição Normal Dentre todas as distribuições de probabilidades,
Modelos de Distribuição PARA COMPUTAÇÃO
Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO
Distribuições Contínuas de Probabilidade
Distribuições Contínuas de Probabilidade Uma variável aleatória contínua é uma função definida sobre o espaço amostral, que associa valores em um intervalo de números reais. Exemplos: Espessura de um item
Tiago Viana Flor de Santana
ESTATÍSTICA BÁSICA DISTRIBUIÇÃO NORMAL DE PROBABILIDADE (MODELO NORMAL) Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ [email protected] sala 07 Curso: MATEMÁTICA Universidade Estadual
Variáveis Aleatórias Contínuas e Distribuições de Probabilidade
Variáveis Aleatórias Contínuas e Distribuições de Probabilidade Motivação A quantidade de oxigênio dissolvido é importante para aferir a qualidade de um regato. Os níveis aceitáveis de oxigênio variam
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08
Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Sumário. 2 Índice Remissivo 11
i Sumário 1 Principais Distribuições Contínuas 1 1.1 Distribuição Uniforme................................. 1 1.2 A Distribuição Normal................................. 2 1.2.1 Padronização e Tabulação
5. PRINCIPAIS MODELOS CONTÍNUOS
5. PRINCIPAIS MODELOS CONTÍNUOS 2019 5.1. Modelo uniforme Uma v.a. contínua X tem distribuição uniforme com parâmetros e ( < ) se sua função densidade de probabilidade é dada por f ( x )={ 1 β α, α x β
Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira
Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira
A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ).
Capítulo 5 Distribuição Normal Muitas variáveis aleatórias contínuas, tais como altura, comprimento, peso, entre outras, podem ser descritas pelo modelo Normal de probabilidades. Este modelo é, sem dúvida,
Aproximação da binomial pela normal
Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição
Variável Aleatória Contínua:
Distribuição Contínua Normal Prof. Tarciana Liberal Departamento de Estatística UFPB x x Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades Prof. Gabriel Bádue Teoria A distribuição de Poisson é uma distribuição discreta de probabilidade, aplicável a ocorrências de um evento
5. PRINCIPAIS MODELOS CONTÍNUOS
5. PRINCIPAIS MODELOS CONTÍNUOS 04 5.. Modelo uniforme Uma v.a. contínua X tem distribuição uniforme com parâmetros α e β (α β) se sua função densidade de probabilidade é dada por f ( ) β α 0, Notação:
( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas
Probabilidade e Estatística I Antonio Roque Aula Algumas Distribuições de Probabilidade Contínuas Vamos agora estudar algumas importantes distribuições de probabilidades para variáveis contínuas. Distribuição
ESTATÍSTICA. x(s) W Domínio. Contradomínio
Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.
Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23
Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração
Verificar como a distribuição normal pode ser utilizada para calcular, l de forma aproximada, probabilidades associadas a uma variável aleatória com
Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, l de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição
Aproximação da binomial pela normal
Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição
Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.
Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável
Bioestatística e Computação I
Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas
Distribuições de Probabilidade Contínuas 1/19
all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte
MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade
MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 28 de Agosto, 2013 Probabilidade: uma Introdução / Aula 8 1 Desigualdades de Markov e
AULA 17 - Distribuição Uniforme e Normal
AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço
Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral
Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades
Probabilidade 2. Jorge M. V. Capela, Marisa V. Capela, Araraquara, SP Instituto de Química - UNESP Araraquara, SP
Probabilidade 2 Jorge M. V. Capela, Marisa V. Capela, Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2016 1 Distribuição de probabilidades normal 2 Distribuição normal
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição t de Student 02/14 1 / 1 A distribuição t de Student é uma das distribuições
Nome: N. o : f(u) du para todo o x (V) d) Se F (x) tiver pontos de descontinuidade, então X é discreta (F)
ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época Normal Duração: 2 horas 1. a Parte Teórica N. o de Exame: RESOLUÇÃO 09.01.2015 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação:
Aproximação da binomial pela normal
Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição
Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias
Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para
Departamento de Matemática Escola Superior de Tecnologia de Viseu
Distribuições contínuas Departamento de Matemática Escola Superior de Tecnologia de Viseu Distribuição Normal Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade
Métodos Experimentais em Ciências Mecânicas
Métodos Experimentais em Ciências Mecânicas Professor Jorge Luiz A. Ferreira Função que descreve a chance que uma variável pode assumir ao longo de um espaço de valores. Uma distribuição de probabilidade
Probabilidade e Estatística
Probabilidade e Estatística Aula 6 Distribuições Contínuas (Parte 02) Leitura obrigatória: Devore, Capítulo 4 Chap 6-1 Distribuições de Probabilidade Distribuições de Probabilidade Distribuições de Probabilidade
Variável Aleatória Contínua:
Distribuição Contínua Normal Luiz Medeiros de Araujo Lima Filho Departamento de Estatística UFPB Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Variáveis Aleatórias Contínuas
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Variáveis Aleatórias Contínuas Professora Renata Alcarde Piracicaba abril 2014 Renata Alcarde Estatística Geral 24 de Abril de 2014
Distribuição Gaussiana
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição
Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal
Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:
Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017
padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições
Introdução à Probabilidade e à Estatística (BCN ) Prova 2 (A) 16/08/2018 Correção
Introdução à Probabilidade e à Estatística (BCN0406-1) Prova 2 (A) 16/08/2018 Correção (1.pt) 1. Dadas as seguintes probabilidades associadas à variável aleatória X: -1 1 2 p() 1/2 1/3 1/6 a) Calcule a
Métodos Estatísticos
Métodos Estatísticos 5 - Distribuição Normal Referencia: Estatística Aplicada às Ciências Sociais, Cap. 7 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Distribuição de Probabilidades A distribuição
Probabilidade e Estatística
Probabilidade e Estatística Aula 7 Distribuição da Média Amostral Leitura obrigatória: Devore: Seções 5.3, 5.4 e 5.5 Chap 8-1 Inferência Estatística Na próxima aula vamos começar a parte de inferência
Distribuições de Probabilidade
Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais
Distribuição Normal. Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade for dada por:
Distribuições contínuas Departamento de Matemática Escola Superior de Tecnologia de Viseu Distribuição Normal Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade
Fundamentos de Estatística
Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA [email protected] Petrópolis, 9 de Fevereiro
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição
Amostragem. Cuidados a ter na amostragem Tipos de amostragem Distribuições de amostragem
Amostragem Cuidados a ter na amostragem Tipos de amostragem Distribuições de amostragem 1 Muito Importante!! Em relação às amostras, deve assegurar-se a sua representatividade relativamente à população
ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE
ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE 4. 1 INTRODUÇÃO Serão apresentadas aqui algumas distribuições de probabilidade associadas a v.a. s contínuas. A mais importante delas é a distribuição Normal
Modelos básicos de distribuição de probabilidade
Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não
Variáveis Aleatórias Contínuas e Distribuição de Probabilidad
Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz
Distribuições Contínuas. Estatística. 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas UNESP FEG DPD
Estatística 7 - Distribuição de Probabilidade de Variáveis Aleatórias Contínuas 7- Distribuição Uniforme A variável aleatória contínua pode ser qualquer valor no intervalo [a,b] A probabilidade da variável
4. Distribuições de probabilidade e
4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio
PROBABILIDADES E ESTATÍSTICA
ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Cursos: EA, EACI, EEC, EI, EM o Teste o Semestre 007/008 Data: Sábado, 3 de Maio de 008 Duração: 5h às 7h
Capítulo 4 Inferência Estatística
Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a diferença de
PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL
PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL Aula 6 META Estudar o comportamento e aplicação das Variáveis Aleatórias Contínuas, bem como da Distribuição Normal. OBJETIVOS Ao final
Estatística Indutiva
Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição
Estatística Aplicada II. } Estimação e Intervalos de Confiança
Estatística Aplicada II } Estimação e Intervalos de Confiança 1 Aula de hoje } Tópicos } Revisão } Estimação } Intervalos de Confiança } Referências } Barrow, M. Estatística para economia, contabilidade
Distribuições de Probabilidade
Distribuições de Probabilidade 7 6 5 4 3 2 1 0 Normal 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Temperatura do ar 20 18 16 14 12 10 8 6 4 2 0 Assimetrica Positiva 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Precipitação
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Distribuição Normal Motivação: Distribuição
Processos Estocásticos. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama
Cálculo das Probabilidades I
Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Normal 06/11 1 / 41 LEMBRANDO: Variável Aleatória Contínua Assume
