Aproximação da binomial pela normal
|
|
|
- Matilde Palha Neto
- 6 Há anos
- Visualizações:
Transcrição
1 Aproximação da binomial pela normal 1
2 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição binomial. 2
3 1. Introdução Distribuição Binomial n ensaios Bernoulli independentes P(S) = P(Sucesso) = p X : número de sucessos observados nos n ensaios X tem distribuição binomial com parâmetros n e p Notação: X ~ b(n ; p) Resultado: X ~ b(n ; p) E(X) = n p Var (X) = n p (1 p) 3
4 Exemplo 1: Uma moeda honesta é lançada n = 10 vezes em idênticas condições. Determinar a probabilidade de ocorrer cara entre 40% e 70% das vezes, inclusive. Seja X : número total de caras nos 10 lançamentos Sucesso : ocorrência de cara p = P(S) = 0,5 (moeda honesta) X ~ b(10 ; 0,5) Probabilidade a ser calculada: P(4 X 7) 4
5 Distribuição de Probabilidades de X ~ b(10 ; 0,5) Probability Density Function Binomial with n = 10 and p = 0,50 x P( X = x) 0 0, , , , , , , , , , ,0010 P(4 X 7 ) = 0, , , ,1172 = 0,
6 n=10 p=1/2 Distribuições binomiais (n, p) n=10 p=1/3 n=10 p=0,9 0,3 0,25 0,2 0,15 0,1 0, ,3 0,25 0,2 0,15 0,1 0, ,5 0,4 0,3 0,2 0, n=30 p=1/2 n=30 p=1/3 n=30 p=0,9 0,2 0,15 0,1 0, ,2 0,15 0,1 0,05 0 0,25 0,2 0,15 0,1 0, n=50 p=1/2 n=50 p=1/3 n=50 p=0,9 0,12 0,1 0,08 0,06 0,04 0, ,15 0,1 0, ,2 0,15 0,1 0, Para p fixado, a medida que n cresce, os histogramas vão se tornando mais simétricos e 6 com a forma da curva Normal.
7 2. Aproximação da binomial pela normal Considere a binomial com n = 50 e p = 0,2, representada pelo histograma P(Y=13) é igual a área do retângulo de base unitária e altura igual a P(Y=13); similarmente, P(Y=14), etc... Logo, P(Y13) é igual à soma das áreas dos retângulos correspondentes. A idéia é aproximar tal área pela área sob uma curva normal, à direita de 13. Qual curva normal? 7
8 X ~ b(n ; p) E(X) = np Var(X) = np(1 p) Parece razoável considerar a normal com média e variância iguais às da binomial, ou seja, aproximamos a distribuição de probabilidades de X pela distribuição de probabilidades de uma variável aleatória Y, sendo Y ~ N( y ; y2 ) com y = np e y 2 = np(1 p). Portanto, P( a X b) P(a Y b) P( X a) P(Y a) P( X b) P(Y b) com Y ~ N(np; np(1 p) ). 8
9 O cálculo da probabilidade aproximada é feito da forma usual para a distribuição normal: P( a X b) P(a Y b) com Y ~ N( np ; np(1 p) ). Lembrando que então Z Y np np(1 p) ~ N(0;1), a np Y np b np P( a Y b) P np( 1p) np( 1p) np( 1p) a np b np P Z np( p) np( p)
10 Exemplo 2: X ~ b(225 ; 0,2) n = 225 e p = 0,2 E(X)= np = 2250,2 = 45 Var(X)= np(1 p) = 225 0,2 0,8 = 36 Y ~ N(45 ; 36) a) P(39 X 48 ) P(39 Y 48) = P Y = P( 1,0 Z 0,5 ) = 0,5328 Probabilidade exata = 0,5853 (usando a distribuição binomial). 10
11 b) P(X 42) P(Y 42) PZ = P(Z -0,5) = 0,6915. Probabilidade exata=0,7164(distr. binomial) c) P(X 57) P(Y 57) PZ = P(Z 2) = 0,9773. Probabilidade exata=0,9791(distr. binomial) d) P(41 < X < 52) = P(42 X 51) = P(-0,5 Z 1) = 0,5328. P(42 Y 51) Probabilidade exata=0,5765(distr. binomial) 11
12 Observações : 1 - A aproximação da distribuição binomial pela normal é boa quando np(1-p) A demonstração da validade desta aproximação é feita utilizando-se o Teorema do Limite Central. 3 - A aproximação pode ser melhorada através do uso da "Correção de Continuidade". 12
13 Exemplo 3: Um sistema é formado por 100 componentes, cada um dos quais com confiabilidade (probabilidade de funcionar adequadamente num certo período) igual a 0,9. Se esses componentes funcionarem de forma independente um do outro e se o sistema funcionar adequadamente enquanto pelo menos 87 componentes estiverem funcionando, qual é a confiabilidade do sistema? (Usar a aproximação normal) 13
14 X : número de componentes que funcionam adequadamente. X ~ b(100; 0,9) n = 100 p = 0,9 E(X) = np = 1000,9 = 90 Var(X) = np(1 p) = 100 0,9 0,1 = 9 Confiabilidade do sistema: P(X 87) P(X 87) P(Y 87), sendo Y ~ N(90 ; 9) P Y P Z 1 P Z 1 = 0,8413. Assim, a confiabilidade do sistema é aproximadamente igual a 0,
15 Exemplo 4: Uma moeda honesta é lançada 100 vezes. a) Calcular a probabilidade do número de caras estar entre 40% e 70% dos lançamentos, inclusive. X : número de caras em 100 lançamentos E(X) = n p = 100 0,5 = 50 caras. X ~ b(100 ; 0,5 ) Var(X) = n p (1 p) = 100 0,5 0,5 = 25. P(40 X 70 ) P(40 Y 70 ) (sendo Y ~ N(50 ; 25)) P P Z Y = 0,9773. Probabilidade exata= 0,
16 b) Determinar um intervalo simétrico em torno do número médio de caras, tal que a probabilidade de observar um valor de X nesse intervalo é 80%. Intervalo simétrico em torno da média: (50 a, 50 + a) P(50 - a X 50 + a) = 0,8 P(50 - a X 50 + a) P(50 - a Y 50 + a) Y~ N(50 ; 25) = P 50 - a - 50 Y a = P -a Z a = 0,
17 a =?, tal que - a a P Z 5 5 0,8 0,40 0,40 a 1,28 5 a 6,4 Intervalo procurado: (50-6,4 ; ,4) ( 43,6 ; 56,4 ). A probabilidade de em 100 lançamentos termos entre 43 e 57 caras é aproximadamente 80%. 17
18 c) Um pesquisador, não conhecendo p = P(cara), decide lançar a moeda 100 vezes e considerá-la desonesta se o número de caras for maior que 59 ou menor que 41. Qual a probabilidade de considerar indevidamente a moeda como desonesta? X : número de caras nos 100 lançamentos X ~b(100 ; p), com p desconhecido para o pesquisador P(considerar indevidamente a moeda como desonesta) = P( X > 59 ou X < 41, quando p = 0,5) = P(X 60 ou X 40, quando p = 0,5) P(Y 60 ) + P( Y 40), sendo Y ~ N(50 ; 25) Esta probabilidade fica P(Y 60) + P(Y 40) = P Y = P(Z 2) + P(Z -2) = 0,0455. (Interpretação??) P Y
19 Exemplo 5: Uma prova é constituída de 20 testes com quatro alternativas cada. Um aluno não estudou a matéria e vai respondê-los ao acaso. Qual a probabilidade de acertar 50% ou mais das questões? X : número de acertos X ~ b(20 ; 0,25) E(X) = np = 5 e Var(X) = np(1-p) = 3,75 P(X 10) P(Y 10) Y ~ N(5 ; 3,75) = P Y ,93 1,93 = P(Z 2,59) = 0,0048. Repetir para 40 testes com quatro alternativas. X ~ b(40 ; 0,25) E(X) = n p = 10 Var(X) = n p (1-p) = 7,5 P(X 20) P(Y 20) Y ~ N(10 ; 7,5) = P Y ,75 2,75 = P(Z 3,63) = 0,
20 Para 40 testes com cinco alternativas X ~ b(40 ; 0,20) E(X) = n p = 8 Var(X) = n p (1 p) = 6,4 P(X 20) P(Y 20) Y ~ N(8 ; 6,4) = P Z 20-8 = P(Z 4,74) 0, ,53 20
Aproximação da binomial pela normal
Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição
Aproximação da binomial pela normal
Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição
Verificar como a distribuição normal pode ser utilizada para calcular, l de forma aproximada, probabilidades associadas a uma variável aleatória com
Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, l de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição
AULA 15 - Distribuição de Bernoulli e Binomial
AULA 15 - Distribuição de Bernoulli e Binomial Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Variável Aleatória de Bernoulli Podemos dizer que as variáveis aleatórias mais simples entre as
Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal
Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:
Teorema do Limite Central
Teorema do Limite Central Bacharelado em Economia - FEA - Noturno 1 o Semestre 2014 MAE0219 (IME-USP) Teorema do Limite Central 1 o Semestre 2014 1 / 47 Objetivos da Aula Sumário 1 Objetivos da Aula 2
Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias
Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para
Professora Ana Hermínia Andrade. Período
Distribuições de probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Modelos de distribuição Para
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Distribuição Normal Motivação: Distribuição
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL Variável Aleatória Uma função X que associa a cada elemento ω do espaço amostral Ω um valor x R é denominada uma variável aleatória. A variável aleatória pode
Modelos de Distribuição PARA COMPUTAÇÃO
Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO
VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL
VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição
Métodos Estatísticos
Métodos Estatísticos 5 - Distribuição Normal Referencia: Estatística Aplicada às Ciências Sociais, Cap. 7 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Distribuição de Probabilidades A distribuição
Distribuição de Probabilidade. Prof. Ademilson
Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.
MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade
MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 28 de Agosto, 2013 Probabilidade: uma Introdução / Aula 8 1 Desigualdades de Markov e
3 a Lista de PE Solução
Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes
Modelos Binomial e Poisson
Modelos Binomial e Poisson Cristian Villegas [email protected] http://www.lce.esalq.usp.br/arquivos/aulas/2014/lce0216/ 1 Distribuição Bernoulli Se um experimento possui dois possíveis resultados, sucesso
Modelos Binomial e Poisson
Modelos Binomial e Poisson Cristian Villegas [email protected] Outubro de 2013 Apostila de Estatística (Cristian Villegas) 1 Distribuição Bernoulli Se um experimento possui dois possíveis resultados, sucesso
Variáveis Aleatórias Contínuas e Distribuição de Probabilidad
Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Variáveis Aleatórias Contínuas
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Variáveis Aleatórias Contínuas Professora Renata Alcarde Piracicaba abril 2014 Renata Alcarde Estatística Geral 24 de Abril de 2014
AULA 16 - Distribuição de Poisson e Geométrica
AULA 16 - Distribuição de Poisson e Geométrica Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuição de Poisson Em muitas situações nos deparamos com a situação em que o número de ensaios
X ~ Binomial (n ; p) H: p = p 0 x A: p p 0 (ou A: p > p 0 ou A: p < p 0 ) { X k 1 } U { X k 2 } (ou { X k } ou { X k }) x RC não rejeitamos H
NOÇÕES DE TESTE DE HIPÓTESES (II) Nível Descritivo valor P Resumo X ~ Binomial (n ; p) (1) Estabelecer as hipóteses sobre p: H: p = p 0 x A: p p 0 (ou A: p > p 0 ou A: p < p 0 ) (2) Escolher um nível de
Distribuições de Probabilidade. Distribuição Normal
Distribuições de Probabilidade Distribuição Normal 1 Distribuição Normal ou Gaussiana A distribuição Normal ou Gaussiana é muito utilizada em análises estatísticas. É uma distribuição simétrica em torno
Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto
Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades
Departamento de Matemática Escola Superior de Tecnologia de Viseu
Distribuições contínuas Departamento de Matemática Escola Superior de Tecnologia de Viseu Distribuição Normal Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade
EST012 - Estatística Econômica I Turma A - 1 o Semestre de 2019 Lista de Exercícios 3 - Variável aleatória
Exercício 1. Considere uma urna em que temos 4 bolas brancas e 6 bolas pretas. Vamos retirar, ao acaso, 3 bolas, uma após a outra e sem reposição. Sejam X: o número de bolas brancas e Y : o número de bolas
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Distribuição Geométrica Considere novamente uma sequência
PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL
PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL Aula 6 META Estudar o comportamento e aplicação das Variáveis Aleatórias Contínuas, bem como da Distribuição Normal. OBJETIVOS Ao final
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
Capítulo 5 Distribuições de Probabilidades. Seção 5-1 Visão Geral. Visão Geral. distribuições de probabilidades discretas
Capítulo 5 Distribuições de Probabilidades 5-1 Visão Geral 5-2 Variáveis Aleatórias 5-3 Distribuição de Probabilidade Binomial 5-4 Média, Variância e Desvio Padrão da Distribuição Binomial 5-5 A Distribuição
Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral
Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades
Fundamentos de Estatística
Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA [email protected] Petrópolis, 9 de Fevereiro
Distribuições de Probabilidade. Distribuição Uniforme Distribuição Exponencial Distribuição Normal
Distribuições de Probabilidade Distribuição Uniforme Distribuição Exponencial Distribuição Normal 1 Distribuição Uniforme A distribuição Uniforme atribui uma densidade igual ao longo de um intervalo (a,b).
5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber
5 Distribuição normal de probabilidade Estatística Aplicada Larson Farber Seção 5.1 Introdução às distribuições normais Propriedades de uma distribuição normal Suas média, mediana e moda são iguais. Tem
Modelos Probabilisticos Discretos
Modelos Probabilisticos Discretos Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 30 A distribuição Uniforme Discreta Suponha um experimento
LEEC Probabilidades e Estatística 1 a Chamada 13/06/2005. Parte Prática C (C) M 1% 9% 10% (M) 4% 86% 90% 5% 95% 100%
. Definição dos acontecimentos: M T-shirt tem manchas C T-shirt tem costuras defeituosas D T-shirt é defeituosa A Preço da t-shirt é alterado a) PM) = % PC) = 5% PM C) = % LEEC Probabilidades e Estatística
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Modelos de distribuição Para utilizar a teoria
Aproximação da Distribuição Binomial pela Distribuição Normal
Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.
Probabilidade. 1 Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson. Renata Souza
Probabilidade Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson Renata Souza Distribuição de Bernoulli Uma lâmpada é escolhida ao acaso Ensaio de Bernoulli A lâmpada
Distribuições de Probabilidade
Distribuições de Probabilidade Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Distribuições de Probabilidade 2007/2008 1 / 31 Introdução Introdução Já vimos como caracterizar
Tiago Viana Flor de Santana
ESTATÍSTICA BÁSICA DISTRIBUIÇÃO NORMAL DE PROBABILIDADE (MODELO NORMAL) Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ [email protected] sala 07 Curso: MATEMÁTICA Universidade Estadual
Variáveis Aleatórias Contínuas e Distribuições de Probabilidade
Variáveis Aleatórias Contínuas e Distribuições de Probabilidade Motivação A quantidade de oxigênio dissolvido é importante para aferir a qualidade de um regato. Os níveis aceitáveis de oxigênio variam
HEP-5800 BIOESTATÍSTICA. Capitulo 2
HEP-5800 BIOESTATÍSTICA Capitulo 2 NOÇÕES DE PROBABILIDADE, DISTRIBUIÇÃO BINOMIAL, DISTRIBUIÇÃO NORMAL Nilza Nunes da Silva Regina T. I. Bernal MARÇO DE 2012 2 1. NOÇÕES DE PROBABILIDADE 1. DEFINIÇÃO Considere
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição de Bernoulli e Binomial 07/14 1 / 32 Distribuições Discretas Apresentaremos agora
Distribuição Normal. Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade for dada por:
Distribuições contínuas Departamento de Matemática Escola Superior de Tecnologia de Viseu Distribuição Normal Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade
Distribuições amostrais
Distribuições amostrais Tatiene Correia de Souza / UFPB [email protected] October 14, 2014 Souza () Distribuições amostrais October 14, 2014 1 / 23 Distribuição Amostral Objetivo Estender a noção de uma
Revisão de Probabilidade
05 Mat074 Estatística Computacional Revisão de Probabilidade Prof. Lorí Viali, Dr. [email protected] http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito
VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE
VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos
Principais distribuições discretas Distribuição de Bernoulli sucesso fracasso X = 1, se sucesso X = 0, se fracasso P(X) TOTAL 1 Exemplo 5:
Principais distribuições discretas Na prática, sempre se procura associar um fenômeno aleatório a ser estudado, a uma forma já conhecida de distribuição de probabilidade (distribuição teórica) e, a partir
PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano
PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano [email protected] Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete
Variáveis Aleatórias Contínuas
Variáveis Aleatórias Contínuas Bacharelado em Administração - FEA - Noturno 2 o Semestre 2017 MAE0219 (IME-USP) Variáveis Aleatórias Contínuas 2 o Semestre 2017 1 / 35 Objetivos da Aula Sumário 1 Objetivos
a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36
1 Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08
Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Variável Aleatória Contínua:
Distribuição Contínua Normal Luiz Medeiros de Araujo Lima Filho Departamento de Estatística UFPB Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,
AULA 17 - Distribuição Uniforme e Normal
AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço
Distribuições Amostrais e Estimação Pontual de Parâmetros
Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 19 de Maio de 2011 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição
Solução dos Exercícios - Capítulos 1 a 3
Capítulo 9 Solução dos Exercícios - Capítulos a 3 9. Capítulo. a Como o valor se refere aos pacientes estudados, e não a todos os pacientes, esse é o valor de uma estatística amostral. b Estatística amostral
Stela Adami Vayego DEST/UFPR
Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis
Avaliação e Desempenho Aula 5
Avaliação e Desempenho Aula 5 Aula passada Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Aula de hoje Variáveis aleatórias discretas e contínuas PMF, CDF e função densidade
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 1ª Parte: Conceitos básicos, variáveis aleatórias, modelos probabilísticos para variáveis aleatórias discretas, modelo binomial, modelo de Poisson 1 Probabilidade
PEDRO A. BARBETTA Estatística Aplicada às Ciências Sociais 6ed. Editora da UFSC, 2006.
Como usar modelos de probabilidade para entender melhor os fenômenos aleatórios Capítulos 7 e 8. Estatística Aplicada às Ciências Sociais Sexta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC,
AULA 07 Distribuições Discretas de Probabilidade
1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:
DISTRIBUIÇÕES BERNOULLI E BINOMIAL
DISTRIBUIÇÕES BERNOULLI E BINOMIAL Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 26 de junho de 2017 Distribuição Bernoulli Nos experimentos
Distribuições de probabilidade de variáveis aleatórias discretas
Distribuições de probabilidade de variáveis aleatórias discretas Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Cronograma 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Poisson
ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE
ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE 4. 1 INTRODUÇÃO Serão apresentadas aqui algumas distribuições de probabilidade associadas a v.a. s contínuas. A mais importante delas é a distribuição Normal
Introdução à probabilidade e estatística I
Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: [email protected] Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos
TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média
TESTES DE HIPÓTESES Conceitos, Testes de 1 proporção, Testes de 1 média 1 Testes de Hipóteses População Conjectura (hipótese) sobre o comportamento de variáveis Amostra Decisão sobre a admissibilidade
4. PRINCIPAIS MODELOS DISCRETOS
4. PRINCIPAIS MODELOS DISCRETOS 2011 Principais modelos probabilísticos discretos 4.1. Modelo Bernoulli Muitos eperimentos admitem apenas dois resultados. Eemplos: 1. Uma peça é classificada como defeituosa
Cap. 6 Variáveis aleatórias contínuas
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio
BIOESTATISTICA. Unidade IV - Probabilidades
BIOESTATISTICA Unidade IV - Probabilidades 0 PROBABILIDADE E DISTRIBUIÇÃO DE FREQUÊNCIAS COMO ESTIMATIVA DA PROBABILIDADE Noções de Probabilidade Após realizar a descrição dos eventos utilizando gráficos,
Distribuições Bernoulli e Binomial
Distribuições Bernoulli e Binomial Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 04 de junho de 2018 Londrina 1 / 12 Distribuição Bernoulli Nos experimentos
Uma estatística é uma característica da amostra. Ou seja, se
Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral
Variáveis Aleatórias Discretas e Distribuição de Probabilidade
Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte II 29 de Março de 2011 Distribuição Uniforme Discreta Média Propriedade da falta de memória Objetivos Ao final deste capítulo você
Cap. 5 Variáveis aleatórias discretas
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 5 Variáveis aleatórias discretas APOIO: Fundação de
Variáveis Aleatórias Discretas e Distribuição de Probabilidade
Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das
