Modelos Binomial e Poisson
|
|
|
- Zaira Gil Antunes
- 9 Há anos
- Visualizações:
Transcrição
1 Modelos Binomial e Poisson Cristian Villegas [email protected] 1
2 Distribuição Bernoulli Se um experimento possui dois possíveis resultados, sucesso e fracasso. Seja p a probabilidade de sucesso e 1 p a probabilidade de fracasso. A variável aleatória Bernoulli denota o número de sucessos em uma única tentativa do experimento aleatório, assim R x = {0, 1}. A função de probabilidades está dada por P(X = x) = p x (1 p) 1 x para x {0, 1}, p (0, 1). (1) Notação X Ber(p). Tarefa Observação 1. A esperança e variância de uma variável aleatória X Ber(p) são, respectivamente E(X) = p e V (X) = p (1 p). 2
3 Distribuição Binomial Uma variável aleatória X que conta o número total de sucessos em n ensaios (tentativas) independentes de Bernoulli de um mesmo experimento aleatório é uma variável aleatória Binomial com parâmetros n e p, em que p denota a probabilidade constante de sucesso em cada ensaio Bernoulli, assim R x = {0, 1,...,n}. A função de probabilidades de X é dada por P(X = x) = n! (n x)!x! px (1 p) n x para x {0, 1, 2,...,n}. p (0, 1) (2) Notação X Bin(n, p). Observação 2. A esperança e variância de uma variável aleatória X Bin(n, p) são, respectivamente E(X) = n p e V (X) = n p (1 p) 3
4 Exemplos de distribuição Binomial Exemplo 1. A probabilidade de que um paciente se recupere de uma doença rara do sangue é 0.4. Sabemos que 15 pessoas tem a doença. a) Qual é a probabilidade de que pelo menos 10 pessoas sobrevivam? b) Qual é a probabilidade de que sobrevivam entre 3 e 8 pessoas? c) Qual é a probabilidade de que sobrevivam exatamente 5 pessoas? d) Calcular E(X). e) Calcular V (X). Exemplo 2. Numa criação de coelhos, 40% são machos. Qual a probabilidade de que nasçam pelo menos 2 coelhos machos num dia em que nasceram 20 coelhos? 4
5 Distribuição de Poisson Consideremos a probabilidade de ocorrência de sucessos em um determinado intervalo ou uma região específica, assim R x = {0, 1, 2,...}. A função de probabilidades de X é dada por P(X = x) = e λ λ x Notação X P(λ). x! Observação 3. Podemos provar que se X P(λ), então E(X) = λ e V (X) = λ para R x = {0, 1, 2...} λ > 0. (3) 5
6 Exemplos de distribuição Poisson 1. Número de carros que passam por um cruzamento por minuto, durante uma certa hora do dia 2. número de erros tipográficos por página, em um material impresso. 3. número de colônias de bactérias numa dada cultura por 0,01 mm 2, numa plaqueta de microscópio. 4. número de mortes por ataque de coração por ano, numa cidade. 6
7 Exemplos de distribuição Poisson Exemplo 3. O número médio de partículas radioativas que pasam por um contador durante um milisegundo num experimento de laboratório é 4. Qual a probabilidade de que entrem 6 partículas ao contador num milisegundo determinado? Exemplo 4. Num livro de 800 páginas há 800 erros de impressão. Qual a probabilidade de que uma página contenha pelo menos 3 erros? Exemplo 5. Numa central telefônica chegam 300 telefonemas por hora. Qual a probabilidade de que 1. num minuto não haja nenhum chamado? 2. em 2 minutos haja 2 chamados? 3. em t minutos não haja chamados? 7
8 Teorema 1. Se X B(n, p) e supondo n grande (n ) e p pequeno (p 0), então λ = np, isto é, P(X = x) = ( n )p x (1 p) n x e λ λ x x x! isto é, (4) lim P(X = x) = e λ λ x p 0 n x! (5) Este teorema essencialmente diz que podemos aproximar a distribuição Binomial pela distribuição Poisson sempre que n seja grande e p pequeno. Exemplo 6. Uma companhia de seguros afirma que 0.1% da população tem certo tipo de acidentes cada ano. Se os segurados da companhia foram selecionados aleatoriamente desde a população. Qual será a probabilidade de que no máximo de 5 de estos clientes, tenham um acidente o proximo ano? 8
9 Solução do exercício anterior A : Pessoa segurada pela companhia sofre um acidente. X B(10000, 0.001), logo P(X 5) = 5 ( ) (0.001) x (0.999) (10000 x) x x=0 Como n é grande e p é pequeno, calcularemos esta probabilidade usando a aproximação da distribuição Binomial pela distribuição Poisson, isto é, λ = = 10. Por tanto, P(X 5) = 5 x=0 e λ λ x x! = Conferir!!!!. 9
Modelos Binomial e Poisson
Modelos Binomial e Poisson Cristian Villegas [email protected] Outubro de 2013 Apostila de Estatística (Cristian Villegas) 1 Distribuição Bernoulli Se um experimento possui dois possíveis resultados, sucesso
Probabilidade. 1 Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson. Renata Souza
Probabilidade Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson Renata Souza Distribuição de Bernoulli Uma lâmpada é escolhida ao acaso Ensaio de Bernoulli A lâmpada
1 Distribuição de Bernoulli
Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 6 Professor: Carlos Sérgio Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas
NOTAS DA AULA DISTRIBUIÇÃO BINOMIAL E DE POISSON. Prof.: Idemauro Antonio Rodrigues de Lara
1 NOTAS DA AULA DISTRIBUIÇÃO BINOMIAL E DE POISSON Prof.: Idemauro Antonio Rodrigues de Lara 2 Objetivo geral da aula Caracterizar os modelos de distribuição de variável aleatória discreta: binomial e
Distribuições de probabilidade de variáveis aleatórias discretas
Distribuições de probabilidade de variáveis aleatórias discretas Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Cronograma 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Poisson
DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON
DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 05 de julho de 2017 Distribuição Bernoulli Exemplo Nos experimentos de Bernoulli, o espaço
Distribuições Bernoulli, Binomial e Poisson
Distribuições Bernoulli, Binomial e Poisson Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 06 de junho de 2018 Londrina 1 / 18 Nos experimentos de Bernoulli,
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Poisson 08/14 1 / 19
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Poisson 08/14 1 / 19 Modelo Poisson Na prática muitos experimentos consistem em observar a
Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto
Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Modelos de distribuição Para utilizar a teoria
Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal
Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:
Variáveis Aleatórias Discretas e Distribuição de Probabilidade
Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das
Variável Aleatória Poisson. Número de erros de impressão em uma
EST029 Cálculo de Probabilidade I Cap. 7. Principais Variáveis Aleatórias Discretas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Variável Aleatória Poisson Caraterização: Usa-se quando o experimento
VARIÁVEIS ALEATÓRIAS 1
VARIÁVEIS ALEATÓRIAS 1 Na prática é, muitas vezes, mais interessante associarmos um número a um evento aleatório e calcularmos a probabilidade da ocorrência desse número do que a probabilidade do evento.
Professora Ana Hermínia Andrade. Período
Distribuições de probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Modelos de distribuição Para
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Teorema do Limite Central
Teorema do Limite Central Bacharelado em Economia - FEA - Noturno 1 o Semestre 2014 MAE0219 (IME-USP) Teorema do Limite Central 1 o Semestre 2014 1 / 47 Objetivos da Aula Sumário 1 Objetivos da Aula 2
Modelos de Distribuição PARA COMPUTAÇÃO
Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO
Aproximação da binomial pela normal
Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição
Lista de exercícios sobre Distribuições Binomial, Poisson e Normal UFPR /2. Monitor Adi Maciel de A. Jr Prof. Jomar.
Lista de exercícios sobre Distribuições Binomial, Poisson e Normal UFPR - 2014/2 Monitor Adi Maciel de A. Jr Prof. Jomar. ----------------//----------------//---------------- Distribuição Binomial N =
Aproximação da binomial pela normal
Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição
12 Distribuições de Probabilidades
12 Distribuições de Probabilidades 12.1 Introdução Neste capítulo vamos dar continuidade ao estudo de probabilidades, introduzindo os conceitos de variáveis aleatórias e de distribuições de probabilidade.
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável
Variáveis Aleatórias Contínuas e Distribuição de Probabilidad
Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas
Modelos Probabilisticos Discretos
Modelos Probabilisticos Discretos Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 30 A distribuição Uniforme Discreta Suponha um experimento
Probabilidade e Estatística
Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial
Aproximação da binomial pela normal
Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição
Distribuições Importantes. Distribuições Discretas
Distribuições Importantes Distribuições Discretas Distribuição de Bernoulli Definição Prova ou experiência de Bernoulli é uma experiência aleatória que apenas tem dois resultados possíveis: A que se designa
AULA 16 - Distribuição de Poisson e Geométrica
AULA 16 - Distribuição de Poisson e Geométrica Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuição de Poisson Em muitas situações nos deparamos com a situação em que o número de ensaios
Verificar como a distribuição normal pode ser utilizada para calcular, l de forma aproximada, probabilidades associadas a uma variável aleatória com
Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, l de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição
Principais distribuições discretas Distribuição de Bernoulli sucesso fracasso X = 1, se sucesso X = 0, se fracasso P(X) TOTAL 1 Exemplo 5:
Principais distribuições discretas Na prática, sempre se procura associar um fenômeno aleatório a ser estudado, a uma forma já conhecida de distribuição de probabilidade (distribuição teórica) e, a partir
Probabilidade e Estatística
Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 2 Leitura obrigatória: Devore, seções 3.4, 3.5 (hipergeométrica), 3.6 Aula 5-1 Objetivos Nesta parte 01 aprendemos a representar,
Variáveis Aleatórias e Distribuições de Probabilidade
de Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative
ESTATÍSTICA. x(s) W Domínio. Contradomínio
Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição
5 a Lista de PE Solução
Universidade de Brasília Departamento de Estatística 5 a Lista de PE Solução. Sejam X A e X B o números de jogos que o time ganha contra times da classe A e da classe B respectivamente. Claramente X A
F (x) = P (X x) = Σ xi xp(x i ) E(X) = x i p(x i ).
Variável Aleatória Uma variável aleatória é uma variável numérica, cujo valor medido pode variar de uma réplica para outra do experimento. Exemplos: (i) Variáveis aleatórias contínuas: corrente elétrica,
Cap. 8 - Variáveis Aleatórias
Variáveis Aleatórias Discretas: A de Poisson e Outras ESQUEMA DO CAPÍTULO 8.1 A DISTRIBUIÇÃO DE POISSON 8.2 A DISTRIBUIÇÃO DE POISSON COMO APROXIMAÇÃO DA DISTRIBUIÇÃO BINOMIAL 8.3 O PROCESSO DE POISSON
DISTRIBUIÇÕES BERNOULLI E BINOMIAL
DISTRIBUIÇÕES BERNOULLI E BINOMIAL Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 26 de junho de 2017 Distribuição Bernoulli Nos experimentos
PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos
PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal
1 Distribuições Discretas de Probabilidade
1 Distribuições Discretas de Probabilidade A distribuição discreta descreve quantidades aleatórias (dados de interesse) que podem assumir valores particulares e os valores são finitos. Por exemplo, uma
Distribuições Bernoulli e Binomial
Distribuições Bernoulli e Binomial Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 04 de junho de 2018 Londrina 1 / 12 Distribuição Bernoulli Nos experimentos
Variáveis Aleatórias Discretas e Distribuições de 3Probabilidade
Variáveis Aleatórias Discretas e Distribuições de 3Probabilidade Variáveis Aleatórias Discretas e Distribuições de Probabilidade Objetivos do aprendizado 3 Como determinar se um experimento é Binomial.
Introdução à probabilidade e estatística I
Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: [email protected] Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos
MAE0219 Introdução à Probabilidade e Estatística I
Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória
Distribuição de Probabilidade. Prof. Ademilson
Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.
Modelos básicos de distribuição de probabilidade
Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não
DISTRIBUIÇÕES POISSON E MULTINOMIAL
DISTRIBUIÇÕES POISSON E MULTINOMIAL Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 03 de julho de junho de 2017 Distribuição Poisson A
AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017
AULAS 6 e 7 ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 Em aulas passadas vimos as funções de probabilidade de variáveis discretas e contínuas agora vamos ver
AULA 15 - Distribuição de Bernoulli e Binomial
AULA 15 - Distribuição de Bernoulli e Binomial Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Variável Aleatória de Bernoulli Podemos dizer que as variáveis aleatórias mais simples entre as
3 a Lista de PE Solução
Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari [email protected] Distribuições Discretas Uniforme Bernoulli Binomial Poisson
Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008
Variável Aleatória Gilson Barbosa Dourado [email protected] 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08
Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Fundamentos de Estatística
Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA [email protected] Petrópolis, 9 de Fevereiro
4. PRINCIPAIS MODELOS DISCRETOS
4. PRINCIPAIS MODELOS DISCRETOS 2011 Principais modelos probabilísticos discretos 4.1. Modelo Bernoulli Muitos eperimentos admitem apenas dois resultados. Eemplos: 1. Uma peça é classificada como defeituosa
Revisão de Probabilidade
05 Mat074 Estatística Computacional Revisão de Probabilidade Prof. Lorí Viali, Dr. [email protected] http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito
Distribuições de Probabilidade
Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais
Distribuições Discretas
META: Estudar o comportamento das Variáveis Aleatórias Discretas, bem como das Distribuições Binomial e Poisson e suas aplicações. Entender o comportamento de uma Variável aleatória Contínua. OBJETIVOS:
Distribuição de Probabilidade Variáveis Aleatórias Discretas. Prof.: Joni Fusinato
Distribuição de Probabilidade Variáveis Aleatórias Discretas Prof.: Joni Fusinato [email protected] [email protected] Distribuição de Probabilidade Descreve a chance que uma variável pode assumir
Distribuições de Probabilidade. Distribuição Normal
Distribuições de Probabilidade Distribuição Normal 1 Distribuição Normal ou Gaussiana A distribuição Normal ou Gaussiana é muito utilizada em análises estatísticas. É uma distribuição simétrica em torno
Distribuições amostrais
Distribuições amostrais Tatiene Correia de Souza / UFPB [email protected] October 14, 2014 Souza () Distribuições amostrais October 14, 2014 1 / 23 Distribuição Amostral Objetivo Estender a noção de uma
Distribuição de Probabilidade. Prof.: Joni Fusinato
Distribuição de Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Modelos de Probabilidade Utilizados para descrever fenômenos ou situações que encontramos na natureza, ou
PARTE 2. Profª. Drª. Alessandra de Ávila Montini
PARTE 2 Profª. Drª. Alessandra de Ávila Montini Conteúdo Introdução a Probabilidade Conceito de Experimento Conceito de Espaço Amostral Conceito de Variável Aleatória Principais Distribuições de Probabilidade
Bioestatística e Computação I
Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas
Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades
Aula de Estatística 13/10 à 19/10 Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades 4.1 Distribuições de probabilidades Variáveis Aleatórias Geralmente, o resultado de um experimento de probabilidades
Modelos Probabiĺısticos Discretos
Discretos Prof. Gilberto Rodrigues Liska UNIPAMPA 19 de Setembro de 2017 Material de Apoio e-mail: [email protected] Gilberto R. Liska ( UNIPAMPA ) Notas de Aula 19 de Setembro de 2017 1 /
Distribuições de Probabilidade
Distribuições de Probabilidade Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Distribuições de Probabilidade 2007/2008 1 / 31 Introdução Introdução Já vimos como caracterizar
Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS
Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Distribuição Geométrica Considere novamente uma sequência
4. PRINCIPAIS MODELOS DISCRETOS
4. PRINCIPAIS MODELOS DISCRETOS 2019 Principais modelos probabilísticos discretos 4.1. Modelo Bernoulli Muitos eperimentos admitem apenas dois resultados. Eemplos: 1. Uma peça é classificada como defeituosa
UNIDADE II. José J. C. Hernández. April 9, 2017 DE - UFPE. José J. C. Hernández (DE - UFPE) Estatística I April 9, / 60
INTRODUÇÃO À ESTATÍSTICA UNIDADE II José J. C. Hernández DE - UFPE April 9, 2017 José J. C. Hernández (DE - UFPE) Estatística I April 9, 2017 1 / 60 Variável aleatória Seja X : Ω R uma função real de Ω
rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas
ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 03: Variáveis Aleatórias Discretas Qual a similaridade na natureza dessas grandezas? Tempo de espera de um ônibus
Variáveis Aleatórias Discretas e Distribuição de Probabilidade
Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte II 29 de Março de 2011 Distribuição Uniforme Discreta Média Propriedade da falta de memória Objetivos Ao final deste capítulo você
Capítulo 5 Distribuições de Probabilidades. Seção 5-1 Visão Geral. Visão Geral. distribuições de probabilidades discretas
Capítulo 5 Distribuições de Probabilidades 5-1 Visão Geral 5-2 Variáveis Aleatórias 5-3 Distribuição de Probabilidade Binomial 5-4 Média, Variância e Desvio Padrão da Distribuição Binomial 5-5 A Distribuição
Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas
1. ANPEC 2018 Questão 3 Considere um indivíduo procurando emprego. Para cada entrevista de emprego (X) esse indivíduo tem um custo linear (C) de 10,00 Reais. Suponha que a probabilidade de sucesso em uma
Processos Estocásticos
Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama
Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.
Prof. Lorí Viali, Dr. [email protected] http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada
Processos Estocásticos. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama
Distribuições de Probabilidade. Distribuição Uniforme Distribuição Exponencial Distribuição Normal
Distribuições de Probabilidade Distribuição Uniforme Distribuição Exponencial Distribuição Normal 1 Distribuição Uniforme A distribuição Uniforme atribui uma densidade igual ao longo de um intervalo (a,b).
