5 a Lista de PE Solução
|
|
|
- Rachel Cruz
- 6 Há anos
- Visualizações:
Transcrição
1 Universidade de Brasília Departamento de Estatística 5 a Lista de PE Solução. Sejam X A e X B o números de jogos que o time ganha contra times da classe A e da classe B respectivamente. Claramente X A e X B são variáveis aleatórias binomiais de parâmetros E X A, 4, 4 e VarX A, 4,, 4 E X B 8, 7, e VarX B 8, 7, 3 3, 78. a Como estamos interessados na probabilidade de que X A + X B seja maior ou igual a 5, observe que esta soma tem distribuição aproximadamente normal de média 3 e variância,. Se Y N3;,, aplicando o Teorema de DeMoivre- Laplace podemos aproximar a probabilidade desejada como abaixo: PX A + X B 5 PY 5 P Y 3, PZ, 38 PZ, 38, , b Agora, queremos calcular a probabilidade de que X A X B seja maior ou igual a. Observe então que esta subtração tem distribuição aproximadamente normal de média -, e variância,. Se Y N, ;,, aplicamos novamente o Teorema de DeMoivre-Laplace e aproximamos a probabilidade por PX A X B PY Y +, P +,,, PZ, 9 PZ, 9, 55. Considere a sequência X i de n v.a. s independentes onde com PX i p. X i {, se ocorrer sucesso,, se ocorrer fracasso,
2 Claramente X i Berp e se fizermos X X + + X n, X representa o número de sucessos em n lançamentos que já sabemos que representa uma binomial. Como e concluímos que X Binn, p. EX EX + + EX n np VarX VarX + + VarX n np p 3. A tabela abaixo apresenta as probabilidades PX i, Y j com as respectivas marginais: X / Y 3 PX i PY j a Ω {, C,, C, 3, C, 4, C, 5, C,, C,, K,, K, 3, K, 4, K, 5, K,, K}. b A tabela de distribuição segue abaixo: X / Y PX i PY j c Para todo i, e j,, 3, 4, 5, temos que PX i, Y j PX ipy j, d portanto X e Y são independentes. 4 PX, Y 4 PX i, Y j 8. i j 5. a As distribuições marginais seguem na tabela abaixo: Y / X 3 PY y,,,,3,,,3,5,,,, PX x,3,,5
3 b EX, 3 +, + 3, 5, EY, 3 +, 5 +,, 9 EX, 3 +, + 3, 5 5, EY, 3 +, +, 5, 3 VarX EX [EX], 7 VarY EY [EY ], 49 c Não são independentes. Basta observar que, PX, Y PX PY,, 5,. d e PX Y PY X 3 PX, Y PY PY, X 3 PX 3,, 3 3.,, 5 5. PX PX + PX, 5. PX, Y PX, Y + PX, Y,.. a As distribuições marginais seguem na tabela abaixo: Y / X - PY y PX x b EX + + EY EX + + EY + + 3
4 VarX EX [EX] VarY EY [EY ] 5 9 c De maneira análoga ao item d da Questão 5 encontramos PX Y, PX Y, PX Y, PY X, PY X 3, PY X. d Como X e Y são independentes CovX, Y e VarX + Y VarX + VarY a Lembre-se que podemos escrever ρx, Y E b Como X EX σx [ X EX σx Y EY, σy ] Y EY. σy temos X EX E Y EY σx σy X EX Y EY E + E E[X EXY EY ] σx σy σxσy VarX σ X + VarY σ Y CovX,Y σxσy ρx, Y. Logo ρx, Y. Substituindo por + na expressão acima, encontramos a outra desigualdade. ρx + a, Y + b E[X + ay + b] EX + aey + b σx + aσy + b EXY + ay + bx + ab [EX + a][ey + b] σxσy EXY EXEY σxσy ρx, Y.
5 c ρax, by EaXbY EaXEbY σaxσby abexy abexey a b σxσy ab CovX, Y ab σxσy ab ρx, Y. ab 8. a A distribuição de X + Y segue na tabela abaixo: Desse modo, k Total PX + Y k,,,3,4,, EX + Y, + 3, + 4, 3 + 5, 4 +, 4. Outra maneira de obter a resposta seria encontrar as distribuições marginais obtendo EX e EY, em seguida aplicar a lei da soma para esperanças. b A distribuição de XY segue na tabela abaixo: k Total PXY k,,,,,,4,,,, Desse modo, EXY, +, +3, +4, +5, +, 4+7, +8, +9, 4. c Claramente, EXY EXEY, mas PX 3, Y PX 3PY, 3,,. d Portanto, EX + Y, + 3, + 4, 3 + 5, 4 +, 7. VarX + Y a A tabela abaixo apresenta as probabilidades PX i, Y j com as respectivas marginais: X / Y 3 PX i 3 PY j
6 b A distribuição de Z X + Y segue na tabela abaixo k Total PX + Y k enquanto a distribuição da variável W XY é dada pela tabela k Total PXY k c PX < Y PX, Y + PX, Y 3 + PX, Y 3 / + / + / /. d EX EY e Primeiramente calculamos f EZ EW EX EY e, consequentemente. Da definição temos VarX VarY CovX, Y EXY EXEY EW EXEY /3 /3 VarX + Y EX + Y {EX + Y } EX + XY + Y {EX + EY } EX + EXY + EY {[EX] + EXEY + [EY ] } EX [EX] + {EXY EXEY } + EY [EY ] VarX + CovX, Y + VarY. Analogamente, encontramos VarX Y VarX CovX, Y + VarY.
7 . Vamos supor que homens e mulheres entrem na drogaria de forma independente. Como a soma de duas poissons é uma poisson com os parâmetros somados seja X Pois5 e X Pois5 as variáveis que representam o números de homens e mulheres que entram na drogaria respectivamente. Desse modo, X + X Pois como esperávamos. A probabilidade desejada é PX 3 X PX 3. PX k X + Y n e 5 + 5e 5 + 5! e ! e 5. PX k, X + Y n PX + Y n PX k, Y n k PX + Y n PX kpy n k PX + Y n e λ λ k k! e λ λ n k n k! [ e λ +λ λ + λ n n! ] n λ k λ k λ + λ λ + λ n k ou seja, é a distribuição de uma binomial de parâmetros n e 3. a Sabendo que X N,, segue que λ λ +λ. 9 P9 < X < P P < Z < PZ <, 8434, 88. < X < b Como X N, /, temos que P 9 < X < 9 P /4 P 4 < Z < 4 PZ < 4, 99997, < X /4 < /4
8 c As densidades seguem na figura abaixo.8 Densidade das Normais. N, N,/ d Partindo da equação fornecida e sabendo que X N, /n, segue que P 9 < X <, 95 9 P / n < X / < n /, 95 n P n < Z < n, 95 PZ < n, 95 PZ < n, 975 n, 9 n 3, 84. Como n deve ser inteiro concluímos que seu valor deve ser, pelo menos, 4.
9 4. a Nós temos que X N µ,, então PX < 5, X µ P < 5 µ, P Z < 5 µ, P Z > 5 µ, P Z < µ 5, P Z < µ 5, 9 µ 5 µ 5, 8. b O peso total dos pacotes é dado por, 8 S 4 X + + X 4 N 4 5, 8 ; 4. Desse modo temos PS 4 < S4 5, P PZ <, 5 PZ >, 5 PZ <, 5, 99477, 53. < 5, 5. O peso total dos passageiros é dado por S 7 X + + X 7 N 7 7, 7. Desse modo temos S7 49 PS 7 > 5 P 7 > PZ >, 38 PZ <, 38, 483, 3597.
10 . Inicialmente temos X N,. a A probabilidade de um pacote pesar menos de 5 gramas é 5 PX < 5 P Z < PZ <, 5, 94. Como sorteamos 5 pacotes aleatoriamente, o número esperado de pacotes com peso menor que 5 gramas é, , 85. b Denotando S 5 X + +X 5, sabemos que S 5 N 5, 5. Desse modo 55 5 PS 5 < 55 P Z < PZ <, 5, a O valor esperado é dado por e o desvio padrão é dado por µ, 45 9, σ, 45, 45 7, 35. b Como estamos interessados em aproximar a probabilidade pela normal, se representarmos por X o número de indivíduos a favor do candidato e Y uma v.a. com distribuição N µ, σ, basta aplicarmos o Teorema de DeMoivre-Laplace e PX > PY >, 5 Y 9, 5 9 P > 7, 35 7, 35 PZ >, 49 PZ <, 49, 9389, Se o máximo de um conjunto é menor que um valor então, obviamente, todos os outros elementos do conjunto também serão menores que este valor. Com base nessa idéia note que para X, uma v.a. com mesma distribuição dos X i s temos F M m PM m PMaxX,..., X n m PX m,..., X n m PX m PX n m [F X m] n. Para encontrar a densidade basta derivar a função distribuição:
11 f M m d dm F Mm d dm [F Xm] n n[f X m] n f X m. 9. Se X U, θ, temos, se m, θ, f X m θ se m /, θ. e F X m, se m, m, θ se m, θ, se m θ. Portanto e f M m F M m nm n θ n, se m, θ,, se m /, θ., se m, m n, θn se m, θ,, se m θ.
a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B.
Universidade de Brasília Departamento de Estatística 5 a Lista de PE. Um time de basquete irá jogar uma temporada de 44 jogos. desses jogos serão disputados contra times da classe A e os 8 restantes contra
3 a Lista de PE Solução
Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes
MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade
MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 28 de Agosto, 2013 Probabilidade: uma Introdução / Aula 8 1 Desigualdades de Markov e
PROBABILIDADE RESUMO E EXERCÍCIOS* P2
PROBABILIDADE RESUMO E EXERCÍCIOS* P2 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções grátis em Variáveis Aleatórias Discretas e Contínuas
CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo
Estatística Descritiva e Exploratória
Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução
Probabilidade Aula 11
0303200 Probabilidade Aula 11 Magno T. M. Silva Escola Politécnica da USP Junho de 2017 A maior parte dos exemplos dessa aula foram extraídos de Jay L. Devore, Probabilidade e Estatística para engenharia
Teorema do Limite Central
Teorema do Limite Central Bacharelado em Economia - FEA - Noturno 1 o Semestre 2014 MAE0219 (IME-USP) Teorema do Limite Central 1 o Semestre 2014 1 / 47 Objetivos da Aula Sumário 1 Objetivos da Aula 2
MAE-219: Introdução à Probabilidade e Estatística I
MAE-219: Introdução à Probabilidade e Estatística I Prof. Pedro Morettin e Prof. Nelson I. Tanaka Gabarito - Lista de Exercícios 6 1o. Semestre de 216 1 Questão 1 X: Número de caras nos dois primeiros
Probabilidades e Estatística TODOS OS CURSOS
Duração: 90 minutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique convenientemente todas as respostas 1 o semestre 2018/2019 30/01/2019 11:30 1 o Teste C 10 valores 1. Numa unidade fabril
Variáveis Aleatórias Contínuas e Distribuição de Probabilidad
Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas
ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época de Recurso Duração: 2 horas. 1. a Parte Teórica N. o de Exame: RESOLUÇÃO
ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época de Recurso Duração: 2 horas 1. a Parte Teórica N. o de Exame: RESOLUÇÃO 27.01.2015 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação:
MAE0229 Introdução à Probabilidade e Estatística II
Exercício Entre jovens atletas, um nível alto de colesterol pode ser considerado preocupante e indicativo para um acompanhamento médico mais frequente. Suponha que são classificados como tendo taxa de
MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade
MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição
Aula de Exercícios - Variáveis Aleatórias Contínuas (II) Aula de Exercícios - Variáveis Aleatórias Contínuas (II)
Aula de Exercícios - Variáveis Aleatórias Contínuas (II) Organização: Rafael Tovar Digitação: Guilherme Ludwig Exemplo VIII Distribuição contínua Seja X a v. a. contínua cuja densidade de probabilidade
Par de Variáveis Aleatórias
Par de Variáveis Aleatórias Luis Henrique Assumpção Lolis 7 de abril de 2014 Luis Henrique Assumpção Lolis Par de Variáveis Aleatórias 1 Conteúdo 1 Introdução 2 Par de Variáveis Aleatórias Discretas 3
Distribuições conjuntas de probabilidades e complementos
Probabilidades e Estatística 2004/05 Colectânea de Exercícios LEIC, LERCI, LEE Capítulo 5 Distribuições conjuntas de probabilidades e complementos 02 x = 0 065 x = 1 Exercício 51 (a) P(X = x) = 015 x =
Lista de Exercícios #3 Assunto: Variáveis Aleatórias Multidimensionais Discretas
1. ANPEC 2018 - Questão 07 Em um problema envolvendo variáveis aleatórias independentes, um estudante calculou corretamente que E(Y) = 2, E(X 2 )E(Y) = 6, E(X)E(Y 2 ) = 8 e E(X) 2 E(Y) 2 = 24. Avalie as
Processos de Poisson
Processos de Poisson Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Capitulo 5 Taylor & Karlin 1 / 37 Distribuição de Poisson Seja a variável
UNIDADE II. José J. C. Hernández. April 9, 2017 DE - UFPE. José J. C. Hernández (DE - UFPE) Estatística I April 9, / 60
INTRODUÇÃO À ESTATÍSTICA UNIDADE II José J. C. Hernández DE - UFPE April 9, 2017 José J. C. Hernández (DE - UFPE) Estatística I April 9, 2017 1 / 60 Variável aleatória Seja X : Ω R uma função real de Ω
LEEC Probabilidades e Estatística 1 a Chamada 13/06/2005. Parte Prática C (C) M 1% 9% 10% (M) 4% 86% 90% 5% 95% 100%
. Definição dos acontecimentos: M T-shirt tem manchas C T-shirt tem costuras defeituosas D T-shirt é defeituosa A Preço da t-shirt é alterado a) PM) = % PC) = 5% PM C) = % LEEC Probabilidades e Estatística
UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros
UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade
EST012 - Estatística Econômica I Turma A - 1 o Semestre de 2019 Lista de Exercícios 3 - Variável aleatória
Exercício 1. Considere uma urna em que temos 4 bolas brancas e 6 bolas pretas. Vamos retirar, ao acaso, 3 bolas, uma após a outra e sem reposição. Sejam X: o número de bolas brancas e Y : o número de bolas
Aula 11. Variáveis Aleatórias Contínuas Bidimensionais
Aula. Variáveis Aleatórias Contínuas Bidimensionais Resumo de caso unidimensional Caso Discreto p p 2 p 3 Caso Contínuo f(x) x x 2 x 3 i p i + f x dx X x x 2 x 3 P p p 2 p 3 Caso bidimensional Caso Discreto
Modelos Binomial e Poisson
Modelos Binomial e Poisson Cristian Villegas [email protected] Outubro de 2013 Apostila de Estatística (Cristian Villegas) 1 Distribuição Bernoulli Se um experimento possui dois possíveis resultados, sucesso
TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.
TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X
Professora Ana Hermínia Andrade. Período
Distribuições de probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Modelos de distribuição Para
Nome: N. o : f(u) du para todo o x (V) d) Se F (x) tiver pontos de descontinuidade, então X é discreta (F)
ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época Normal Duração: 2 horas 1. a Parte Teórica N. o de Exame: RESOLUÇÃO 09.01.2015 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação:
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Um teorema de grande importância e bastante utilidade em probabilidade
Vetor de Variáveis Aleatórias
Vetor de Variáveis Aleatórias Luis Henrique Assumpção Lolis 25 de junho de 2013 Luis Henrique Assumpção Lolis Vetor de Variáveis Aleatórias 1 Conteúdo 1 Vetor de Variáveis Aleatórias 2 Função de Várias
a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36
1 Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico
Modelos Binomial e Poisson
Modelos Binomial e Poisson Cristian Villegas [email protected] http://www.lce.esalq.usp.br/arquivos/aulas/2014/lce0216/ 1 Distribuição Bernoulli Se um experimento possui dois possíveis resultados, sucesso
Modelos de Distribuição PARA COMPUTAÇÃO
Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO
Variáveis Aleatórias. Henrique Dantas Neder. April 26, Instituto de Economia - Universidade Federal de Uberlândia
Variáveis Aleatórias Henrique Dantas Neder Instituto de Economia - Universidade Federal de Uberlândia April 2, 202 VARIÁVEL ALEATÓRIA DISCRETA O conceito de variável aleatória está intrínsicamente relacionado
Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu
Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC, CF ou CC. No entanto, o nosso interesse
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Distribuição Normal Motivação: Distribuição
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Variáveis Aleatórias Ao descrever um espaço
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial
RESPOSTAS - PROVA ESTATÍSTICA AGENTE PF 2018
RESPOSTAS - PROVA ESTATÍSTICA AGENTE PF 018 Determinado órgão governamental estimou que a probabilidade p de um ex-condenado voltar a ser condenado por algum crime no prazo de 5 anos, contados a partir
Exercícios propostos:
INF 16 Exercícios propostos: 1. Sabendo-se que Y=X-5 e que E(X)= e V(X)=1, calcule: a)e(y); b)v(y); c)e(x+y); d)e(x + Y ); e)v(x+y); Resp.: 1; 9; 5; 15; 81. Uma urna contém 5 bolas brancas e 7 bolas pretas.
VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL
VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Condicionais 11/13 1 / 19 Em estudo feito em sala perguntamos aos alunos qual
Probabilidades e Estatística TODOS OS CURSOS
Duração: 90 minutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique convenientemente todas as respostas 2 o semestre 206/207 05/07/207 :30 o Teste C 0 valores. Uma peça de certo tipo é
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado
Tiago Viana Flor de Santana
ESTATÍSTICA BÁSICA DISTRIBUIÇÃO NORMAL DE PROBABILIDADE (MODELO NORMAL) Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ [email protected] sala 07 Curso: MATEMÁTICA Universidade Estadual
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL Variável Aleatória Uma função X que associa a cada elemento ω do espaço amostral Ω um valor x R é denominada uma variável aleatória. A variável aleatória pode
Variáveis bidimensionais
Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação LEG/DEST/UFPR 1 / 48 Sumário 1 Distribuições conjuntas
Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto
Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}
Aproximação da binomial pela normal
Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição
Probabilidades e Estatística LEAN, LEGM, LEIC-A, LEIC-T, MA, MEMec
Duração: 90 minutos Grupo I Probabilidades e Estatística LEAN, LEGM, LEIC-A, LEIC-T, MA, MEMec Justifique convenientemente todas as respostas 2 o semestre 2016/2017 06/05/2017 09:00 1 o teste A 10 valores
Distribuições de probabilidade de variáveis aleatórias discretas
Distribuições de probabilidade de variáveis aleatórias discretas Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Cronograma 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Poisson
Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral
Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades
Sumário. 2 Índice Remissivo 11
i Sumário 1 Principais Distribuições Contínuas 1 1.1 Distribuição Uniforme................................. 1 1.2 A Distribuição Normal................................. 2 1.2.1 Padronização e Tabulação
Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas
Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas Matheus Rosso e Camila Steffens 19 de Março de 2018 Independência de variáveis aleatórias Duas V.A. são independentes se, e somente
Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise. Período 2017.
Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Distribuições Amostrais O intuito de fazer uma amostragem
Solução dos Exercícios - Capítulos 1 a 3
Capítulo 9 Solução dos Exercícios - Capítulos a 3 9. Capítulo. a Como o valor se refere aos pacientes estudados, e não a todos os pacientes, esse é o valor de uma estatística amostral. b Estatística amostral
AULA 11 - Valor esperado e suas propriedades
AULA 11 - Valor esperado e suas propriedades Susan Schommer Introdução à Estatística Econômica - IE/UFRJ O valor esperado de uma variável aleatória Como forma de resumir o comportamento de uma variável
Nós estudamos isso em nossa aula extra de Regressão Múltipla!
E aí pessoal? Vamos à resolução de nossa prova? A CESPE pegou muito pesado, conforme eu tinha alertado em vídeos e no nosso pdf. Ela utilizou conceitos de Estatística muito avançados para uma matéria de
4.1. ESPERANÇA x =, x=1
4.1. ESPERANÇA 139 4.1 Esperança Certamente um dos conceitos mais conhecidos na teoria das probabilidade é a esperança de uma variável aleatória, mas não com esse nome e sim com os nomes de média ou valor
Variáveis Aleatórias Contínuas e Distribuição de Probabilidad
Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz
{ C(1 x 2 ), se x ( 1, 1), f(x) = Cxe x/2, se x > 0, x + k, se 0 x 3; 0, c.c. k, se 1 < x 2; kx + 3k, se 2 < x 3;
Universidade de Brasília Departamento de Estatística 4 a Lista de PE 1. Seja X uma variável aleatória com densidade { C(1 x 2 ), se x ( 1, 1), 0, se x / ( 1, 1). a) Qual o valor de C? b) Qual a função
Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23
Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração
ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época de Recurso Duração: 2 horas. 1. a Parte Teórica N. o de Exame: abcde
ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época de Recurso Duração: 2 horas 1. a Parte Teórica N. o de Exame: abcde 27.01.2015 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação:
Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40 horas e desvio padrão
MAE0219 Introdução à Probabilidade e Estatística I
Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico
Distribuições amostrais
Distribuições amostrais Tatiene Correia de Souza / UFPB [email protected] October 14, 2014 Souza () Distribuições amostrais October 14, 2014 1 / 23 Distribuição Amostral Objetivo Estender a noção de uma
Variáveis Aleatórias Contínuas
Variáveis Aleatórias Contínuas Bacharelado em Administração - FEA - Noturno 2 o Semestre 2017 MAE0219 (IME-USP) Variáveis Aleatórias Contínuas 2 o Semestre 2017 1 / 35 Objetivos da Aula Sumário 1 Objetivos
Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008
Variável Aleatória Gilson Barbosa Dourado [email protected] 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória
Distribuições de Probabilidade
Distribuições de Probabilidade Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Distribuições de Probabilidade 2007/2008 1 / 31 Introdução Introdução Já vimos como caracterizar
Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ
Duração: 90 minutos Grupo I Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ Justifique convenientemente todas as respostas 1 o semestre 2017/2018 18/11/2017
Variáveis bidimensionais
Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 19/04/2018 WB, FM, EK ( LEG/DEST/UFPR ) Variáveis
Aproximação da binomial pela normal
Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição
Exercícios Funções Multivariadas, Exponencial e Outras
Turma 2017 Exercícios Funções Multivariadas, Exponencial e Outras Problema 1 (bivariada) Um bim de cinco transistores possui dois que são defeituosos. Os transistores são testados um a um, até que os defeituosos
Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB
Variáveis Aleatórias Esperança e Variância Prof. Luiz Medeiros Departamento de Estatística - UFPB ESPERANÇA E VARIÂNCIA Nos modelos matemáticos aleatórios parâmetros podem ser empregados para caracterizar
Aproximação da binomial pela normal
Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição
Processos Estocásticos
Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama
