PROBABILIDADE RESUMO E EXERCÍCIOS* P2
|
|
|
- Eric Ribeiro
- 6 Há anos
- Visualizações:
Transcrição
1 PROBABILIDADE RESUMO E EXERCÍCIOS* P2 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções grátis em Variáveis Aleatórias Discretas e Contínuas Propriedades: 0 P(X = x) 1 e x P(X = x) = 1; Valor esperado (média): Propriedades: o Se x=c (constante real) então E[X] = c o E[X + c] = E(X) + c o E[cX] = c. E(X) o E[X + Y] = E(X) + E(Y) o E[XY] = E(X). E(Y)
2 Variância: V[X] = E[(X E[X]) 2 ] ou V[X] = E[X 2 ] (E[X]) 2 Em função das probabilidades: Adicionalmente: Var(X) = [x E(X)]² P(X = x) x Propriedades: o V(X + c) = V(X) o V(cX) = c 2. V(X) o V(X + Y) = V(X) + V(Y) (SOMENTE SE X E Y FOREM INDEPENDENTES)
3 Distribuições de Probabilidades Distribuição Binomial Parâmetros: p (probabilidade de sucesso) e n (amostra) Distribuição de Poisson Parâmetro: λ (taxa média de ocorrência) Distribuição Geométrica Parâmetro: p (probabilidade de sucesso) Variáveis Bidimensionais Independência: duas variáveis são independentes se: P[X = x, Y = y] = P(X = x). P(Y = y) para todos os pares (x,y) Covariância: COV(X, Y) = E(X, Y) E(X)E(Y) Correlação: ρ(x, Y) = COV(X,Y) σ X σ Y
4 Formulário da prova:
5 EXERCÍCIOS (vídeos de resoluções grátis em ) 1) (P2 2017) Seja uma variável aleatória X. Considere: a) Se X = 1, então E[X] = 1 b) E[X+2X] = 3 E[X] c) V[X+2X] = 5 V[X] d) E[X 4 ] = V[X 2 ] + (V[X] + E[X 2 ]) 2 São corretas as afirmações: a) (b), (c) e (d) b) (a), (c) e (d) c) (a) e (b) d) (a), (b), (c) e (d) e) (a), (b) e (d) 2) (P2 2017) Em uma indústria de cosméticos uma das matérias primas é fornecida em frascos. A presença de um contaminante no conteúdo de um dos frascos prejudica todo o processo. A análise química da amostra de um frasco permite a determinação do contaminante. De modo a reduzir o número de análises, separam-se 10 frascos e retirase uma amostra de cada um dos frascos e as 10 amostras são misturadas um único lote e então efetua-se a análise do lote. Se a análise do lote indicar que não há contaminação, então considera-se que os 10 frascos estão aprovados (supõe-se que basta uma amostra contaminada para que todo o lote fique contaminado). Se a análise indicar que há contaminação, procede-se a análise de todas as amostras (ou seja, realiza-se um total de 11 análises para este lote). Se a probabilidade do conteúdo de um frasco estar contaminado for 0,1 e a presença ou não de contaminação em cada recipiente for independente dos demais, o valor esperado para o número de análises para um lote de frascos é: a) 10-11(0,9) 10 b) 11(0,1) 10 c) 11-10(0,1) 10 d) 11-10(0,9) 10
6 e) 1-(0,1) 10 3) (P2 2016) Um equipamento industrial é bastante frágil. A probabilidade de apresentar defeito em um mês qualquer é q. Em função disso, deve-se programar o momento de parada do equipamento para manutenção preventiva. Qual a probabilidade de não ocorrer defeito nos primeiros k meses? a) 1 k j=1 (1 q) j q b) k j=1 (1 q) j 1 q c) qk d) (1 q) k e) (1 q) k q 4) (P2 2016) Uma máquina (A) produz 100 kg de balas por dia, sendo que 14% das balas produzidas não atingem a especificação exigida por um supermercado. Uma nova máquina (B) foi adquirida e produz 200 kg de balas por dia. Constata-se que 8% das balas produzidas por essa máquina também não atingem a especificação do supermercado. Sabe-se que a produção das duas máquinas é misturada. Coletada uma amostra aleatória de 12 balas da produção, qual a probabilidade de que essa amostra contenha exatamente 2 balas fora da especificação? a) (0,14) 2 (0,86) 10 b) 66(0,14) 2 (0,86) 10 c) (2/3)0,08 d) (0,1) 2 (0,9) 10 e) 0,66(0,9) 10 5) (P2 2017) Em uma loja, 20% dos produtos têm defeito. A loja vende o produto em pacotes contendo 4 produtos selecionados aleatoriamente. Caso o consumidor compre um pacote com um ou mais produtos com defeito, ele retorna à loja para trocar o pacote. Um dado consumidor comprou 3 pacotes. Qual a probabilidade de ele retornar à loja para a troca? a) (0,8) 12
7 b) 0,8 c) 1-3(0,8) 4 d) (0,2) 8 (0,8) 4 e) 1-(0,8) 12 6) (P2 2016) A probabilidade de ocorrência de uma chuva crítica em um ano é q. O inverso dessa probabilidade, 1/q, é chamado de período de retorno, em anos. Considerando que a ocorrência ou não de uma chuva crítica é independente para cada ano, determine a expressão da probabilidade P de não ocorrer uma chuva crítica em 1/q anos. Para q 0, qual o valor de P? a) 1 b) 0,5 c) e -1 d) 1-e -1 e) 0 7) (P2 2016) Considere uma variável aleatória X com distribuição de Poisson com parâmetro 4t, em que t é o período de tempo fornecido, dado em horas. Esse tipo de variável é usada para representar solicitações de assistência em uma empresa de seguros: X é o número de pedidos de assistência em um intervalo de tempo t. Se os operadores da empresa tirarem meia hora de folga para almoço, qual a probabilidade de não perderem nenhum chamado de assistência? a) e 2 b) 1/8 c) 1/e d) 1/e 2 e) 1/ e
8 8) (P2 2017) Considere duas variáveis aleatórias X e Y com distribuições geométricas, com mesmo parâmetro p e tais que P({X = x} {Y = y}) = P(X = x)p(y = y) para quaisquer x e y. Qual é o valor de P(X + Y = n)? a) np 2 (1-p) n b) p n (1-p) n c) (n+1)p 2 (1-p) n d) 1/n e) (1-p) n /(np 2 ) 9) Um restaurante serve três pratos de preço fixo que custam 12, 15 e 20 reais. Para um casal selecionado ao acaso seja x = custo do prato do homem e y = custo do prato da mulher. A função massa de probabilidade de x e y está representada na tabela seguinte: a) Calcule as distribuições marginais de x e y. b) Qual a probabilidade do prato do homem e da mulher juntos custarem mais de 30 reais? c) x e y são independentes? Justifique sua resposta. d) Qual o custo total esperado pela soma dos dois pratos? 10) A tabela abaixo dá a distribuição conjunta de X e Y : a) Determine as distribuições marginais de X e Y. b) Calcule a média e a variância de cada uma das variáveis X e Y. c) Verifique se X e Y são independentes, justificando sua resposta. d) Calcule P (X = 1 Y = 0) e P (Y = 2 X = 3). e) Calcule P (X 2) e P (X = 2, Y 1).
Lista de Exercícios 2 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 2 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) O número de quilômetros que um carro pode rodar sem que a bateria descarregue possui distribuição exponencial
a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B.
Universidade de Brasília Departamento de Estatística 5 a Lista de PE. Um time de basquete irá jogar uma temporada de 44 jogos. desses jogos serão disputados contra times da classe A e os 8 restantes contra
Estatística Descritiva e Exploratória
Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução
5 a Lista de PE Solução
Universidade de Brasília Departamento de Estatística 5 a Lista de PE Solução. Sejam X A e X B o números de jogos que o time ganha contra times da classe A e da classe B respectivamente. Claramente X A
CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo
Exercícios propostos:
INF 16 Exercícios propostos: 1. Sabendo-se que Y=X-5 e que E(X)= e V(X)=1, calcule: a)e(y); b)v(y); c)e(x+y); d)e(x + Y ); e)v(x+y); Resp.: 1; 9; 5; 15; 81. Uma urna contém 5 bolas brancas e 7 bolas pretas.
Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas
1. ANPEC 2018 Questão 3 Considere um indivíduo procurando emprego. Para cada entrevista de emprego (X) esse indivíduo tem um custo linear (C) de 10,00 Reais. Suponha que a probabilidade de sucesso em uma
PROBABILIDADE RESUMO E EXERCÍCIOS* P1
PROBABILIDADE RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções grátis em Conceitos e Fundamentos Estudamos probabilidade
Probabilidades e Estatística TODOS OS CURSOS
Duração: 90 minutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique convenientemente todas as respostas 1 o semestre 2018/2019 30/01/2019 11:30 1 o Teste C 10 valores 1. Numa unidade fabril
Par de Variáveis Aleatórias
Par de Variáveis Aleatórias Luis Henrique Assumpção Lolis 7 de abril de 2014 Luis Henrique Assumpção Lolis Par de Variáveis Aleatórias 1 Conteúdo 1 Introdução 2 Par de Variáveis Aleatórias Discretas 3
Probabilidade. 1 Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson. Renata Souza
Probabilidade Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson Renata Souza Distribuição de Bernoulli Uma lâmpada é escolhida ao acaso Ensaio de Bernoulli A lâmpada
Probabilidade Aula 11
0303200 Probabilidade Aula 11 Magno T. M. Silva Escola Politécnica da USP Junho de 2017 A maior parte dos exemplos dessa aula foram extraídos de Jay L. Devore, Probabilidade e Estatística para engenharia
Aula 11. Variáveis Aleatórias Contínuas Bidimensionais
Aula. Variáveis Aleatórias Contínuas Bidimensionais Resumo de caso unidimensional Caso Discreto p p 2 p 3 Caso Contínuo f(x) x x 2 x 3 i p i + f x dx X x x 2 x 3 P p p 2 p 3 Caso bidimensional Caso Discreto
Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec
Duração: 9 minutos Grupo I Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec Justifique convenientemente todas as respostas o semestre 7/8 5/5/8 9: o Teste A valores. Uma loja comercializa telemóveis
Cap. 5 Variáveis aleatórias discretas
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 5 Variáveis aleatórias discretas APOIO: Fundação de
Variáveis bidimensionais
Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 19/04/2018 WB, FM, EK ( LEG/DEST/UFPR ) Variáveis
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 1ª Parte: Conceitos básicos, variáveis aleatórias, modelos probabilísticos para variáveis aleatórias discretas, modelo binomial, modelo de Poisson 1 Probabilidade
Aula 5 - Variáveis bidimensionais
Aula 5 - Variáveis bidimensionais PhD. Wagner Hugo Bonat Laboratório de Estatística e Geoinformação-LEG Universidade Federal do Paraná 1/2017 Bonat, W. H. (LEG/UFPR) 1/2017 1 / 15 Variáveis bidimensionais
AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017
AULAS 6 e 7 ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 Em aulas passadas vimos as funções de probabilidade de variáveis discretas e contínuas agora vamos ver
Variáveis Aleatórias Discretas e Distribuição de Probabilidade
Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das
Principais distribuições discretas Distribuição de Bernoulli sucesso fracasso X = 1, se sucesso X = 0, se fracasso P(X) TOTAL 1 Exemplo 5:
Principais distribuições discretas Na prática, sempre se procura associar um fenômeno aleatório a ser estudado, a uma forma já conhecida de distribuição de probabilidade (distribuição teórica) e, a partir
Probabilidades e Estatística TODOS OS CURSOS
Duração: 90 minutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique convenientemente todas as respostas 2 o semestre 206/207 05/07/207 :30 o Teste C 0 valores. Uma peça de certo tipo é
Probabilidades e Estatística - LEIC + LERCI + LEE 2 o semestre 2004/05
Departamento de Matemática Secção de Estatística e Aplicações - IST Probabilidades e Estatística - LEIC + LERCI + LEE 2 o semestre 2004/05 3 o Teste 4/6/2005 9h O Teste que vai realizar tem a duração total
Cap. 8 - Variáveis Aleatórias
Variáveis Aleatórias Discretas: A de Poisson e Outras ESQUEMA DO CAPÍTULO 8.1 A DISTRIBUIÇÃO DE POISSON 8.2 A DISTRIBUIÇÃO DE POISSON COMO APROXIMAÇÃO DA DISTRIBUIÇÃO BINOMIAL 8.3 O PROCESSO DE POISSON
Lista de Exercícios #3 Assunto: Variáveis Aleatórias Multidimensionais Discretas
1. ANPEC 2018 - Questão 07 Em um problema envolvendo variáveis aleatórias independentes, um estudante calculou corretamente que E(Y) = 2, E(X 2 )E(Y) = 6, E(X)E(Y 2 ) = 8 e E(X) 2 E(Y) 2 = 24. Avalie as
Prof. Lorí Viali, Dr.
Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X 0 1 2 3 R x X(s) X(S) Uma função X que associa a cada elemento de S (s S) um número real
Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada
Variável Aleatória Uma função X que associa a cada Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ elemento de S (s S) um número real x X(s) é denominada variável aleatória. O
Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40 horas e desvio padrão
Probabilidades e Estatística
Departamento de Matemática - IST(TP) Secção de Estatística e Aplicações Probabilidades e Estatística 1 o Teste B 2 o semestre 2007/08 Duração: 90 minutos 19/04/2008 11:30 horas O teste consiste em dois
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável
4. PRINCIPAIS MODELOS DISCRETOS
4. PRINCIPAIS MODELOS DISCRETOS 2011 Principais modelos probabilísticos discretos 4.1. Modelo Bernoulli Muitos eperimentos admitem apenas dois resultados. Eemplos: 1. Uma peça é classificada como defeituosa
Variáveis bidimensionais
Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação LEG/DEST/UFPR 1 / 48 Sumário 1 Distribuições conjuntas
Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico
RESOLUÇÃO NA PÁGINA 06 Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40
Probabilidades e Estatística LEAN, LEE, LEGI, LEMat, LETI, LMAC, MEAmb, MEAer, MEBiol, MEBiom, MEEC, MEFT, MEQ
Duração: 90 minutos Grupo I Probabilidades e Estatística LEAN, LEE, LEGI, LEMat, LETI, LMAC, MEAmb, MEAer, MEBiol, MEBiom, MEEC, MEFT, MEQ Justifique convenientemente todas as respostas! o semestre 015/016
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de
Variáveis Aleatórias
Variáveis Aleatórias Conceitos, Discretas, Contínuas, Propriedades Itens 5. e 6. BARBETTA, REIS e BORNIA Estatística para Cursos de Engenharia e Informática. Atlas, 004 Variável aleatória Uma variável
EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias
EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Motivação Suponha que tenhamos um experimento onde a probabilidade
Distribuições conjuntas de probabilidade e complementos
Probabilidades e Estatística + Probabilidades e Estatística I Colectânea de Exercícios 2002/03 LEFT + LMAC Capítulo 5 Distribuições conjuntas de probabilidade e complementos Exercício 51 Uma loja de electrodomésticos
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Professora Ana Hermínia Andrade. Período
Distribuições de probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Modelos de distribuição Para
4. PRINCIPAIS MODELOS DISCRETOS
4. PRINCIPAIS MODELOS DISCRETOS 2019 Principais modelos probabilísticos discretos 4.1. Modelo Bernoulli Muitos eperimentos admitem apenas dois resultados. Eemplos: 1. Uma peça é classificada como defeituosa
Modelos de Distribuição PARA COMPUTAÇÃO
Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO
Distribuições Importantes. Distribuições Discretas
Distribuições Importantes Distribuições Discretas Distribuição de Bernoulli Definição Prova ou experiência de Bernoulli é uma experiência aleatória que apenas tem dois resultados possíveis: A que se designa
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial
Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas
Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas Matheus Rosso e Camila Steffens 19 de Março de 2018 Independência de variáveis aleatórias Duas V.A. são independentes se, e somente
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Modelos de distribuição Para utilizar a teoria
Confiabilidade de sistemas. Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas.
Confiabilidade de sistemas Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas. Uma definição pratica de confiabilidade corresponde à probabilidade de um
3 a Lista de PE. Universidade de Brasília Departamento de Estatística
Universidade de Brasília Departamento de Estatística 3 a Lista de PE 1. Duas bolas são escolhidas aleatoriamente de uma urna contendo 8 bolas brancas, 4 pretas, e duas bolas laranjas. Suponha que um jogador
Modelos Probabilisticos Discretos
Modelos Probabilisticos Discretos Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 30 A distribuição Uniforme Discreta Suponha um experimento
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Covariância e Coeficiente de correlação 11/13 1 / 21 Covariância Quando duas variáveis aleatórias
UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros
UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Condicionais 11/13 1 / 19 Em estudo feito em sala perguntamos aos alunos qual
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória
Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal
Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:
Cap. 6 Variáveis aleatórias contínuas
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio
Probabilidades e Estatística LEAN, LEGM, LEIC-A, LEIC-T, MA, MEMec
Duração: 90 minutos Grupo I Probabilidades e Estatística LEAN, LEGM, LEIC-A, LEIC-T, MA, MEMec Justifique convenientemente todas as respostas 2 o semestre 2016/2017 06/05/2017 09:00 1 o teste A 10 valores
UNIDADE II. José J. C. Hernández. April 9, 2017 DE - UFPE. José J. C. Hernández (DE - UFPE) Estatística I April 9, / 60
INTRODUÇÃO À ESTATÍSTICA UNIDADE II José J. C. Hernández DE - UFPE April 9, 2017 José J. C. Hernández (DE - UFPE) Estatística I April 9, 2017 1 / 60 Variável aleatória Seja X : Ω R uma função real de Ω
Variáveis Aleatórias Contínuas e Distribuição de Probabilidad
Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas
Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ
Duração: 90 minutos Grupo I Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ Justifique convenientemente todas as respostas 1 o semestre 2017/2018 18/11/2017
Processos de Poisson
Processos de Poisson Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Capitulo 5 Taylor & Karlin 1 / 37 Distribuição de Poisson Seja a variável
Teorema do Limite Central
Teorema do Limite Central Bacharelado em Economia - FEA - Noturno 1 o Semestre 2014 MAE0219 (IME-USP) Teorema do Limite Central 1 o Semestre 2014 1 / 47 Objetivos da Aula Sumário 1 Objetivos da Aula 2
Nome: N. o : f(u) du para todo o x (V) d) Se F (x) tiver pontos de descontinuidade, então X é discreta (F)
ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época Normal Duração: 2 horas 1. a Parte Teórica N. o de Exame: RESOLUÇÃO 09.01.2015 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação:
Distribuições Discretas Prof. Walter Sousa
Estatística Distribuições Discretas Prof. Walter Sousa DISTRIBUIÇÕES EMPÍRICAS DE VARIÁVEIS DISCRETAS Variável aleatória É uma função X que associa um número real x a cada resultado do espaço amostral
Probabilidade e Estatística
Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 2 Leitura obrigatória: Devore, seções 3.4, 3.5 (hipergeométrica), 3.6 Aula 5-1 Objetivos Nesta parte 01 aprendemos a representar,
INE 5118 Exercícios variáveis aleatórias Exemplo 1 - Uma fábrica produz recipientes de vidro. Existe uma probabilidade igual a 0,2 de produzir um
Exemplo 1 - Uma fábrica produz recipientes de vidro. Existe uma probabilidade igual a 0, de produzir um recipiente defeituoso. Antes que esses recipientes sejam estocados, eles são inspecionados e os defeituosos
Distribuição de Probabilidade. Prof. Ademilson
Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.
Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB
Variáveis Aleatórias Esperança e Variância Prof. Luiz Medeiros Departamento de Estatística - UFPB ESPERANÇA E VARIÂNCIA Nos modelos matemáticos aleatórios parâmetros podem ser empregados para caracterizar
Lista de Exercícios 4
Introdução à Teoria de Probabilidade. Informática Biomédica. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 30 de maio de 2007. Lista de Exercícios 4 são difíceis, são bem mais difíceis.
Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto
Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}
Lista de exercícios 2 Métodos Estatísticos Básicos
Lista de exercícios 2 Métodos Estatísticos Básicos Prof. Regis Augusto Ely 1 de julho de 2014 1 Variáveis aleatórias unidimensionais 1. Suponha que a variável aleatória X tenha os valores possíveis 1,
MAE-219: Introdução à Probabilidade e Estatística I
MAE-219: Introdução à Probabilidade e Estatística I Prof. Pedro Morettin e Prof. Nelson I. Tanaka Gabarito - Lista de Exercícios 6 1o. Semestre de 216 1 Questão 1 X: Número de caras nos dois primeiros
EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G.
EELT-7035 Processos Estocásticos em Engenharia Variáveis Aleatórias Discretas 21 de março de 2019 Variáveis Aleatórias Variável aleatória, X( ): função que mapeia o espaço amostral (S) em números pertencentes
Escola de Engenharia de Lorena - USP ESTATÍSTICA
Prof. Dr. Fernando Catalani Escola de Engenharia de Lorena - USP ESTATÍSTICA Lista de Exercícios 1 Probabilidades, distribuições probabilísticas, Valor Esperado e distribuição binomial 1. Probabilidade
Distribuições Multidimensionais de Probabilidade para Variáveis Discretas e Contínuas Distribuições Marginais. Aula 9
Distribuições Multidimensionais de Probabilidade para Variáveis Discretas e Contínuas Distribuições Marginais Aula 9 Variáveis Aleatórias Discretas Variável aleatória discreta função definida em um espaço
Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto
Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades
Lista de Exercícios #5 Assunto: Variáveis Aleatórias Multidimensionais Contínuas
1. ANPEC 018 Questão 9 Uma pessoa investe R$ 10.000,00 (I) em duas aplicações cujas taxas de retorno são variáveis aleatórias independentes, R 1 e R, com médias 5% e 14% e desvios-padrão 1% e 8%, respectivamente.
ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época de Recurso Duração: 2 horas. 1. a Parte Teórica N. o de Exame: RESOLUÇÃO
ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época de Recurso Duração: 2 horas 1. a Parte Teórica N. o de Exame: RESOLUÇÃO 27.01.2015 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação:
UNIVERSIDADE DOS AÇORES CURSO DE SOCIOLOGIA INTRODUÇÃO À ESTATÍSTICA Ficha de Exercícios nº 3- Variáveis Aleatórias
UNIVERSIDADE DOS AÇORES CURSO DE SOCIOLOGIA INTRODUÇÃO À ESTATÍSTICA Ficha de Exercícios nº 3- Variáveis Aleatórias. Seja uma variável aleatória discreta cuja função massa de probabilidade é dada por x
Probabilidade e Estatística
Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis
DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON
DISTRIBUIÇÕES BERNOULLI, BINOMIAL E POISSON http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 05 de julho de 2017 Distribuição Bernoulli Exemplo Nos experimentos de Bernoulli, o espaço
