2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.
|
|
|
- Mirella Araújo Cruz
- 9 Há anos
- Visualizações:
Transcrição
1 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y : o tempo que leva para jogar uma partida de xadrez. M : o diâmetro de uma peça cilíndrica. N : o número de apartamentos construídos por ano em uma cidade. O : a altura de uma pessoa. P : o número de falhas que um sistema apresenta em um determinado período de tempo. 2) De uma caixa contendo 4 bolas pretas e 2 bolas verdes, 3 bolas são retiradas sucessivamente sem reposição. ( a ) Encontre a distribuição de probabilidade do número de bolas verdes retiradas. ( b ) Calcule a expectância e a variancia da distribuição encontrada. ( c ) Considere um jogo no qual você ganha 10 u.m. cada vez que sair uma bola preta e perde 5 cada vez que sair uma bola verde. Até quanto vale a pena pagar para entrar neste jogo? 3) Uma moeda é viciada de tal forma que cara é duas vezes mais provável de ocorrer que coroa. Se a moeda é jogada três vezes, encontre a distribuição de probabilidade do número de caras. Construa um histograma de probabilidade para a distribuição. 4) Uma v.a. discreta X tem função de probabilidade dada por: p( x ) = P( X = x ) = k 2 -x, x = 0, 1, 2,... ( a ) Encontre k ( b ) Encontre P( X ser maior ou igual a 3) ( c ) Encontre P( 3 < X < 7 ) 5) Dois dados são lançados. Determinar a função de probabilidade da v.a. igual à soma dos pontos obtidos. Encontre a expectância e a variancia da distribuição da soma. Faça um gráfico da função de probabilidade encontrada. 6) Considere uma v.a. X com valores possíveis 0, 1, 2,... e suponha que : p( x ) = P( X = x ) = ( 1-a ) a x, x = 0, 1, 2,... ( a ) Para que valores de a o modelo acima tem sentido? ( b ) Mostre que, para quaisquer dois inteiros positivos s e t :P(X > s + t/x > s)=p(x t).
2 2 ESTATÍSTICA 7) Uma v.a. contínua tem a seguinte função densidade de probabilidade: 3x 2, para 0 <x < 1 f(x) 0, para outros valores de x ( a ) Verifique as propriedades de f e esboce um gráfico. ( b ) Encontre a função de distribuição acumulada F(x). ( c ) Calcule a probabilidade dessa variável assumir um valor maior do que 1/3. ( d ) Se forem observados 2 valores independentes de X, digamos X1 e X2, qual a probabilidade de que ambos sejam maiores que 1/3 se soubermos que pelo menos um deles é maior do que 1/3. ( e ) Calcule a expectância e a variancia da v.a. X. 8) É dado o gráfico abaixo da função densidade de probabilidade de uma v.a. X contínua. ( a ) Equacione a função f (x). ( b ) Encontre F (x). ( c ) Use F( x ) para calcular P ( 1 < X < 4 ). f (x) 1/ x 9) Uma v.a. T contínua tem função densidade de probabilidade dada por : f (x) = a e -at, t 0, onde a > 0 é o parâmetro. ( a ) Mostre que f(t) tem as propriedades de uma função densidade de probabilidade. ( b ) Encontre a função de distribuição acumulada F (t). ( c ) Faça um gráfico para f (x) e outro para F (t). ( d ) Encontre um valor T = Me tal que P( T < Me) = 0,5. Me é uma medida de posição chamada de mediana da distribuição.
3 ESTATÍSTICA 3 _ 10) Uma v.a. X contínua tem a seguinte função de distribuição acumulada : 0, x < 0 F(x) = kx 4, 0 x 1 1, x > 1 ( a ) Determine a constante k. ( b ) Qual a função densidade de probabilidade f (x)? 11) Dada a função densidade de probabilidade f(x) = 2(1 - x), para 0 < x < 1 0, para outros valores de x Encontre: ( a ) E(X) ( b ) E(X2) ( c ) E[(X + 10)2] ( d ) V(X) ( e ) Desvio Padrão de X 12) Mostre que E(X - µ) = 0 13) Uma v.a. X assume valores 0, 1,..., n com probabilidade constante P(x) = 1/(x+1), x=0,...,n. Calcular a expectância e a variancia de X. 14) Mostre as propriedades 1, 2 e 3 vistas para a variancia. 15) Se X é uma v.a. com µ = E(X) e σ2 = V(x), verifique que a v.a. Y= (X- µ)/σ possui E(Y) = 0 e V(Y) = 1. 16) Seja X uma v.a. discreta assumindo valores no conjunto { -n, -n+1,..., -2, -1, 0, 1, 2,..., n-1, n }. Se considerarmos a v.a. Y = X, determine: ( a ) O conjunto de valores de Y ( b ) Se X tem probabilidades iguais para todos os valores que assume, escreva a função de probabilidade de X ( c ) Considerando a função de probabilidade de X, escreva a função de probabilidade de Y. ( d ) Qual a expectância de X? e de Y?
4 4 ESTATÍSTICA 17) A temperatura de um congelador, em graus centígrados, é uma v.a. T com função densidade de probabilidade dada por: f(t) = -k (t + 10) (t + 20), -20 < t < -10 0, para outros valores de t ( a ) Determinar o valor da constante k ( b ) Calcule µ = E(X) ( c ) Qual a expectância de F = 32 + (9/5) T (temperatura em graus Fahrenheit)? 18) Seja X uma v.a. que assume apenas os valores -1, 0, 1, com p(0) = P(X=0) = 1/2. Mostrar que -1/2 < E(X) < 1/2. 19) Dada a função 0, se x < 0 F(x) = (x + 1)/3, se 0 x 1 1, se x > 1 Verifique se F é uma função de distribuição acumulada para X. 20) Se uma pessoa recebe R$ 5,00 se aparecerem somente caras ou somente coroas na jogada de três moedas, e paga R$ 2,00 em caso contrário, qual seu ganho esperado? 21) X é uma v.a. discreta com a seguinte distribuição de probabilidade: x p(x) 1 /4 1/8 1 /4 1/8 1/4 ( a ) Determine E(X) ( b ) Determine E[(X + 1)/2] 22) Suponha que X seja uma v.a. com a seguintes distribuição de probabilidade: x p(x) 0,1 0,2 0,15 0,2 0,1 0,15 0,05 0,05 Determine as seguintes probabilidades: ( a ) X é negativo ( b ) X é par ( c ) X assume um valor entre 1 e 8 (inclusive) ( d ) P(X = -3 X 0) ( e ) P(X 3 X > 0)
5 ESTATÍSTICA 5 _ 23) Suponha que uma caixa contém 12 bolas numeradas de 1 a 12. Faz-se duas repetições independentes do experimento de selecionar aleatoriamente uma bola da caixa (experimento com reposição). Seja X o maior entre os dois números observados. Determine a função de probabilidade de X e a sua expectância. 24) Seja X o tempo até a desintegração de alguma partícula radioativa e suponha que a função de distribuição acumulada de X seja dada por: F(x) = 0, se x e -ax, x > 0 Suponha que a seja tal que P(X 0,01) = ½. Obtenha um número t tal que P(X t) = 0,9. 25) Os seguintes dados representam a duração de vida em anos de um amostra aleatória de 30 bombas de gasolina. 2,0 3,0 0,3 3,3 1,3 0,4 0,1 6,0 5,5 6,5 0,2 2,3 1,5 4,0 5,9 1,8 4,7 0,7 4,5 0,3 1,5 0,5 2,5 5,0 1,0 6,0 5,6 6,0 1,2 0,2 Usando 6 intervalos com o primeiro começando com 0,1 : ( a) Construa uma distribuição de freqüência relativa. ( b ) Construa um histograma. ( c ) Estime o valor abaixo do qual caem 2/3 dos valores.
Exercícios propostos:
INF 16 Exercícios propostos: 1. Sabendo-se que Y=X-5 e que E(X)= e V(X)=1, calcule: a)e(y); b)v(y); c)e(x+y); d)e(x + Y ); e)v(x+y); Resp.: 1; 9; 5; 15; 81. Uma urna contém 5 bolas brancas e 7 bolas pretas.
Variáveis Aleatórias. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Variáveis Aleatórias Variável Aleatória Variável aleatória (VA) é uma função que associa a cada
EST012 - Estatística Econômica I Turma A - 1 o Semestre de 2019 Lista de Exercícios 3 - Variável aleatória
Exercício 1. Considere uma urna em que temos 4 bolas brancas e 6 bolas pretas. Vamos retirar, ao acaso, 3 bolas, uma após a outra e sem reposição. Sejam X: o número de bolas brancas e Y : o número de bolas
Lucas Santana da Cunha de junho de 2017
VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados
Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina
Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 21 de maio de 2018 Londrina 1 / 14 Variável aleatória Introdução Definição Uma função que associa um número real
1 EXERCÍCIOS PROPOSTOS SOBRE PROBABILIDADE
1 EXERCÍCIOS PROPOSTOS SOBRE PROBABILIDADE 1) Dê um espaço amostral para cada um dos experimentos aleatórios: ( a ) Uma moeda é lançada. Observamos e registramos o resultado obtido. ( b ) Artigos produzidos
UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II
UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II Segunda lista de Exercícios - Variáveis Aleatórias Professora Fernanda 1. Uma máquina caça níquel de cassino possui três roletas. Na primeira e segunda
a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B.
Universidade de Brasília Departamento de Estatística 5 a Lista de PE. Um time de basquete irá jogar uma temporada de 44 jogos. desses jogos serão disputados contra times da classe A e os 8 restantes contra
Universidade Federal de Goiás Instituto de Matemática e Estatística
Universidade Federal de Goiás Instituto de Matemática e Estatística Prova de Probabilidade Prof.: Fabiano F. T. dos Santos Goiânia, 31 de outubro de 014 Aluno: Nota: Descreva seu raciocínio e desenvolva
1 Variáveis Aleatórias
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis
Prof. Lorí Viali, Dr.
Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X 0 1 2 3 R x X(s) X(S) Uma função X que associa a cada elemento de S (s S) um número real
Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada
Variável Aleatória Uma função X que associa a cada Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ elemento de S (s S) um número real x X(s) é denominada variável aleatória. O
VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE
VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos
Variáveis aleatórias. Universidade Estadual de Santa Cruz. Ivan Bezerra Allaman
Variáveis aleatórias Universidade Estadual de Santa Cruz Ivan Bezerra Allaman DEFINIÇÃO É uma função que associa cada evento do espaço amostral a um número real. 3/37 Aplicação 1. Seja E um experimento
6.3 Valor Médio de uma Variável Aleatória
6. 3 V A L O R M É D I O D E U M A V A R I Á V E L A L E A T Ó R I A 135 1. Considere uma urna contendo três bolas vermelhas e cinco pretas. Retire três bolas, sem reposição, e defina a v.a. X igual ao
Variáveis Aleatórias
Variáveis Aleatórias Conceitos, Discretas, Contínuas, Propriedades Itens 5. e 6. BARBETTA, REIS e BORNIA Estatística para Cursos de Engenharia e Informática. Atlas, 004 Variável aleatória Uma variável
Métodos Estatísticos
Métodos Estatísticos 5 - Distribuição Normal Referencia: Estatística Aplicada às Ciências Sociais, Cap. 7 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Distribuição de Probabilidades A distribuição
Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal
Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Variáveis Aleatórias Ao descrever um espaço
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES
PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Distribuição Geométrica Considere novamente uma sequência
Segunda Lista de Exercícios Cálculo de Probabilidades II Prof. Michel H. Montoril
Exercício 1. Uma urna contém 4 bolas numeradas: {1, 2, 2, 3}. Retira-se dessa urna duas bolas aleatoriamente e sem reposição. Sejam 1 : O número da primeira bola escolhida; 2 : O número da segunda bola
3 a Lista de PE. Universidade de Brasília Departamento de Estatística
Universidade de Brasília Departamento de Estatística 3 a Lista de PE 1. Duas bolas são escolhidas aleatoriamente de uma urna contendo 8 bolas brancas, 4 pretas, e duas bolas laranjas. Suponha que um jogador
Distribuição de Probabilidade. Prof. Ademilson
Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.
Variáveis Aleatórias Discretas e Distribuição de Probabilidade
Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte II 29 de Março de 2011 Distribuição Uniforme Discreta Média Propriedade da falta de memória Objetivos Ao final deste capítulo você
Probabilidade e Estatística
Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis
Fundamentos de Estatística 2008/2009 Ficha nº 3
Escola Superior de Tecnologia de Viu Fundamentos de Estatística 008/009 Ficha nº 3 Considere os casais que têm 3 filhos e a eperiência estatística em que regista o o de cada um dos 3 filhos por ordem crescente
Modelos de Distribuição PARA COMPUTAÇÃO
Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO
Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL.
Introdução à Inferência Estatística Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 5 de setembro de 004 Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. 1 Medidas Resumo DISTRIBUIÇÕES
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Disciplina Estatística Aplicada Curso Engenharia Mec Gest Industrial º Semestre º Folha Nº3: Variáveis Aleatórias De um lote que contém 0 parafusos, dos quais 5 são defeituosos,
3 a Lista de PE Solução
Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes
Probabilidade II Lista 1 - Vetores Aleatórios
Probabilidade II Lista - Vetores Aleatórios Exercício. Duas moedas equilibradas são lançadas de forma independente. Dena as v.a's X : número de caras nos dois lançamentos e Y : função indicadora de faces
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08
Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES
LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES 1- Ordene os dados indicando o 1º, 2º e 3º quartil 45, 56, 62, 67, 48, 51, 64, 71, 66, 52, 44, 58, 55, 61, 48, 50, 62, 51, 61, 55 2- Faça a análise da
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19 Nos modelos matemáticos aleatórios parâmetros podem ser
DISTRIBUIÇÃO NORMAL DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS ROTEIRO DISTRIBUIÇÃO NORMAL
ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências DISTRIBUIÇÃO NORMAL Definição:
Probabilidade e Estatística
Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 1 Leitura obrigatória: Devore, 3.1, 3.2 e 3.3 Chap 5-1 Objetivos Nesta parte, vamos aprender: Como representar a distribuição
Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008
Variável Aleatória Gilson Barbosa Dourado [email protected] 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória
Estatística (MAD231) Turma: IGA. Período: 2018/2
Estatística (MAD231) Turma: IGA Período: 2018/2 Aula #03 de Probabilidade: 19/10/2018 1 Variáveis Aleatórias Considere um experimento cujo espaço amostral é Ω. Ω contém todos os resultados possíveis: e
Processos Estocásticos
Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama
2º LISTA DE EXERCÍCIO
DISCIPLINA: CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I Prof. Luiz Medeiros PERÍODO: 2013.2 2º LISTA DE EXERCÍCIO 1) Em uma empresa de cerâmica sabe-se que existe em média 0,1 defeito por m 2. Um comprador
Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Processos Estocásticos. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama
Revisão de Probabilidade
05 Mat074 Estatística Computacional Revisão de Probabilidade Prof. Lorí Viali, Dr. [email protected] http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito
Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos
Processos Estocásticos. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema
Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto
Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}
Variáveis Aleatórias Contínuas e Distribuição de Probabilidad
Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz
Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 1 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Historicamente sabe-se que 10% dos artigos de uma firma são de segunda qualidade. Um inspetor de controle
Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 1 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Historicamente sabe-se que 10% dos artigos de uma firma são de segunda qualidade. Um inspetor de controle
DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA
ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências DISTRIBUIÇÃO CONJUNTA Em muitos
Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto
Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades
Professora Ana Hermínia Andrade. Período
Distribuições de probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Modelos de distribuição Para
3. Considere uma amostra aleatória de tamanho 7 de uma normal com média 18. Sejam X e S 2, a média e a variância amostral, respectivamente.
1 Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas Professores: Clarice Demétrio, Roseli Leandro e Mauricio Mota Lista 3- Distribuições Amostrais-
Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.
Prof. Lorí Viali, Dr. [email protected] http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada
Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade
Probabilidade Variáveis Aleatórias Distribuição de Probabilidade Variáveis Aleatórias Variável Aleatória Indica o valor correspondente ao resultado de um experimento A palavra aleatória indica que, em
MAE0219 Introdução à Probabilidade e Estatística I
Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico
Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS
Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é
EELT-7035 Processos Estocásticos em Engenharia. Variáveis Aleatórias. EELT-7035 Variáveis Aleatórias Discretas. Evelio M. G.
EELT-7035 Processos Estocásticos em Engenharia Variáveis Aleatórias Discretas 21 de março de 2019 Variáveis Aleatórias Variável aleatória, X( ): função que mapeia o espaço amostral (S) em números pertencentes
Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40 horas e desvio padrão
Variáveis Aleatórias Discretas e Distribuição de Probabilidade
Variáveis Aleatórias Discretas e Distribuição de Probabilidades 01 de Abril de 2014 Objetivos Ao final deste capítulo você deve ser capaz de: Determinar probabilidades a partir de funções de probabilidade
VARIÁVEIS ALEATÓRIAS
UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Aula Valor esperado como solução do problema do menor erro quadrático médio e Quantis 03/14 1 / 15 Valor esperado como solução
UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros
UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade
x, x < 1 f(x) = 0, x 1 (a) Diga o que entende por amostra aleatória. Determine a função densidade de probabilidade
Probabilidades e Estatística 2004/05 Colectânea de Exercícios LEIC, LERCI, LEE Capítulo 6 Estimação Pontual Exercício 6.1. Considere a população X com função densidade de probabilidade { x, x < 1 f(x)
Escola de Engenharia de Lorena - USP ESTATÍSTICA
Prof. Dr. Fernando Catalani Escola de Engenharia de Lorena - USP ESTATÍSTICA Lista de Exercícios 1 Probabilidades, distribuições probabilísticas, Valor Esperado e distribuição binomial 1. Probabilidade
Cálculo das Probabilidades I
Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Geradora de Momentos 10/13 1 / 19 Calculamos algumas características da
ESTATÍSTICA TÓPICO 7 VARIÁVEL ALEATÓRIA DISCRETA / DISTRIBUIÇÃO BINOMIAL / DISTRIBUIÇÃO NORMAL
ESTATÍSTICA TÓPICO 7 VARIÁVEL ALEATÓRIA DISCRETA / DISTRIBUIÇÃO BINOMIAL / DISTRIBUIÇÃO NORMAL VARIÁVEIS ALEATÓRIAS Como já vimos no estudo das probabilidades, o conjunto de todos os possíveis resultados
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável
F (x) = P (X x) = Σ xi xp(x i ) E(X) = x i p(x i ).
Variável Aleatória Uma variável aleatória é uma variável numérica, cujo valor medido pode variar de uma réplica para outra do experimento. Exemplos: (i) Variáveis aleatórias contínuas: corrente elétrica,
{ C(1 x 2 ), se x ( 1, 1), f(x) = Cxe x/2, se x > 0, x + k, se 0 x 3; 0, c.c. k, se 1 < x 2; kx + 3k, se 2 < x 3;
Universidade de Brasília Departamento de Estatística 4 a Lista de PE 1. Seja X uma variável aleatória com densidade { C(1 x 2 ), se x ( 1, 1), 0, se x / ( 1, 1). a) Qual o valor de C? b) Qual a função
Uma estatística é uma característica da amostra. Ou seja, se
Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral
a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36
1 Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico
Probabilidade e Estatística
Probabilidade e Estatística Aula 7 Distribuição da Média Amostral Leitura obrigatória: Devore: Seções 5.3, 5.4 e 5.5 Chap 8-1 Inferência Estatística Na próxima aula vamos começar a parte de inferência
Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva pessoal.utfpr.edu.
Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva pessoal.utfpr.edu.br/ngsilva Distribuição Uniforme Uma variável aleatória contínua X está
Variáveis Aleatórias Contínuas e Distribuições de Probabilidade
Variáveis Aleatórias Contínuas e Distribuições de Probabilidade Motivação A quantidade de oxigênio dissolvido é importante para aferir a qualidade de um regato. Os níveis aceitáveis de oxigênio variam
Lista de exercícios 2 Métodos Estatísticos Básicos
Lista de exercícios 2 Métodos Estatísticos Básicos Prof. Regis Augusto Ely 1 de julho de 2014 1 Variáveis aleatórias unidimensionais 1. Suponha que a variável aleatória X tenha os valores possíveis 1,
PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades
PRO71 ESTATÍSTICA 3.1 PRO 71 ESTATÍSTICA I 3. Distribuições de Probabilidades Variáveis Aleatórias Variáveis Aleatórias são valores numéricos que são atribuídos aos resultados de um eperimento aleatório.
PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG /2012
PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG - 0/0 Instruções:. Cada questão respondida corretamente vale (um) ponto.. Cada questão respondida incorretamente vale - (menos um) ponto. 3.
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 3-ESTATÍSTICA II (CE003) Prof. Benito Olivares Aguilera
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 3-ESTATÍSTICA II (CE003) Prof. Benito Olivares Aguilera 2 o Sem./17 MODELOS DISCRETOS. 1. Seja X o número de caras obtidas
Exercícios Funções Multivariadas, Exponencial e Outras
Turma 2017 Exercícios Funções Multivariadas, Exponencial e Outras Problema 1 (bivariada) Um bim de cinco transistores possui dois que são defeituosos. Os transistores são testados um a um, até que os defeituosos
Lista de Exercícios 4
Introdução à Teoria de Probabilidade. Informática Biomédica. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 30 de maio de 2007. Lista de Exercícios 4 são difíceis, são bem mais difíceis.
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 1ª Parte: Conceitos básicos, variáveis aleatórias, modelos probabilísticos para variáveis aleatórias discretas, modelo binomial, modelo de Poisson 1 Probabilidade
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue
Estatística e Probabilidade Aula 06 Distribuições de Probabilidades Prof. Gabriel Bádue Teoria A distribuição de Poisson é uma distribuição discreta de probabilidade, aplicável a ocorrências de um evento
Estatística Descritiva e Exploratória
Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução
