ESCOLA SUPERIOR DE TECNOLOGIA
|
|
|
- João Henrique Leal Jardim
- 6 Há anos
- Visualizações:
Transcrição
1 Departamento Matemática Disciplina Estatística Aplicada Curso Engenharia Mec Gest Industrial º Semestre º Folha Nº3: Variáveis Aleatórias De um lote que contém 0 parafusos, dos quais 5 são defeituosos, escolhem- ao acaso e X é o número de parafusos defeituosos encontrados Determine a função de probabilidade e a função de distribuição da va X, quando: a) Os parafusos são escolhidos com reposição; b) Os parafusos são escolhidos m reposição Seja X uma variável aleatória cuja função de probabilidade é dada na guinte tabela: x 0 3 c c f(x) k k 3k k 0 a) Calcule o valor de k b) Calcule P(X ), P(X<0), P(X 0) e P(X 0) c) Calcule P(X<3 X>) d) Calcule a função de distribuição F de X e) Reprente graficamente f e F 3 A variável aleatória X tem função de probabilidade dada por f(x) = k/x, para x =, 3, 5, 5 a) Calcule o valor de k b) Calcule a função de distribuição F de X c) Reprente graficamente f e F d) Calcule P(X=5), P(3<X 5) e P(X 5) e) Calcule E(X) e V(X) Página de 7
2 Disciplina Estatística Aplicada º Semestre º Seja X a variável aleatória discreta com a guinte função de distribuição 0 / Ft () = 3/ t<- - t < 0 0 t < t a) Calcule a função de probabilidade f de X b) Calcule: P(X=), P(X ), P(X>), P(X ), P(X<), P(0<X<), P(0<X ) e P( X ) c) Determine a esperança e a variância de X 5 Suponha que o número de utilizações diárias de um certo computador, em determinada empresa, é uma variável aleatória X, com a guinte função de probabilidade [ X x] = P = k x k = a) Mostre que 6 b) Calcule a função de distribuição de X x! 0 x =,,3, caso contrário, com k IR + c) Usando a alínea anterior, diga qual deverá r o número mínimo de computadores disponíveis no início de cada dia, para que a sua procura diária ja satisfeita com uma probabilidade de, pelo menos, 08 d) Calcule o numero médio de utilizações diárias de um computador e o respectivo desvio padrão 6 O proprietário de um carro deja vende-lo por 3750 euros e está a estudar a hipóte de fazer publicidade, que lhe custará 50 euros Se a probabilidade de ele o vender ao preço de 3750 euros m publicidade for de 05 e com publicidade for de 09, deve ou não anunciar a venda, sabendo que não o vender pelo preço que estipulou à partida, vendê-lo-á a um amigo por 350 euros Página de 7
3 Disciplina Estatística Aplicada º Semestre º 7 Seja X uma va que toma os valores {0,,, 3, x}, com x um valor desconhecido Sabendo que os valores de X são igualmente prováveis e que E(X) = 6, calcule x 8 Considere uma va X cuja função de probabilidade é dada na tabela guinte x 0 6 c c f(x) f(0) / f() /8 0 Sabendo que E(X) = 9/, calcule f(0) e f() 9 Dois projectos de publicidade distintos, A e B, para um mesmo produto, estão a r comparados com ba na receita prevista com a venda do produto publicitado Os estudos de marketing concluíram que a receita, optando pelo projecto A, é de $3 milhões (de dólares) No entanto, a receita optando pelo projecto B é mais difícil de determinar Sabe- apenas que há uma probabilidade de 03 de a receita r igual a $7 milhões, e de 07 de a receita r apenas de $ milhões Qual dos dois projectos rá preferido, tendo em conta: a) As receitas médias obtidas para os dois projectos; b) A variabilidade aprentada pelas receitas nos dois projectos 0 Uma caixa contém quatro bolas marcadas com os números,, 3, Extrai-, com reposição, bolas e X é a Semi-diferença entre o nº obtido na ª e ª bola Determine: a) A função de probabilidade e de distribuição de X; b) A esperança e o desvio padrão de X; c) V(3X + ) e V(0,5X - ) A variável aleatória X é caracterizada pela guinte função densidade de probabilidade (fdp), Página 3 de 7
4 Disciplina Estatística Aplicada º Semestre º 0 / 6 f (x) = (x ) 6 0 x < 0 0 x < x < x a) Mostre que f é, efectivamente, uma fdp b) Determine P(<X<), P(<X 3), P(X>3), P(X ) e P(X ) Seja X uma variável aleatória com a guinte fdp, x x f (x) = / 0 - < x 0 0 < x < x < 3 cc a) Verifique que f é, efectivamente, uma fdp b) Determine a função de distribuição F de X e calcule P(X</), P(X>- /3) e P(/<X<) 3 Suponha que o desvio da medida das peças produzidas por uma máquina em relação à norma especificada pelo mercado é uma variável aleatória X com a guinte função densidade de probabilidade, + k + x - x < 0 f X (x) = + k x 0 x < 0 caso contrário a) Calcule o valor de k b) Determine a função de distribuição de X c) Sabe- que 75 % das peças produzidas aprentam uma medida com desvio inferior a m em relação à norma especificada pelo mercado Determine o valor de m Considere a guinte função de distribuição (fd) de uma va X, Página de 7
5 Disciplina Estatística Aplicada º Semestre º 0 Fx ( ) = 5x x 5 x 0 0 < x < x a) Calcule P(X</), P(X>/3) e P(/<X</3) utilizando F b) Deduza a função densidade de probabilidade de X c) Calcule a esperança, a variância e o desvio padrão de X 5 O tempo, em gundos, que uma máquina demora a montar um conjunto de peças que constituem uma unidade é bem descrito por uma variável aleatória contínua X, cuja função densidade de probabilidade f é definida por x 6 f(x)= ( a ) 0 para ov, onde a é uma constante real a) Mostre que a =- ou a = b) Calcule o tempo médio que as unidades demoram a r montadas e o respectivo desvio padrão 6 O diâmetro, em mm, de uma peça produzida por determinada máquina é uma variável aleatória real X, cuja função de distribuição é definida por, 3a x x x b F(x)= x 5 x < 0 0 x < x < x < 3 x 3 a) Determine os valores das constantes a e b b) Deduza a função densidade de probabilidade de X c) De entre as peças cujo diâmetro é superior a 05 mm, calcule a percentagem de peças com diâmetro inferior a 5 mm Página 5 de 7
6 Disciplina Estatística Aplicada º Semestre º 7 Uma máquina produz uma peça que é, no final, medida O instrumento de medição tem uma zona de indefinição entre e /3 Assim, o comprimento final das peças pode r descrito por uma variável aleatória X, com função densidade de probabilidade kx f (x) = 0 0 x < x 3 x < 0 ou x > 3, k IR e) Determine o valor de k f) Calcule a proporção de peças cujo comprimento está fora da zona de indefinição g) Cada peça é vendida por O custo de produção de cada peça é uma variável definida por + X 9, onde X é o comprimento final da peça produzida Qual o lucro médio por peça? 8 Seja X uma variável aleatória real cuja função densidade de probabilidade é definida por, (x + ) f (x) = 8 0 x caso contrário a) Mostre que f é, efectivamente, uma densidade b) Calcule a função de distribuição de X = c) Determine o valor de a, com a IR +, que verifica P(-a <X< a) X = E(X ) = d) Considere a variável aleatória Y Sabendo que 3, calcule V(3Y+5) 9 Seja k IR + e f a função real de variável real definida por, Página 6 de 7
7 Disciplina Estatística Aplicada º Semestre º 0 x x+ < x 0 0 k x + < x k f(x)= 0 x > k a) Determine o valor de k para o qual f é a densidade de probabilidade de uma va X b) Mostre que { X> E(X) } é um acontecimento certo c) Calcule P[X k / 0<X<k] 0 Numa determinada fábrica são produzidas componentes electrónicas para sistemas de gurança Sabe- que o tempo de vida, expresso em anos, das referidas componentes é bem descrito por uma variável aleatória real X cuja função de distribuição é definida por, ( Constante de Neper e 7 ) 0 x -(x-) F(x)= -e x > a) O fabricante garante aos us clientes o total funcionamento das componentes electrónicas até aos anos, acrescentando no entanto que uma pequena percentagem pode não exceder os 3 anos de vida, necessitando assim de rem substituídas Comente a veracidade das afirmações do fabricante, recorrendo à função de distribuição dada b) Cada sistema de gurança é composto de 5 dessas componentes electrónicas que funcionam independentemente umas das outras Ao fim de 3 anos de funcionamento do sistema, qual a probabilidade de uma das componentes originais já ter sido substituída? c) O fabricante vende as componentes ao preço de 50 euros cada Sabendo que a fábrica fornece as 5 componentes necessárias à montagem de um sistema de gurança e possíveis componentes substitutas, calcule o lucro esperado do fabricante por sistema, ao fim de 3 anos de funcionamento deste Página 7 de 7
Fundamentos de Estatística 2010/2011 Ficha nº 3
Escola Superior de Tecnologia de Viu Fundamentos de Estatística 00/0 Ficha nº 3 Considere os casais que têm 3 filhos e a eperiência estatística em que regista o o de cada um dos 3 filhos por ordem crescente
Fundamentos de Estatística 2008/2009 Ficha nº 3
Escola Superior de Tecnologia de Viu Fundamentos de Estatística 008/009 Ficha nº 3 Considere os casais que têm 3 filhos e a eperiência estatística em que regista o o de cada um dos 3 filhos por ordem crescente
Escola Superior de Tecnologia de Viseu. Fundamentos de Estatística 2006/2007 Ficha nº 3
Escola Superior de Tecnologia de Viu Fundamentos de Estatística 006/007 Ficha nº 3. Os valores admissíveis de uma variável aleatória discreta X são: 0,,. Sabe- que E(X)=0.8 e que E(X )=.4. a) Defina a
Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Introdução às Probabilidades
Ano lectivo: 2007/2008 Universidade da Beira Interior Departamento de Matemática ESTATÍSTICA Ficha de exercícios nº3: Introdução às Probabilidades Curso: Ciências do Desporto 1. Considere a experiência
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Curso Engenharia e Gestão Industrial 2º Semestre 1º Folha Nº4 Distribuições discretas 1. De um lote que contém 10 parafusos, dos quais 5 são defeituosos, extraem-se 2 com reposição.
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Probabilidades e Estatística Curso Engenharia do Ambiente 2º Semestre 1º Ficha n.º1: Probabilidades e Variáveis Aleatórias 1. Lançam- ao acaso 2 moedas. a) Escreva o espaço de resultados
Exercícios propostos:
INF 16 Exercícios propostos: 1. Sabendo-se que Y=X-5 e que E(X)= e V(X)=1, calcule: a)e(y); b)v(y); c)e(x+y); d)e(x + Y ); e)v(x+y); Resp.: 1; 9; 5; 15; 81. Uma urna contém 5 bolas brancas e 7 bolas pretas.
Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Introdução às Probabilidades
Ano lectivo: 2006/2007 Universidade da Beira Interior Departamento de Matemática ESTATÍSTICA Ficha de exercícios nº3: Introdução às Probabilidades Curso: Ciências do Desporto 1. Considere a experiência
Probabilidades e Estatística TODOS OS CURSOS
Duração: 90 minutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique convenientemente todas as respostas 2 o semestre 206/207 05/07/207 :30 o Teste C 0 valores. Uma peça de certo tipo é
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :
ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO
Área Científica Matemática Probabilidades e Estatística Curso Engenharia do Ambiente º Semestre º Ficha n.º: Probabilidades e Variáveis Aleatórias. Lançam-se ao acaso moedas. a) Escreva o espaço de resultados
UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II
UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II Segunda lista de Exercícios - Variáveis Aleatórias Professora Fernanda 1. Uma máquina caça níquel de cassino possui três roletas. Na primeira e segunda
Departamento de Estatística UFSCar Probabilidade e Estatística Lista de Exercícios 2 Prof. José Carlos Fogo (11/09/2014)
Departamento de Estatística UFSCar Probabilidade e Estatística Lista de Exercícios 2 Prof. José Carlos Fogo (11/09/2014) 1) Seja X v.a. representando o número de usuários de um microcomputador no período
6.3 Valor Médio de uma Variável Aleatória
6. 3 V A L O R M É D I O D E U M A V A R I Á V E L A L E A T Ó R I A 135 1. Considere uma urna contendo três bolas vermelhas e cinco pretas. Retire três bolas, sem reposição, e defina a v.a. X igual ao
Instituto Politécnico de Leiria Escola Superior de Tecnologia e Gestão Componente Prática de Estatística Aplicada Contabilidade e Finanças
Instituto Politécnico de Leiria Escola Superior de Tecnologia e Gestão Componente Prática de Estatística Aplicada Contabilidade e Finanças FOLHA 2 - Distribuições 1. Considere a experiência aleatória que
2º LISTA DE EXERCÍCIO
DISCIPLINA: CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I Prof. Luiz Medeiros PERÍODO: 2013.2 2º LISTA DE EXERCÍCIO 1) Em uma empresa de cerâmica sabe-se que existe em média 0,1 defeito por m 2. Um comprador
x, x < 1 f(x) = 0, x 1 (a) Diga o que entende por amostra aleatória. Determine a função densidade de probabilidade
Probabilidades e Estatística 2004/05 Colectânea de Exercícios LEIC, LERCI, LEE Capítulo 6 Estimação Pontual Exercício 6.1. Considere a população X com função densidade de probabilidade { x, x < 1 f(x)
Variáveis Aleatórias. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Variáveis Aleatórias Variável Aleatória Variável aleatória (VA) é uma função que associa a cada
VARIÁVEIS ALEATÓRIAS 1
VARIÁVEIS ALEATÓRIAS 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado duas vezes e observar
Lista de exercícios 2 Métodos Estatísticos Básicos
Lista de exercícios 2 Métodos Estatísticos Básicos Prof. Regis Augusto Ely 1 de julho de 2014 1 Variáveis aleatórias unidimensionais 1. Suponha que a variável aleatória X tenha os valores possíveis 1,
ESTATÍSTICA. Prof. Ari Antonio, Me. Ciências Econômicas. Unemat Sinop 2012
ESTTÍSTIC rof. ri ntonio, Me Ciências Econômicas Unemat Sinop 2012 1. robabilidades Diz respeito a experiências aleatórias: - Lançamento de uma moeda - Lançamento de um par de dados - Retirada de uma carta
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 3-ESTATÍSTICA II (CE003) Prof. Benito Olivares Aguilera
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 3-ESTATÍSTICA II (CE003) Prof. Benito Olivares Aguilera 2 o Sem./17 MODELOS DISCRETOS. 1. Seja X o número de caras obtidas
Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB
Variáveis Aleatórias Esperança e Variância Prof. Luiz Medeiros Departamento de Estatística - UFPB ESPERANÇA E VARIÂNCIA Nos modelos matemáticos aleatórios parâmetros podem ser empregados para caracterizar
LISTA 3 Introdução à Probabilidade (Profa. Cira.) OBS. Apenas os exercícios indicados como adicional não constam no livro.
LISTA 3 Introdução à Probabilidade (Profa. Cira.) OBS. Apenas os exercícios indicados como adicional não constam no livro. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - V. A. C O N T Í N
UNIVERSIDADE DA BEIRA INTERIOR. Verde Castanho Vermelho Azul Branco Total
UNIVERSIDADE DA BEIRA INTERIOR Probabilidades e Estatística 2008/2009 GESTÃO E ECONOMIA FICHA DE TRABALHO 6: Teste de Ajustamento. 1. Uma máquina de lavar a roupa é vendida em cinco cores: verde, castanho,
Lista de Exercícios para Segundo Exercício Escolar
Universidade Federal de Pernambuco Centro de Ciências Exatas e da Natureza Departamento de Estatística Contato: Professora Fernanda De Bastiani, [email protected] Lista de Exercícios para Segundo
Momentos: Esperança e Variância. Introdução
Momentos: Esperança e Variância. Introdução Em uma relação determinística pode-se ter a seguinte relação: " + " = 0 Assim, m =, é a declividade e a e b são parâmetros. Sabendo os valores dos parâmetros
ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO
Área Científica Matemática Curso Engenharia do Ambiente 2º Semestre 1º Folha Nº 5: Testes Paramétricos Probabilidades e Estatística 1. O director comercial de uma cadeia de lojas pretende comparar duas
UNIVERSIDADE FEDERAL DA PARAÍBA. Cálculo das Probabilidades e Estatística I. Terceira Lista de Exercícios
UNIVERSIDADE FEDERAL DA PARAÍBA Cálculo das Probabilidades e Estatística I Professora: Juliana Freitas Pires Terceira Lista de Exercícios Parte I: Variáveis aleatórias, Esperança e Variância Questão 1.
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Disciplina Estatística Aplicada Curso Engenharia Mec. Gest. Industrial 4º Semestre 2º Folha Nº2: Probabilidades 1. Na inspecção final a uma componente electrónica esta é classificada
Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva pessoal.utfpr.edu.
Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva pessoal.utfpr.edu.br/ngsilva Distribuição Uniforme Uma variável aleatória contínua X está
As restrições acima, sobre, são equivalentes a e. Combinandoas, poderemos escrever.
Livro: Probabilidade - Aplicações à Estatística Paul L. Meyer Capitulo 4 Variáveis Aleatórias Unidimensionais. Exemplo 4.9. Ao operar determinada máquina, existe alguma probabilidade de que o operador
Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec
Duração: 9 minutos Grupo I Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec Justifique convenientemente todas as respostas o semestre 7/8 5/5/8 9: o Teste A valores. Uma loja comercializa telemóveis
Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico
RESOLUÇÃO NA PÁGINA 06 Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40
Estatística Aplicada I
Estatística Aplicada I ESPERANCA MATEMATICA AULA 1 25/04/17 Prof a Lilian M. Lima Cunha Abril de 2017 EXPERIMENTO RESULTADOS EXPERIMENTAIS VARIÁVEL ALEATÓRIA X = variável aleatória = descrição numérica
UNIVERSIDADE DOS AÇORES Curso Serviço Social Estatística I 1º Ano 1º Semestre 2005/2006
UNIVERSIDADE DOS AÇORES Curso Serviço Social Estatística I 1º Ano 1º Semestre 2005/2006 Ficha de trabalho nº 1 Estatística Descritiva 1. Num conjunto de jovens estudantes pretende-se estudar; 1.1 A profissão
Universidade da Beira Interior Departamento de Matemática
Universidade da Beira Interior Departamento de Matemática ESTATÍSTICA Ano lectivo: 2007/2008 Curso: Ciências do Desporto Folha de exercícios nº4: Distribuições de probabilidade. Introdução à Inferência
Escola de Engenharia de Lorena - USP ESTATÍSTICA
Prof. Dr. Fernando Catalani Escola de Engenharia de Lorena - USP ESTATÍSTICA Lista de Exercícios 1 Probabilidades, distribuições probabilísticas, Valor Esperado e distribuição binomial 1. Probabilidade
Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40 horas e desvio padrão
DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA
ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências DISTRIBUIÇÃO CONJUNTA Em muitos
UNIVERSIDADE DOS AÇORES CURSO DE SOCIOLOGIA INTRODUÇÃO À ESTATÍSTICA Ficha de Exercícios nº 3- Variáveis Aleatórias
UNIVERSIDADE DOS AÇORES CURSO DE SOCIOLOGIA INTRODUÇÃO À ESTATÍSTICA Ficha de Exercícios nº 3- Variáveis Aleatórias. Seja uma variável aleatória discreta cuja função massa de probabilidade é dada por x
Probabilidade e Estatística
Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Inferência Estatística stica e Distribuições Amostrais Inferência Estatística stica O objetivo
VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE
VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos
DISTRIBUIÇÃO NORMAL DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS ROTEIRO DISTRIBUIÇÃO NORMAL
ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências DISTRIBUIÇÃO NORMAL Definição:
4. Distribuições de probabilidade e
4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio
Ano Lectivo 2006/2007 Ficha nº5
Instituto Superior Politécnico de Viseu Departamento de Matemática da Escola Superior de Tecnologia Estatística Aplicada Engenharia Mecânica e Gestão Industrial Ano Lectivo 2006/2007 Ficha nº5 1. Usando
Variáveis aleatórias discretas
Probabilidades e Estatística + Probabilidades e Estatística I Colectânea de Exercícios 2002/03 LEFT + LMAC Capítulo 3 Variáveis aleatórias discretas Exercício 3.1 Uma caixa contém 6 iogurtes dos quais
b) Variáveis Aleatórias Contínuas
Disciplina: 221171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Curso Engenharia do Ambiente 2º Semestre 1º Folha Nº 5: Testes Paramétricos Probabilidades e Estatística 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas
Conceitos Iniciais de Estatística Módulo 6 : PROBABILIDADE VARIÁVEL ALEATÓRIA CONTÍNUA Prof. Rogério Rodrigues
Conceitos Iniciais de Estatística Módulo 6 : PROBABILIDADE VARIÁVEL ALEATÓRIA CONTÍNUA Prof. Rogério Rodrigues 0 1 CONCEITOS INICIAIS DE ESTATÍSTICA: PROBABILIDADE / VARIÁVEL ALEATÓRIA CONTÍNUA CURSO :
CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES
CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES. INTRODUÇÃO - Conceito de população desconhecida π e proporção da amostra observada P. π P + pequeno erro Perguntas: - Qual é o pequeno erro?
UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros
UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Variáveis Aleatórias Ao descrever um espaço
Universidade Federal da Paraíba Departamento de Estatística Lista 1 - Outubro de 2013
1. Seja X a duração de vida de uma válvula eletrônica e admita que X possa ser representada por uma variável aleatória contínua, com f.d.p. be bx, x 0. Seja p j = P (j X < j + 1). Verifique que p j é da
Ribeirão Preto, 2º semestre de 2012 PROBABILIDADE E ESTATÍSTICA APLICADA II
FACULDADE DE ECONOMIA, ADMINISTRAÇÃO UNIVERSIDADE DE SÃO PAULO E CONTABILIDADE DE RIBEIRÃO PRETO DEPARTAMENTO DE ECONOMIA Ribeirão Preto, 2º semestre de 2012 PROBABILIDADE E ESTATÍSTICA APLICADA II LISTA
Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas
1. ANPEC 2018 Questão 3 Considere um indivíduo procurando emprego. Para cada entrevista de emprego (X) esse indivíduo tem um custo linear (C) de 10,00 Reais. Suponha que a probabilidade de sucesso em uma
b) Variáveis Aleatórias Contínuas
Disciplina: 1171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo
DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia
ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências Estatística Aplicada à Engenharia
Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA
Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA Estatística Básica para Engenharia Prof. Mariana Albi 8 a Lista de Exercícios Assuntos: Inferência Estatística.
Introdução à Estatística e Probabilidade Turma B 5 a lista de exercícios (16/11/2015)
) Seja uma v.a. X.d.p. (x) = x se 0 x k. a) Encontre k para que (x) seja uma.d.p. b) Encontre sua.d.a. F(x). c) Calcule a média e a variância de X. Introdução à Estatística e Probabilidade Turma B 5 a
INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO
Área Cientifica Curso Matemática Engenharia Electrotécnica Folha Nº5 1. Usando a tabela da normal standard, calcule: a) P(Z1.45), P(Z>-2.15), P(-2.34
EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias
EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Motivação Suponha que tenhamos um experimento onde a probabilidade
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de
TESTE DE KOLMOGOROV-SMIRNOV. Professor Ewaldo Santana Universidade Estadual do Maranhão - UEMA
TESTE DE KOLMOGOROV-SMIRNOV Professor Ewaldo Santana Universidade Estadual do Maranhão - UEMA Conteúdo 2 Ewaldo Santana Introdução 3 Ewaldo Santana Introdução Testes estatísticos paramétricos, tais como
ME-310 Probabilidade II Lista 0
ME-310 Probabilidade II Lista 0 1. Sejam A e B eventos disjuntos tais que P(A) = 0.1 e P(B) = 0.. Qual é a probabilidade que (a) A ou B ocorra; (b) A ocorra, mas B não ocorra; (c) repita (a) e (b) se os
{ C(1 x 2 ), se x ( 1, 1), f(x) = Cxe x/2, se x > 0, x + k, se 0 x 3; 0, c.c. k, se 1 < x 2; kx + 3k, se 2 < x 3;
Universidade de Brasília Departamento de Estatística 4 a Lista de PE 1. Seja X uma variável aleatória com densidade { C(1 x 2 ), se x ( 1, 1), 0, se x / ( 1, 1). a) Qual o valor de C? b) Qual a função
UNIVERSIDADE FEDERAL DA PARAÍBA. Cálculo das Probabilidades e Estatística I. Segunda Lista de Exercícios
UNIVERSIDADE FEDERAL DA PARAÍBA Cálculo das Probabilidades e Estatística I Professora: Juliana Freitas Pires Segunda Lista de Exercícios Questão 1. Descreva o espaço amostral para cada um dos seguintes
Probabilidade e Estatística
Probabilidade e Estatística Aula 7 Distribuição da Média Amostral Leitura obrigatória: Devore: Seções 5.3, 5.4 e 5.5 Chap 8-1 Inferência Estatística Na próxima aula vamos começar a parte de inferência
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Curso Engenharia e Gestão Industrial 1º Semestre 2º Folha Nº8 Testes de hipóteses paramétricos 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas de
Probabilidades e Estatística LEAN, LEE, LEGI, LEMat, LETI, LMAC, MEAmb, MEAer, MEBiol, MEBiom, MEEC, MEFT, MEQ
Duração: 90 minutos Grupo I Probabilidades e Estatística LEAN, LEE, LEGI, LEMat, LETI, LMAC, MEAmb, MEAer, MEBiol, MEBiom, MEEC, MEFT, MEQ Justifique convenientemente todas as respostas! o semestre 015/016
Estatística Básica. Variáveis Aleatórias Contínuas. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais
Estatística Básica Variáveis Aleatórias Contínuas Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Lembrando... Uma quantidade X, associada a cada possível resultado
Modelos Probabilisticos Discretos
Modelos Probabilisticos Discretos Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 30 A distribuição Uniforme Discreta Suponha um experimento
PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL
PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL Aula 6 META Estudar o comportamento e aplicação das Variáveis Aleatórias Contínuas, bem como da Distribuição Normal. OBJETIVOS Ao final
Problemas 1. Determine o valor esperado das seguintes variáveis aleatórias: a. A varável aleatória definida no Probl. 4.1.
Livro: Probabilidade - Aplicações à Estatística Paul L. Meyer Capitulo 7 Caracterização Adicional de Variáveis Aleatórias. Problemas 1. Determine o valor esperado das seguintes variáveis aleatórias: a.
Lucas Santana da Cunha de junho de 2017
VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados
Variável Aleatória Contínua:
Distribuição Contínua Normal Luiz Medeiros de Araujo Lima Filho Departamento de Estatística UFPB Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,
Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina
Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 21 de maio de 2018 Londrina 1 / 14 Variável aleatória Introdução Definição Uma função que associa um número real
Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto
Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}
(a) Se X Poisson(λ) e Y Poisson(µ), então X + Y Poisson(λ + µ). (b) Se X Binomial(n, p) e Y Binomial(m, p), então (X + Y ) Binomial(n + m, p).
Capítulo 0 Revisões Exercício 0.1 Sejam X e Y variáveis aleatórias independentes. Mostre que: (a) Se X Poisson(λ) e Y Poisson(µ), então X + Y Poisson(λ + µ). (b) Se X Binomial(n, p) e Y Binomial(m, p),
MAE0219 Introdução à Probabilidade e Estatística I
Exercício 1 1 o semestre de 201 O tempo de vida útil de uma lavadora de roupas automática tem distribuição aproximadamente Normal, com média de 3,1 anos e desvio padrão de 1,2 anos. a Qual deve ser o valor
Probabilidades e Estatística TODOS OS CURSOS
Duração: 90 minutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique convenientemente todas as respostas 1 o semestre 2018/2019 30/01/2019 11:30 1 o Teste C 10 valores 1. Numa unidade fabril
Lista 2: Probabilidade Condicional
Probabilidade Lista 2: Probabilidade Condicional 1) Em uma competição de aeromodelismo, vence o participante que conseguir pousar mais vezes seu aeroplano na área especificada. Esta área consiste em um
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância Variáveis Contínuas 10/13 1 / 1 Esperança Definição 2.1:(Valor Esperado
1 Variáveis Aleatórias
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis
Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu
Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC, CF ou CC. No entanto, o nosso interesse
Ano Lectivo 2006/2007 Ficha nº4
Instituto Superior Politécnico de Viseu Departamento de Matemática da Escola Superior de Tecnologia Estatística Aplicada Engenharia Mecânica e Gestão Industrial Ano Lectivo 2006/2007 Ficha nº4 1. De um
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição de Bernoulli e Binomial 07/14 1 / 32 Distribuições Discretas Apresentaremos agora
