Estatística Aplicada I
|
|
|
- Nicholas de Figueiredo Figueiroa
- 8 Há anos
- Visualizações:
Transcrição
1 Estatística Aplicada I ESPERANCA MATEMATICA AULA 1 25/04/17 Prof a Lilian M. Lima Cunha Abril de 2017 EXPERIMENTO RESULTADOS EXPERIMENTAIS VARIÁVEL ALEATÓRIA X = variável aleatória = descrição numérica do resultado de um experimento -cada um de seus possíveis valores se associa a uma probabilidade DISCRETA CONTINUA 1
2 Distribuição de X: conjunto dos valores de X e as respectivas probabilidades X = variável aleatória P(X) = Probabilidade associada aos valores de X X = numero de clientes que usam caixa eletrônico no período de 1 minuto EX1 X P(X) 0 0, , , , , ou mais 0,0527 ( ) = % EX2 Resultado do lançamento de um dado P (X) P (X) 1/6 1/6 1/7 1/ X ( ) = = 2
3 VARIÁVEIS ALEATÓRIAS DISCRETAS EX1:Examecom4partes(CPA) X = numero de partes que o candidato foi aprovado (0,1,2,3,4) = numero finito EX 2: X = numero de carros que chegam no pedágio no períodode1dia=numerointeiroseinfinitos EX 3: Pesquisa solicita ao individuo que relembre a mensagem de um recente comercial de TV X = 1 para os que lembram X = 0 para os que não lembram. VARIÁVEIS ALEATÓRIAS CONTINUAS EX 1: Ambulância no atendimento de ocorrências em um trecho de 90 km; X = numero de km até o local do próximo acidente de trânsito ao longo do trecho de 90 km; X = qualquervalorentre0e90 EX2:X=tempoparasacardinheiro EX3: encher uma lata de refrigerante que tem capacidade para 350 ml X = quantidade em ml; x = qualquer valor entre 0 e 350 3
4 DISTRIBUIÇÃO DISCRETA DE PROBABILIDADE X = variável aleatória discreta P(X)=probabilidadeassociadaacadaX A distribuição dessas probabilidades (P(X)) e definida por uma função de probabilidade chamada f(x) EX1: X = numero de carros vendidos em um dia O experimento foi realizado no período de 300 dias X varia de 0 a 5 por histórico de vendas DISTRIBUIÇÃO DISCRETA DE PROBABILIDADE EX1: X = numero de carros vendidos em um dia X Numero de dias f (X) /300 f(0) /300 f(1) /300 f(2) /300 f(3) /300 f(4) 5 3 3/300 f(5) 300 ( ) =( ) = + +()= 4
5 DISTRIBUIÇÃO DISCRETA DE PROBABILIDADE EX1: X = numero de carros vendidos em um dia X Numero de dias f (X) f(x) f(x) /300 f(0) 0, /300 f(1) 0, /300 f(2) 0, /300 f(3) 0, /300 f(4) 0, /300 f(5) 0, soma soma A venda de 1 carro por dia é o evento mais provável Qual seria a probabilidade de vender 3 ou mais carros por dia? Resp: 0,19 DISTRIBUIÇÃO DISCRETA DE PROBABILIDADE CONDIÇÕES NECESSARIA PARA FUNÇÃO DE PROBABILIDADE DISCRETA: 1) ( ) = 2) ( ) * Esta associada a probabilidade de ocorrência (só pode ser positiva) f (X) 0,45 0,40 0,35 0,30 0,25 0,20 0,15 0,10 0,05 0, X 5
6 DISTRIBUIÇÃO DISCRETA DE PROBABILIDADE DISTRIBUIÇÃO UNIFORME DE PROBABILIDADE = n = número de valores que a variável aleatória pode assumir DISTRIBUIÇÃO DISCRETA DE PROBABILIDADE DISTRIBUIÇÃO UNIFORME DE PROBABILIDADE CONSIDERE O LANÇAMENTO DE UM DADO X = NUMERO QUE APARECE NA FACE VIRADA PARA CIMA X f(x) 1 1/6 2 1/6 3 1/6 4 1/6 5 1/6 6 1/6 = = * Existem 6 possíveis valores para X 6
7 ESPERANÇA MATEMATICA (ou valor esperado) Aesperançadeumavariávelaleatóriaéasuamédia; Para variável discreta, a sua media não será media simples e sim uma média ponderada pela probabilidade de ocorrência. = = ( ) i = 0,1,..., n ESPERANÇA MATEMATICA (ou valor esperado) ** Utilizando o exemplo de vendas de automóveis... X f(x) 0 0,17 1 0,39 2 0,24 3 0,14 4 0,04 5 0,01 1,0 soma = =, +, + +, =, Por dia 7
8 ESPERANÇA MATEMATICA (ou valor esperado) ** para o exemplo do lançamento de um dado E (X) = 3,5 X f(x) X x f(x) 1 0,17 0, ,17 0, ,17 0, ,17 0, ,17 0, ,17 1,000 3,50 ESPERANCA VARIÂNCIA MEDIDA DE VARIABILIDADE OU DISPERSÃO PARA SINTETIZAR A VARIABILIDADE DE UM CONJUNTO DE DADOS E, NESSE CASO, PARA SINTETIZAR A VARIABILIDADE DOS VALORES DA VARIAVEL ALEATÓRIA VAR = = (( ( )) ( )) i = 0,1,..., n 8
9 VARIÂNCIA - cálculo ** Utilizando o exemplo de vendas de automóveis... X f(x) X x f(x) (X- E (X)) (X- E (X)) 2 (X- E (X)) 2 x f (X) 0 0,18 0,000-1,500 2,250 0, ,39 0,390-0,500 0,250 0, ,24 0,480 0,500 0,250 0, ,14 0,420 1,500 2,250 0, ,04 0,160 2,500 6,250 0, ,01 0,050 3,500 12,250 0,1225 1,500 1,250 soma soma Uma companhia está considerando uma expansão da fábrica que tornará possível à empresa produzir um novo produto. O presidente da empresa precisa decidir se a expansão será em média ou em grande escala. Existe uma incerteza em relação à demanda do produto, a qual pode ser baixa, média ou alta, com probabilidades de 20%, 50% e 30%, respectivamente. Considere que X e Y são as previsões de lucro da empresa em cada um dos cenários de expansão. Demanda EXEMPLO - APLICADO Média Escala Alta Escala X P(X) Y P(Y) Baixa 50 0,20 0 0,20 Média 150 0, ,50 Alta 200 0, ,30 a. Calcule o valor esperado para o lucro associado às duas alternativas de expansão. Que decisão é preferida para o objetivo de maximizar o lucro? b. Calcule a variância para o lucro associado às duas alternativas de expansão. Que decisão é preferida para o objetivo de minimizar o risco/incerteza? 9
10 RESOLUÇÃO Demanda média escala alta escala X P(X) Y P(Y) X*Pr(X) Y*Pr(Y) Baixa 50,00 0,20 0,00 0, Média 150,00 0,50 100,00 0, Alta 200,00 0,30 300,00 0, ESPERANCA X ESPERANCA Y a.calcule o valor esperado para o lucro associado às duas alternativas de expansão. Que decisão é preferida para o objetivo de maximizar o lucro? RESP: CENARIO DE MEDIA ESCALA RESOLUÇÃO (X - Media) 2 x Pr (X) (Y- Media) 2 x Pr (Y) , , VARIÂNCIA X VARIÂNCIA Y b. Calcule a variância para o lucro associado às duas alternativas de expansão. Que decisão é preferida para o objetivo de minimizar o risco/incerteza? RESP: CENARIO DE MEDIA ESCALA, também!!!! 10
11 DISTRIBUIÇÃO CONTINUA DE PROBABILIDADE 1) Para a variável aleatória discreta, a função de Probabilidade(f(X)) produz a probabilidade de a variável aleatória assumir um valor em particular; 2) Para a variável aleatória contínua, a contraparte da função de Probabilidade é a função de densidade de probabilidade, também expressa por f(x) função de densidade de probabilidade não produz probabilidade DIRETAMENTE A probabilidade de a variável aleatória continua assumir um exato valor, é zero; Aprobabilidadenessecasoseráobtidapelaáreasobográficodef(X).Essaáreaserá a probabilidade de a Variável aleatória continua X assumir um valor nesse intervalo. DISTRIBUIÇÃO CONTINUA DE PROBABILIDADE DISTRIBUIÇÃO UNIFORME DE PROBABILIDADE SEMPRE QUE A PROBABILIDADE FOR PROPORCIONAL AO COMPRIMENTO DO INTERVALO, A VARIAVEL ALEATÓRIA SE ENCONTRA UNIFORMEMENTE DISTRIBUIDA 11
12 EX: SUPONHA QUE X = TEMPO DE VOO DE UMA AVIAO QUE VAI DE A PARA B. SUPONHA QUE TEMPO DE VOO POSSA TER QUALQUER VALOR NO INTERVALODE120 A140MINUTOS.UMAVEZQUEAVARIAVELALEATORIAX PODE ASSUMIR QUALQUER VALOR DESSE INTERVALO, X É UMA VARIÁVEL ALEATÓRIA CONTINUA, E NÃO UMA DISCRETA. DIANTE DE DADOS DISPONIVEIS, PODEMOS CONCLUIR QUE A PROBABILIDADE DE TEMPO DE VOO NO INTERVALO DE 1 MINUTO QUALQUER TENHA A MESMA PROBABILIDADE DE TEMPO DE VOO EM OUTRO INTERVALO DE 1 MINUTO, TODOS CONTIDOS NO INTERVALO TOTAL DE 120 A 140 MINUTOS. CONSIDERA-SE QUE CADA UM DOS INTERVALOS DE 1 MINUTO É IGUALENTE PROVAVEL, DIZEMOS QUE A VARIAVEL ALEATORIA CONTINUA TEM UMA DISTRIBUIÇÃO UNIFORME DE PROBABILIDADE. ASSIM, A FUNÇÃO DE DENSIDADE DE PROBABILIDADE, A QUAL DEFINE A DISTRIBUIÇÃO UNIFORME DE PROBABILIDADE, CORRESPONDE A VARIAVEL ALEATORIA TEMPO DE VOO E: 1/20 para f (X) = 0 outro ponto qualquer DISTRIBUIÇÃO UNIFORME DE PROBABILIDADE A FÓRMULA GERAL PARA FUNÇÃO DE DENSIDADE UNIFORME DE PROBABILIDADE: f (X) = 1/(b a) para a 0 outro ponto qualquer EM RELAÇÃO A VARIAVEL ALEATORIA TEMPO DE VOO, a = 120 e b = 140 1/20 QUAL A PROBABILIDADE DO TEMPO DE VOO SITUAR-SE ENTRE120E130MINUTOS? RESP: 0,
13 () FORMA GENERICA DE CALCULO DA DISTRIBUICAO DE PROBABILIDADE UNIFORME CONTINUA = =, F(X)= () *USANDO O EXEMPLO DA VARIAVEL ALEATORIA TEMPO DE VOO -QUAL A PROBABILIDADE DO TEMPO DE VOO SITUAR-SE ENTRE 120 E 130 MINUTOS? 1/20 Função de densidade de probabilidade ESPERANÇA MATEMATICA (ou valor esperado) 13
14 COMO SERIA O CALCULO DA ESPERANÇA MATEMATICA PARA: PARA DISTRIBUICAO UNIFORME DE PROBABILIDADE DISCRETA??? Usando a formulação genérica do slide anterior... 14
15 *USANDO O EXEMPLO DA VARIAVEL ALEATORIA TEMPO DE VOO, a = 120 e b = 140 1/ O CALCULO GENERICO PARA A ESPERANDA SERIA: == () (+) = () = EXERCICIO PARA ENTREGAR A tabela ao lado é uma distribuição de probabilidade referente ao lucro projetado da MRA Company (X = lucro em milhares de dólares) para o primeiro ano de operação ( o valor negativo denota prejuízo). X f(x) ,10 0 0, , , ,10 200???? a)qual é o valor adequado para f (200)? Qual a interpretação desse valor? b)qualaprobabilidadedeamraserrentável? c)qual e a probabilidade de a MRA alcançar pelo menos USS100mil? d)calculeovaloresperadodalucrodaempresa. e) Calcule a respectiva variância. 15
16 RESULTADOS a 0,05 b 0,90 Considerando lucro zero c 0,40 d 55 e 5475 REFERENCIAS BIBLIOGRÁFICAS ANDERSON, D.; SWEENEY, D.J.; WILLIANS, T.A Estatistica aplicada a administração e economia. Ed. Thompson. 2ª ed. 597 p. cap6pgs205a209;cap5pgs169a178. HOFFMANN, R. Estatística para economistas cap6. 16
UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros
UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade
Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal
Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:
Distribuição Normal. Estatística Aplicada I DISTRIBUIÇÃO NORMAL. Algumas característica importantes. 2πσ
Estatística Aplicada I DISTRIBUIÇÃO NORMAL Prof a Lilian M. Lima Cunha AULA 5 09/05/017 Maio de 017 Distribuição Normal Algumas característica importantes Definida pela média e desvio padrão Media=mediana=moda
Variáveis Aleatórias. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Variáveis Aleatórias Variável Aleatória Variável aleatória (VA) é uma função que associa a cada
Momentos: Esperança e Variância. Introdução
Momentos: Esperança e Variância. Introdução Em uma relação determinística pode-se ter a seguinte relação: " + " = 0 Assim, m =, é a declividade e a e b são parâmetros. Sabendo os valores dos parâmetros
Distribuições de Probabilidade
Distribuições de Probabilidade 7 6 5 4 3 2 1 0 Normal 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Temperatura do ar 20 18 16 14 12 10 8 6 4 2 0 Assimetrica Positiva 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Precipitação
Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS
Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é
Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB
Variáveis Aleatórias Esperança e Variância Prof. Luiz Medeiros Departamento de Estatística - UFPB ESPERANÇA E VARIÂNCIA Nos modelos matemáticos aleatórios parâmetros podem ser empregados para caracterizar
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 5ª AULA: DISTRIBUIÇÃO DE PROBABILIDADE
Probabilidade. 1 Variável Aleatória 2 Variável Aleatória Discreta 3 Variável Aleatória Contínua. Renata Souza
Probabilidade 1 Variável Aleatória 2 Variável Aleatória Discreta 3 Variável Aleatória Contínua Renata Souza Introdução E: Lançamento de duas moedas Ω = {(c,c), (c,k), (k,k), (k,c)}. X: número de caras
VARIÁVEIS ALEATÓRIAS 1
VARIÁVEIS ALEATÓRIAS 1 Na prática é, muitas vezes, mais interessante associarmos um número a um evento aleatório e calcularmos a probabilidade da ocorrência desse número do que a probabilidade do evento.
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Variáveis Aleatórias Ao descrever um espaço
ESTATÍSTICA. x(s) W Domínio. Contradomínio
Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.
Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral
Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades
Probabilidade e Estatística
Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 1 Leitura obrigatória: Devore, 3.1, 3.2 e 3.3 Chap 5-1 Objetivos Nesta parte, vamos aprender: Como representar a distribuição
Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008
Variável Aleatória Gilson Barbosa Dourado [email protected] 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória
Probabilidade e Estatística
Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis
Variáveis Aleatórias - VA
Variáveis Aleatórias - VA cc ck kc kk 0 1 2 1/4 1/2 Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - Introdução Se entende por VA ou V. indicadoras uma lista de valores
Lucas Santana da Cunha de junho de 2017
VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância Variáveis Contínuas 10/13 1 / 1 Esperança Definição 2.1:(Valor Esperado
Bioestatística e Computação I
Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas
Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina
Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 21 de maio de 2018 Londrina 1 / 14 Variável aleatória Introdução Definição Uma função que associa um número real
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Disciplina Estatística Aplicada Curso Engenharia Mec Gest Industrial º Semestre º Folha Nº3: Variáveis Aleatórias De um lote que contém 0 parafusos, dos quais 5 são defeituosos,
Modelos de Distribuição PARA COMPUTAÇÃO
Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO
Variáveis Aleatórias Discretas e Distribuição de Probabilidade
Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das
Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade
Probabilidade Variáveis Aleatórias Distribuição de Probabilidade Variáveis Aleatórias Variável Aleatória Indica o valor correspondente ao resultado de um experimento A palavra aleatória indica que, em
Cálculo das Probabilidades I
Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Geradora de Momentos 10/13 1 / 19 Calculamos algumas características da
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19 Nos modelos matemáticos aleatórios parâmetros podem ser
PARTE 2. Profª. Drª. Alessandra de Ávila Montini
PARTE 2 Profª. Drª. Alessandra de Ávila Montini Conteúdo Introdução a Probabilidade Conceito de Experimento Conceito de Espaço Amostral Conceito de Variável Aleatória Principais Distribuições de Probabilidade
Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto
Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}
Exercícios propostos:
INF 16 Exercícios propostos: 1. Sabendo-se que Y=X-5 e que E(X)= e V(X)=1, calcule: a)e(y); b)v(y); c)e(x+y); d)e(x + Y ); e)v(x+y); Resp.: 1; 9; 5; 15; 81. Uma urna contém 5 bolas brancas e 7 bolas pretas.
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08
Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Variáveis Aleatórias. Henrique Dantas Neder. April 26, Instituto de Economia - Universidade Federal de Uberlândia
Variáveis Aleatórias Henrique Dantas Neder Instituto de Economia - Universidade Federal de Uberlândia April 2, 202 VARIÁVEL ALEATÓRIA DISCRETA O conceito de variável aleatória está intrínsicamente relacionado
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição
Estatística (MAD231) Turma: IGA. Período: 2018/2
Estatística (MAD231) Turma: IGA Período: 2018/2 Aula #03 de Probabilidade: 19/10/2018 1 Variáveis Aleatórias Considere um experimento cujo espaço amostral é Ω. Ω contém todos os resultados possíveis: e
VARIÁVEIS ALEATÓRIAS
UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis
Variáveis aleatórias. Universidade Estadual de Santa Cruz. Ivan Bezerra Allaman
Variáveis aleatórias Universidade Estadual de Santa Cruz Ivan Bezerra Allaman DEFINIÇÃO É uma função que associa cada evento do espaço amostral a um número real. 3/37 Aplicação 1. Seja E um experimento
LISTA 3 Introdução à Probabilidade (Profa. Cira.) OBS. Apenas os exercícios indicados como adicional não constam no livro.
LISTA 3 Introdução à Probabilidade (Profa. Cira.) OBS. Apenas os exercícios indicados como adicional não constam no livro. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - V. A. C O N T Í N
rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas
ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 03: Variáveis Aleatórias Discretas Qual a similaridade na natureza dessas grandezas? Tempo de espera de um ônibus
Avaliação e Desempenho Aula 5
Avaliação e Desempenho Aula 5 Aula passada Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Aula de hoje Variáveis aleatórias discretas e contínuas PMF, CDF e função densidade
AULA 17 - Distribuição Uniforme e Normal
AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço
Distribuição de Probabilidade. Prof. Ademilson
Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.
Cap. 6 Variáveis aleatórias contínuas
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio
3 a Lista de PE Solução
Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes
Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas
1. ANPEC 2018 Questão 3 Considere um indivíduo procurando emprego. Para cada entrevista de emprego (X) esse indivíduo tem um custo linear (C) de 10,00 Reais. Suponha que a probabilidade de sucesso em uma
3 a Lista de PE. Universidade de Brasília Departamento de Estatística
Universidade de Brasília Departamento de Estatística 3 a Lista de PE 1. Duas bolas são escolhidas aleatoriamente de uma urna contendo 8 bolas brancas, 4 pretas, e duas bolas laranjas. Suponha que um jogador
CE Estatística I
CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,
Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014
Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014 1. O diâmetro X de{ um cabo elétrico é uma variável aleatória com densidade de probabilidade K(2x x dada por 2 ), 0 x 1 0, x < 0 ou x > 1. (a)
VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL
VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Um teorema de grande importância e bastante utilidade em probabilidade
Variáveis aleatórias
Variáveis aleatórias Joaquim Neto [email protected] www.ufjf.br/joaquim_neto Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de
Simulação com Modelos Teóricos de Probabilidade
Simulação com Modelos Teóricos de Probabilidade p. 1/21 Algumas distribuições teóricas apresentam certas características que permitem uma descrição correta de variáveis muito comuns em processos de simulação.
Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias
Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para
Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos
Variáveis Aleatórias Contínuas e Distribuição de Probabilidad
Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz
1 Variáveis Aleatórias
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis
Modelos Probabilisticos Discretos
Modelos Probabilisticos Discretos Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 30 A distribuição Uniforme Discreta Suponha um experimento
Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40 horas e desvio padrão
Processos Estocásticos. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema
Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes
Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos
AULA 15 - Distribuição de Bernoulli e Binomial
AULA 15 - Distribuição de Bernoulli e Binomial Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Variável Aleatória de Bernoulli Podemos dizer que as variáveis aleatórias mais simples entre as
Cap. 6 Variáveis aleatórias contínuas
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de
4.1. ESPERANÇA x =, x=1
4.1. ESPERANÇA 139 4.1 Esperança Certamente um dos conceitos mais conhecidos na teoria das probabilidade é a esperança de uma variável aleatória, mas não com esse nome e sim com os nomes de média ou valor
Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades
Aula de Estatística 13/10 à 19/10 Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades 4.1 Distribuições de probabilidades Variáveis Aleatórias Geralmente, o resultado de um experimento de probabilidades
Lucas Santana da Cunha 23 de maio de 2018 Londrina
Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ 23 de maio de 2018 Londrina 1 / 14 Variável aleatória Introdução Definição Uma função que associa um número real aos resultados de um experimento
NOTAS DA AULA. Prof.: Idemauro Antonio Rodrigues de Lara
1 NOTAS DA AULA VARIÁVEIS ALEATÓRIAS. ESPERANÇA E VARIÂNCIA Prof.: Idemauro Antonio Rodrigues de Lara 2 Objetivo geral da aula Caracterizar variáveis aleatórias discretas e contínuas. Compreender e aplicar
Estatística Descritiva e Exploratória
Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Condicionais 11/13 1 / 19 Em estudo feito em sala perguntamos aos alunos qual
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :
VARIÁVEIS ALEATÓRIAS 1
VARIÁVEIS ALEATÓRIAS 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado duas vezes e observar
Distribuições Amostrais e Estimação Pontual de Parâmetros
Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 19 de Maio de 2011 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado
Probabilidade. Variáveis Aleatórias e Distribuição de Probabilidades
Probabilidade Variáveis Aleatórias e Distribuição de Probabilidades Na aula de hoje, vamos 1 - Estender o conceito de variável, definindo o conceito de variável aleatória; 2 Entender porque as variáveis
Estatística Básica. Variáveis Aleatórias Contínuas. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais
Estatística Básica Variáveis Aleatórias Contínuas Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Lembrando... Uma quantidade X, associada a cada possível resultado
1 Introdução. 2 Variáveis Aleatórias Discretas (VAD)
Prof. Janete Pereira Amador 1 1 Introdução Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações podem ser descritas por uma variável
{ C(1 x 2 ), se x ( 1, 1), f(x) = Cxe x/2, se x > 0, x + k, se 0 x 3; 0, c.c. k, se 1 < x 2; kx + 3k, se 2 < x 3;
Universidade de Brasília Departamento de Estatística 4 a Lista de PE 1. Seja X uma variável aleatória com densidade { C(1 x 2 ), se x ( 1, 1), 0, se x / ( 1, 1). a) Qual o valor de C? b) Qual a função
12 Distribuições de Probabilidades
12 Distribuições de Probabilidades 12.1 Introdução Neste capítulo vamos dar continuidade ao estudo de probabilidades, introduzindo os conceitos de variáveis aleatórias e de distribuições de probabilidade.
Les Estatística Aplicada II AMOSTRA E POPULAÇÃO
Les 0407 - Estatística Aplicada II AMOSTRA E POPULAÇÃO AULA 1 04/08/16 Prof a Lilian M. Lima Cunha Agosto de 2016 Estatística 3 blocos de conhecimento Estatística Descritiva Levantamento e resumo de dados
b) Variáveis Aleatórias Contínuas
Disciplina: 221171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo
Estatística Aplicada
Estatística Aplicada Distribuições Discretas de Probabilidade Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE Distribuições de Probabilidade
Confiabilidade de sistemas. Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas.
Confiabilidade de sistemas Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas. Uma definição pratica de confiabilidade corresponde à probabilidade de um
Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico
RESOLUÇÃO NA PÁGINA 06 Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40
Escola Superior de Tecnologia de Viseu. Fundamentos de Estatística 2006/2007 Ficha nº 3
Escola Superior de Tecnologia de Viu Fundamentos de Estatística 006/007 Ficha nº 3. Os valores admissíveis de uma variável aleatória discreta X são: 0,,. Sabe- que E(X)=0.8 e que E(X )=.4. a) Defina a
EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias
EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Motivação Suponha que tenhamos um experimento onde a probabilidade
