Ribeirão Preto, 2º semestre de 2012 PROBABILIDADE E ESTATÍSTICA APLICADA II
|
|
|
- Eliana Aranha Pereira
- 8 Há anos
- Visualizações:
Transcrição
1 FACULDADE DE ECONOMIA, ADMINISTRAÇÃO UNIVERSIDADE DE SÃO PAULO E CONTABILIDADE DE RIBEIRÃO PRETO DEPARTAMENTO DE ECONOMIA Ribeirão Preto, 2º semestre de 2012 PROBABILIDADE E ESTATÍSTICA APLICADA II LISTA TEÓRICA Responsável: Alexandre C. Nicolella AXIOMAS DE PROBABILIDADE 1. O administrador de um hospital codifica os pacientes baleados atendidos no pronto socorro de acordo com o fato de eles terem ou não plano de saúde ( 1 se tiverem e 0 se não tiverem) e de acordo com a sua condição que é classificada como boa (b), razoável (r) ou séria (s). Considere o experimento que consiste em codificar um paciente baleado. a) Forneça o espaço amostral desse experimento. b) Seja A o evento em que o paciente está em uma condição série. Especifique os resultados de A. c) Seja B o evento em que o paciente não possui seguro. Especifique os resultados em B. d) Forneça todos os resultados do evento B c U A. 2. Certa cidade com população de habitantes possui 3 jornais: I, II e III. As proporções de moradores que leem esses jornais são as seguintes: I: 10% I e II: 8% I, II e III: 1% II: 30% I e III:2% III:5% II e III: 4% a) Determine o número de pessoas que leem apenas um jornal. b) Quantas pessoas leem pelo menos dois jornais? c) Se I e III são jornais matutinos e II é um jornal vespertino, quantas pessoas leem pelo menos um jornal matutino mais um jornal vespertino?
2 d) Quantas pessoas não leem jornal? e) Quantas pessoas leem apenas um jornal matutino e um vespertino? PROBABILIDADE CONDICIONAL E INDEPENDÊNCIA 3. Seja A B. Expresse as seguintes probabilibades da forma mais simples possível: a) P(A B); b) P(A B c ); c) P(B A); d) P(B A c ). 4.Uma questão de verdadeiro ou falso é colocada para um time formado por marido e sua esposa em um jogo de perguntas e respostas. Tanto o homem quanto a mulher darão, de forma independente, a resposta correta com probabilidade p. Qual das estratégias seguintes é a melhor para o casal? a) Escolher um deles e deixar que a pessoa escolhida responda a questão. b) Ambos pensaram na questão e darem a resposta comum se estiverem de acordo, ou então, se não estiverem de acordo, jogar uma moeda para determinar que resposta devem dar. 5. Considere duas jogadas independentes de uma moeda honesta. Suponha que A seja o evento em que a primeira jogada da cara, B o evento em que a segunda dá cara e C o evento em que ambas as jogadas da moeda caem do mesmo lado. Mostre que os eventos A, B e C são independentes por pares isto é, A e B são independentes, A e C são independentes, B e C são independentes mas não totalmente independentes. 6. A urna A tem 5 bolas brancas 7 bolas pretas. A urna B tem 3 bolas brancas e 12 bolas pretas. Jogamos uma moeda honesta; se dar cara, retiramos uma bola da urna A. Se der coroa, retiramos uma bola da urna B. Suponha que uma bola branca seja selecionada. Qual é a probabilidade de que tenha dado coroa na moeda? 7. Em cada uma das n jogadas independentes de uma moeda, obtém-se cara com uma probabilidade p. Quão grande deve ser n para que a probabilidade de se obter pelo menos
3 uma cara seja de no mínimo ½? 8) Suponha-se que um sistema seja formado por 100 componentes, cada um dos quais tenha confiabilidade igual a 0,95. Se esses componentes funcionarem independentemente um do outro, e se o sistema completo funcionar adequadamente quando ao menos 80 componentes funcionarem, qual será a confiabilidade do sistema? 9) Um levantamento do Consumer Reports listou os distribuidores dos automóveis Saturn, Infiniti e Lexus como os três principais no serviço aos clientes (Consumer Reports, Abril de 1994). O Saturn se classificou como número um, com somente 4% dos clientes citando algum tipo de insatisfação com o distribuidor. Responda às seguintes questões sobre o grupo de 250 clientes do Saturn: A) Qual é a probabilidade de que 12 clientes ou menos terão algum tipo de insatisfação com o distribuidor? B) Qual é a probabilidade de que 5 clientes ou mais terão algum tipo de insatisfação com o distribuidor? C) Qual é a probabilidade de que 8 clientes terão algum tipo de insatisfação com o distribuidor? 10) Considere a seguinte função de densidade de probabilidade: = 1 3, "#" 0 A) Escreva a fórmula para ( ) B) Encontre ( 2) C) Encontre ( 5) D) Encontre (2 5) E) Encontre ( 3) 11) Uma amostra de componentes eletrônicos é escolhida ao acaso e os itens são escolhidos ao acaso e são testados, obtendo-se 30 defeituosos. Calcule a probabilidade de obter pelo menos 30 itens defeituosos, supondo que a confiabilidade desses itens é de 0,95.
4 VARIÁVEL ALEATÓRIA 12. Existem duas causas possíveis para a quebra de certa máquina. Verificar a primeira possibilidade custa C1 reais, e, se aquela tiver sido de fato causa de quebra, o problema pode ser reparado ao custo de R1, reais. Similarmente, existem os custos C2 e R2 associados à segunda probabilidade. Suponha que p e 1-p representem, respectivamente, as probabilidades de que a quebra seja causada pela primeira e pela segunda possibilidade. Em quais condições de p, Ci,Ri, i=1,2, devemos verificar inicialmente a primeira causa possível de defeito e depois a segunda, em vez de inverter a ordem de verificação, de forma a minimizarmos o custo envolvido na manutenção da maquina? 13. Uma caixa contém 5 bolas de gude vermelhas e 5 azuis. Duas bolas de gude são retiradas aleatoriamente. Se elas tiverem a mesma cor, você ganha R$1,10; se elas tiverem cor diferente, você perde R$1,00. Calcule: a) o valor esperado da quantia que você ganha; b) a variância da quantia que você ganha. 14. Se E(X)=1 e Var(X)=5, determine a) E(2+ 2X), b) Var(4+ 3X). VARIÁVEL ALEATÓRIA CONTÍNUA 15) Dado que z é uma variável aleatória normal padrão, calcule a probabilidade ( 1,98 0,49) 16) O conteúdo de cinzas (em percentagem) no carvão, X, pode ser considerado como uma variável aleatória contínua com a seguinte f.d.p: =."#, para 10 x 25. Pedese: qual é o conteúdo de cinzas esperado para uma amostra de um espécime de carvão? 17) Suponha que um mecanismo eletrônico tenha um tempo de vida X (em 1000 horas) que possa ser considerado uma v.a. contínua com f.d.p. =, > 0. Suponha que o
5 custo de fabricação de um item seja R$ 2,00 e o preço de venda seja R$ 5,00. O fabricante garante total devolução se 0,9. Qual o lucro esperado por item? VARIÁEL ALEATÓRIA CONJUNTAMENTE DISTRIBUÍDA 18. Suponha que 3 bolas sejam sorteadas sem reposição de uma urna consistindo em 5 bolas brancas e 8 bolas vermelhas. Considere Yi=1 quando a i-ésimabola selecionada seja branca e Yi=0 caso contrário. Determine a função de probabilidade conjunta de: a)y1,y2; b) Y1,Y2,Y A função densidade de probabilidade conjunta de X e Y é dada por f(x,y)= (x²+ " ) ; 0<x<1 ; 0<y<2. a) Verifique se esta de fato é uma função densidade conjunta. b) Calcule a função de densidade de X. c) Determine P(X>Y). d) Determine P(Y> e) Determine E(X). f) Determine E(Y). X < ) 20. O vetor aleatório (X,Y), é chamado de uniformemente distribuído em uma região R do plano se, para alguma constante c, sua densidade conjunta é f(x,y)= c ; se x, y ϵ R 0 ; caso contrário a) Mostre que 1/c = área da região R. Suponha que (X,Y) seja uniformemente distribuído ao longo do quadrado centrado em (0,0) e com lados de comprimento 2. b) Mostre que X e Y são independentes, com cada um sendo distribuído ao longo de (-1,1). c) Qual é a probabilidade de que (X,Y) esteja contido no circulo de raio 1 centrado na origem? Isto é, determine P(X² + Y² 1).
6 21. Três pontos X1, X2,X3 são selecionados aleatoriamente em uma linha L. Qual é a probabilidade de que X1 esteja entre X2 e X3? TEOREMA DE TCHEBYCHEV 22. A variável aleatória X tem média µ=10 e variância σ²=4. Usando o teorema de Chebychev, determine: a) P( X-10 3) b) P( X-10 <3) c) P(5<X<15) d) a constante c de modo que P( X-10 c) 0, Uma variável aleatória contínua X tem média 50 e desvio padrão 10. Calculemos a probabilidade mínima de que x esteja entre 35 e 65. ESPERANÇA, VARIÂNCIA, CORRELAÇÃO E DISTRIBUIÇÃO DE PROBABILIDADE 24) O comprimento padrão de uma peça industrial é de 50 cm, em média, com um desviopadrão de 1 cm. Qual o percentual de peças produzidas que estarão entre 47,5 cm e 52,5cm? 25) Os salários de uma corporação variam apresentam uma média anual de R$14.300,00, com desvio-padrão de R$ 1.200,00. Calcule a proporção de salários anuais fora do intervalo de [R$12.500,00 ; R$ ,00]. 26) Suponha que estamos atirando dardos em um alvo circular de raio 10cm, e seja X a distância do ponto atingido pelo dardo ao centro do alvo. A fdp de X é: = ", " , "#" " "#$%& "#$%&' Qual é a probabilidade de acertar o centro do alvo, se este for um círculo de 1cm de raio?
7 27) Seja V a velocidade do vento, e suponha que V esteja uniformemente distribuída sobre o intervalo [0,10], e dada por uma função = ". A pressão P, na superfície da asa de um avião é dada pela relação = = 0,03. Pede-se o valor esperado da pressão. 28) A v.a. contínua X tem f.d.p. = 3, 1 0 0, "#$ "#$%á"# A) Se b for um número que satisfaz -1 < b < 0, calcule P(X > b X < b/2) B) Calcule E(X) e Var(X) 29) Seja X com densidade = 1, " 1 < < 1 0, "#$ "#$%á"# Calcule a média e a variância de X. 30) Certa liga é formada pela mistura fundida de dois metais. A liga resultante contém certa porcentagem de chumbo, X, que pode ser considerada uma v.a. com f.d.p. = , Suponha que L, o lucro líquido obtido na venda dessa liga (por unidade de peso), seja dado por = +, Calcule E(L), o lucro esperado por unidade. 31) A demanda diária de arroz num supermercado, em centenas de quilos, é uma v.a. com f.d.p 2 " = " " < 0 " > 3 A) Qual é a probabilidade de se vender mais de 150kg, num dia escolhido ao acaso?
8 B) Em 30 dias, quanto o gerente do supermercado espera vender? C) Qual a quantidade de arroz que deve ser deixada à disposição dos clientes diariamente para que não falte arroz em 95% dos dias? 32) A distribuição dos pesos de coelhos criados em uma granja pode muito bem ser representada por uma distribuição normal, com média 5kg e desvio padrão de 0,8 kg. Um abatedouro comprará coelhos e pretende classificá-los de acordo com o peso, do seguinte modo: 20% dos leves como pequenos, os 55% seguintes como médios, os 15% seguintes como grandes e os 10% mais pesados como extras. Quais os limites de peso para cada classe? 33) Uma enchedora automática de garrafas de refrigerantes está regulada para que o volume médio de líquido em cada garrafa seja de cm³ e o desvio padrão de 10cm³. Pode-se admitir que a variável volume seja normal. A) Qual é a porcentagem de garrafas em que o volume de líquido é menor que 990cm³? B) Qual é a porcentagem das garrafas em que o volume de líquido não se desvia da média em mais de dois desvios padrões? C) O que acontecerá com a porcentagem do item b se a máquina for regulada de forma que a média seja cm³ e o desvio padrão 20 cm³? 34) Uma empresa produz televisores e garante a restituição da quantia paga se qualquer televisor apresentar algum defeito grave no prazo de seis meses. Ela produz televisores do tipo A (comum) e do tipo B (luxo), com lucros respectivos de $1.000,00 e $2.000,00, caso não haja restituição, e com prejuízos de $3.000,00 e $8.000,00 se houver restituição. Suponha que o tempo para a ocorrência de algum defeito grave seja, em ambos os casos, uma v.a. com distribuição normal, respectivamente com médias 9 meses e 12 meses, e com variâncias 4 meses² e 9 meses². Se tivesse de planejar uma estratégia de marketing para a empresa, você incentivaria as vendas dos aparelhos do tipo A ou do tipo B?
Probabilidade Lista 6 - Variáveis Aleatórias Contínuas e Vetores Aleatórios
Probabilidade Lista - Variáveis Aleatórias Contínuas e Vetores Aleatórios Exercício. Uma v.a. X tem distribuição triangular no intervalo [0, ] se sua densidade for dada por 0, x < 0 cx, 0 x /2 c( x), /2
6.3 Valor Médio de uma Variável Aleatória
6. 3 V A L O R M É D I O D E U M A V A R I Á V E L A L E A T Ó R I A 135 1. Considere uma urna contendo três bolas vermelhas e cinco pretas. Retire três bolas, sem reposição, e defina a v.a. X igual ao
a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B.
Universidade de Brasília Departamento de Estatística 5 a Lista de PE. Um time de basquete irá jogar uma temporada de 44 jogos. desses jogos serão disputados contra times da classe A e os 8 restantes contra
Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V
Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V Lista 6: Distribuições Contínuas. Distribuição Normal. 1. A distribuição dos pesos de coelhos
Exercícios Funções Multivariadas, Exponencial e Outras
Turma 2017 Exercícios Funções Multivariadas, Exponencial e Outras Problema 1 (bivariada) Um bim de cinco transistores possui dois que são defeituosos. Os transistores são testados um a um, até que os defeituosos
Lista de exercícios 2 Métodos Estatísticos Básicos
Lista de exercícios 2 Métodos Estatísticos Básicos Prof. Regis Augusto Ely 1 de julho de 2014 1 Variáveis aleatórias unidimensionais 1. Suponha que a variável aleatória X tenha os valores possíveis 1,
Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a
Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a probabilidade se sair bola: a. azul; b. vermelha; c. amarela. 2.
3 a Lista de PE Solução
Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes
Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto
Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}
Exercícios propostos:
INF 16 Exercícios propostos: 1. Sabendo-se que Y=X-5 e que E(X)= e V(X)=1, calcule: a)e(y); b)v(y); c)e(x+y); d)e(x + Y ); e)v(x+y); Resp.: 1; 9; 5; 15; 81. Uma urna contém 5 bolas brancas e 7 bolas pretas.
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :
Variáveis Aleatórias. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Variáveis Aleatórias Variável Aleatória Variável aleatória (VA) é uma função que associa a cada
Probabilidade Aula 11
0303200 Probabilidade Aula 11 Magno T. M. Silva Escola Politécnica da USP Junho de 2017 A maior parte dos exemplos dessa aula foram extraídos de Jay L. Devore, Probabilidade e Estatística para engenharia
UNIVERSIDADE FEDERAL DA PARAÍBA. Cálculo das Probabilidades e Estatística I. Terceira Lista de Exercícios
UNIVERSIDADE FEDERAL DA PARAÍBA Cálculo das Probabilidades e Estatística I Professora: Juliana Freitas Pires Terceira Lista de Exercícios Parte I: Variáveis aleatórias, Esperança e Variância Questão 1.
Problemas 1. Determine o valor esperado das seguintes variáveis aleatórias: a. A varável aleatória definida no Probl. 4.1.
Livro: Probabilidade - Aplicações à Estatística Paul L. Meyer Capitulo 7 Caracterização Adicional de Variáveis Aleatórias. Problemas 1. Determine o valor esperado das seguintes variáveis aleatórias: a.
3 a Lista de PE. Universidade de Brasília Departamento de Estatística
Universidade de Brasília Departamento de Estatística 3 a Lista de PE 1. Duas bolas são escolhidas aleatoriamente de uma urna contendo 8 bolas brancas, 4 pretas, e duas bolas laranjas. Suponha que um jogador
ESTATÍSTICA. Prof. Ari Antonio, Me. Ciências Econômicas. Unemat Sinop 2012
ESTTÍSTIC rof. ri ntonio, Me Ciências Econômicas Unemat Sinop 2012 1. robabilidades Diz respeito a experiências aleatórias: - Lançamento de uma moeda - Lançamento de um par de dados - Retirada de uma carta
{ C(1 x 2 ), se x ( 1, 1), f(x) = Cxe x/2, se x > 0, x + k, se 0 x 3; 0, c.c. k, se 1 < x 2; kx + 3k, se 2 < x 3;
Universidade de Brasília Departamento de Estatística 4 a Lista de PE 1. Seja X uma variável aleatória com densidade { C(1 x 2 ), se x ( 1, 1), 0, se x / ( 1, 1). a) Qual o valor de C? b) Qual a função
Variáveis aleatórias. Universidade Estadual de Santa Cruz. Ivan Bezerra Allaman
Variáveis aleatórias Universidade Estadual de Santa Cruz Ivan Bezerra Allaman DEFINIÇÃO É uma função que associa cada evento do espaço amostral a um número real. 3/37 Aplicação 1. Seja E um experimento
CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo
1 Definição Clássica de Probabilidade
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica
UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II
UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II Segunda lista de Exercícios - Variáveis Aleatórias Professora Fernanda 1. Uma máquina caça níquel de cassino possui três roletas. Na primeira e segunda
ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO
Área Científica Matemática Probabilidades e Estatística Curso Engenharia do Ambiente º Semestre º Ficha n.º: Probabilidades e Variáveis Aleatórias. Lançam-se ao acaso moedas. a) Escreva o espaço de resultados
1 Variáveis Aleatórias
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis
Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008
Variável Aleatória Gilson Barbosa Dourado [email protected] 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória
Probabilidade e Estatística Probabilidade Condicional
Introdução Probabilidade e Estatística Probabilidade Condicional Em algumas situações, a probabilidade de ocorrência de um certo evento pode ser afetada se tivermos alguma informação sobre a ocorrência
DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA
ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências DISTRIBUIÇÃO CONJUNTA Em muitos
1 a Lista de Exercícios Estatística p/ Administração II Profª Ana Cláudia
1 a Lista de Exercícios Estatística p/ Administração II Profª Ana Cláudia Questões teóricas: a) Explique porque a probabilidade é um nº entre 0 e 1 b) Qual a diferença entre uma v.a. continua e uma v.a.
Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 1 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Historicamente sabe-se que 10% dos artigos de uma firma são de segunda qualidade. Um inspetor de controle
Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 1 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Historicamente sabe-se que 10% dos artigos de uma firma são de segunda qualidade. Um inspetor de controle
Experimento Aleatório
Probabilidades 1 Experimento Aleatório Experimento aleatório (E) é o processo pelo qual uma observação é ob;da. Exemplos: ü E 1 : Jogar uma moeda 3 vezes e observar o número de caras ob;das; ü E 2 : Lançar
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 3-ESTATÍSTICA II (CE003) Prof. Benito Olivares Aguilera
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 3-ESTATÍSTICA II (CE003) Prof. Benito Olivares Aguilera 2 o Sem./17 MODELOS DISCRETOS. 1. Seja X o número de caras obtidas
2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2
GET00189 Probabilidade I Lista de exercícios - Capítulo 1 Profa. Ana Maria Lima de Farias SEÇÃO 1.1 Experimento aleatório, espaço amostral e evento 1. Lançam-se três moedas. Enumere o espaço amostral e
Probabilidade e Estatística
Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis
Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL.
Introdução à Inferência Estatística Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 5 de setembro de 004 Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. 1 Medidas Resumo DISTRIBUIÇÕES
Lista de Exercícios 3 Probabilidades Escola Politécnica, Ciclo Básico
RESOLUÇÃO NA PÁGINA 06 Lista de Exercícios 3 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Um equipamento tem tempo de vida T com distribuição normal, valor esperado de 40
MAE0219 Introdução à Probabilidade e Estatística I
Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico
Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.
Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de
DISTRIBUIÇÃO NORMAL DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS ROTEIRO DISTRIBUIÇÃO NORMAL
ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências DISTRIBUIÇÃO NORMAL Definição:
Variável Aleatória Contínua. Tiago Viana Flor de Santana
ESTATÍSTICA BÁSICA Variável Aleatória Contínua Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ [email protected] sala 07 Curso: MATEMÁTICA Universidade Estadual de Londrina UEL Departamento
Escola de Engenharia de Lorena - USP ESTATÍSTICA
Prof. Dr. Fernando Catalani Escola de Engenharia de Lorena - USP ESTATÍSTICA Lista de Exercícios 1 Probabilidades, distribuições probabilísticas, Valor Esperado e distribuição binomial 1. Probabilidade
DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia
ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências Estatística Aplicada à Engenharia
Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ
Duração: 90 minutos Grupo I Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ Justifique convenientemente todas as respostas 1 o semestre 2017/2018 18/11/2017
3. Probabilidade P(A) =
7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de
Probabilidade e Estatística
Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Inferência Estatística stica e Distribuições Amostrais Inferência Estatística stica O objetivo
3. Considere uma amostra aleatória de tamanho 7 de uma normal com média 18. Sejam X e S 2, a média e a variância amostral, respectivamente.
1 Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas Professores: Clarice Demétrio, Roseli Leandro e Mauricio Mota Lista 3- Distribuições Amostrais-
PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano
PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano [email protected] Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete
UNIVERSIDADE FEDERAL DA PARAÍBA. Cálculo das Probabilidades e Estatística I. Segunda Lista de Exercícios
UNIVERSIDADE FEDERAL DA PARAÍBA Cálculo das Probabilidades e Estatística I Professora: Juliana Freitas Pires Segunda Lista de Exercícios Questão 1. Descreva o espaço amostral para cada um dos seguintes
2º LISTA DE EXERCÍCIO
DISCIPLINA: CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I Prof. Luiz Medeiros PERÍODO: 2013.2 2º LISTA DE EXERCÍCIO 1) Em uma empresa de cerâmica sabe-se que existe em média 0,1 defeito por m 2. Um comprador
Prof. Luiz Alexandre Peternelli
Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Disciplina Estatística Aplicada Curso Engenharia Mec Gest Industrial º Semestre º Folha Nº3: Variáveis Aleatórias De um lote que contém 0 parafusos, dos quais 5 são defeituosos,
MAE0219 Introdução à Probabilidade e Estatística I
Exercício 1 1 o semestre de 201 O tempo de vida útil de uma lavadora de roupas automática tem distribuição aproximadamente Normal, com média de 3,1 anos e desvio padrão de 1,2 anos. a Qual deve ser o valor
1073/B - Introdução à Estatística Econômica
Lista de exercicios 2 Prof. Marcus Guimaraes 1073/B - Introdução à Estatística Econômica Ciências Econômicas 1) Suponha um espaço amostral S constituido de 4 elementos: S={a 1,a2,a3,a4}. Qual das funções
Universidade Federal de Goiás Instituto de Matemática e Estatística
Universidade Federal de Goiás Instituto de Matemática e Estatística Prova de Probabilidade Prof.: Fabiano F. T. dos Santos Goiânia, 31 de outubro de 014 Aluno: Nota: Descreva seu raciocínio e desenvolva
Teoria das Probabilidades
08/06/07 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos
Intervalos de Confiança
Universidade Federal do Paraná - Departamento de Estatística Projeto de Extensão Estatística com Recursos Computacionais Lista de Exercícios: Capitulos 4 Intervalos de Confiança Observação: Interpretar
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Condicionais 11/13 1 / 19 Em estudo feito em sala perguntamos aos alunos qual
Probabilidade Condicional. Prof.: Ademilson
Probabilidade Condicional Prof.: Ademilson Operações com eventos Apresentam-se abaixo algumas propriedades decorrentes de complementação, união e interseção de eventos, úteis no estudo de probabilidade.
Lucas Santana da Cunha de junho de 2017
VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados
PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA
PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço
Introdução à Estatística
Introdução à Estatística Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução a Probabilidade Existem dois tipos de experimentos:
EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais
EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados
2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2
GET00116 Fundamentos de Estatística Aplicada Lista de exercícios Probabilidade Profa. Ana Maria Lima de Farias Capítulo 1 Probabilidade: Conceitos Básicos 1. Lançam-se três moedas. Enumere o espaço amostral
Solução dos Exercícios - Capítulos 1 a 3
Capítulo 9 Solução dos Exercícios - Capítulos a 3 9. Capítulo. a Como o valor se refere aos pacientes estudados, e não a todos os pacientes, esse é o valor de uma estatística amostral. b Estatística amostral
F (x) = P (X x) = Σ xi xp(x i ) E(X) = x i p(x i ).
Variável Aleatória Uma variável aleatória é uma variável numérica, cujo valor medido pode variar de uma réplica para outra do experimento. Exemplos: (i) Variáveis aleatórias contínuas: corrente elétrica,
PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades
PRO71 ESTATÍSTICA 3.1 PRO 71 ESTATÍSTICA I 3. Distribuições de Probabilidades Variáveis Aleatórias Variáveis Aleatórias são valores numéricos que são atribuídos aos resultados de um eperimento aleatório.
Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno
Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:
Aula 6 - Variáveis aleatórias contínuas
Aula 6 - Variáveis aleatórias contínuas PhD. Wagner Hugo Bonat Laboratório de Estatística e Geoinformação-LEG Universidade Federal do Paraná 1/2017 Bonat, W. H. (LEG/UFPR) 1/2017 1 / 18 Variáveis aleatórias
PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti
Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de incerteza que existe em um determinado experimento.
Lista 4 de exercícios
Lista 4 de exercícios 1. (MORETTIN, 2010) Na leitura de uma escala, os erros variam de -1/4 a ¼, com distribuição uniforme de probabilidade. Calcular a média e a variância da distribuição dos erros. 2.
Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina
Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 21 de maio de 2018 Londrina 1 / 14 Variável aleatória Introdução Definição Uma função que associa um número real
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Variáveis Aleatórias Ao descrever um espaço
Modelos de Distribuição PARA COMPUTAÇÃO
Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Probabilidades e Estatística Curso Engenharia do Ambiente 2º Semestre 1º Ficha n.º1: Probabilidades e Variáveis Aleatórias 1. Lançam- ao acaso 2 moedas. a) Escreva o espaço de resultados
LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES
LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES 1- Ordene os dados indicando o 1º, 2º e 3º quartil 45, 56, 62, 67, 48, 51, 64, 71, 66, 52, 44, 58, 55, 61, 48, 50, 62, 51, 61, 55 2- Faça a análise da
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável
PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 2006
Instruções para a prova: PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 006 a) Cada questão respondida corretamente vale um ponto. b) Questões deixadas em branco valem zero pontos (neste caso marque todas
DISTRIBUIÇÃO BINOMIAL
Universidade Federal de Viçosa - CCE / DPI Inf 161 - Iniciação à Estatística / INF 16 Estatística I Lista de Exercícios: Cap. 4 - Distribuições de Variáveis Aleatórias DISTRIBUIÇÃO BINOMIAL 1. Determine
Departamento de Estatística UFSCar Probabilidade e Estatística Lista de Exercícios 2 Prof. José Carlos Fogo (11/09/2014)
Departamento de Estatística UFSCar Probabilidade e Estatística Lista de Exercícios 2 Prof. José Carlos Fogo (11/09/2014) 1) Seja X v.a. representando o número de usuários de um microcomputador no período
MAE0219 Introdução à Probabilidade e Estatística I
Exercício 1 O tempo de vida útil de uma lavadora de roupas automática tem distribuição aproximadamente Normal, com média de 3,1 anos e desvio padrão de 1,2 anos. a Qual deve ser o valor do tempo de garantia
Introdução à Probabilidade e à Estatística II
Introdução à Probabilidade e à Estatística II Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) Lígia Henriques-Rodrigues MAE0229 1º semestre 2018 1 / 36
Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec
Duração: 9 minutos Grupo I Probabilidades e Estatística LEGM, LEIC-A, LEIC-T, MA, MEMec Justifique convenientemente todas as respostas o semestre 7/8 5/5/8 9: o Teste A valores. Uma loja comercializa telemóveis
AULA 8. DISTRIBUIÇÕES DE VARIÁVEIS CONTÍNUAS Uniforme, Exponencial e Normal 19/05/2017
AULA 8 DISTRIBUIÇÕES DE VARIÁVEIS CONTÍNUAS Uniforme, Exponencial e Normal 19/05/2017 As funções de distribuição (acumulada) e de densidade para v.a. contínuas = =. Se a densidade f(x)for continua no seu
Estatística Descritiva e Exploratória
Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução
Probabilidade em espaços discretos. Prof.: Joni Fusinato
Probabilidade em espaços discretos Prof.: Joni Fusinato [email protected] [email protected] Probabilidade em espaços discretos Definições de Probabilidade Experimento Espaço Amostral Evento Probabilidade
Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas
1. ANPEC 2018 Questão 3 Considere um indivíduo procurando emprego. Para cada entrevista de emprego (X) esse indivíduo tem um custo linear (C) de 10,00 Reais. Suponha que a probabilidade de sucesso em uma
Lista de Exercícios #5 Assunto: Variáveis Aleatórias Multidimensionais Contínuas
1. ANPEC 018 Questão 9 Uma pessoa investe R$ 10.000,00 (I) em duas aplicações cujas taxas de retorno são variáveis aleatórias independentes, R 1 e R, com médias 5% e 14% e desvios-padrão 1% e 8%, respectivamente.
Uma estatística é uma característica da amostra. Ou seja, se
Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição de Bernoulli e Binomial 07/14 1 / 32 Distribuições Discretas Apresentaremos agora
Aproximação da binomial pela normal
Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição
Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto
Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades
Universidade Federal da Paraíba Departamento de Estatística Lista 1 - Outubro de 2013
1. Seja X a duração de vida de uma válvula eletrônica e admita que X possa ser representada por uma variável aleatória contínua, com f.d.p. be bx, x 0. Seja p j = P (j X < j + 1). Verifique que p j é da
Distribuições Amostrais e Estimação Pontual de Parâmetros
Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 2012/02 1 Introdução 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição
