DISTRIBUIÇÃO BINOMIAL
|
|
|
- Lucas Marques Affonso
- 9 Há anos
- Visualizações:
Transcrição
1 Universidade Federal de Viçosa - CCE / DPI Inf Iniciação à Estatística / INF 16 Estatística I Lista de Exercícios: Cap. 4 - Distribuições de Variáveis Aleatórias DISTRIBUIÇÃO BINOMIAL 1. Determine a probabilidade de que, em 5 lançamentos de um dado, apareça a face 3: a) Duas vezes b) No máximo uma vez c) Ao menos duas vezes. Quantas vezes se deverá jogar um dado para que se tenha a probabilidade igual a 0,5, de ocorrer a face 3, pelo menos uma vez? 3. Considere a amostragem de 3 peças que saem de uma linha de produção. Sabe-se que são produzidas 0% de peças defeituosas, calcule as seguintes probabilidades: a) peças defeituosas b) peças não defeituosas c) Quantas peças defeituosas espera-se amostrar, considerando 500 peças? 4. Sabe-se que 4% dos indivíduos que recebem o medicamento X sofrem certos efeitos colaterais. Se o medicamento X for ministrado a quatro pacientes, qual a probabilidade de que: a) Nenhum sofra efeitos colaterais b) Pelo menos um sofra efeitos colaterais c) Três não sofram efeitos colaterais 5. Se amostrarmos 500 casais ( marido e esposa ) com quatro filhos cada um, quantos casais nós esperamos que tenham: a) Pelo menos um filho homem b) Exatamente filhos homens 6. Uma firma determina o sexo de pintos de um dia com 95% de probabilidade. a) Se comprarmos 5 pintinhos tidos como do sexo feminino, qual é a probabilidade de que pelo menos um seja macho? b) Quantos machos espera-se encontrar num lote de 500 pintinhos tidos como do sexo feminino? 7. Numa prova com 10 questões de múltipla escolha, cada uma com 5 alternativas e somente uma correta, pede-se: a) Quantas questões acerta em média um aluno que marca todas as questões inteiramente ao acaso? b) Qual a probabilidade dele acertar 5 questões?
2 8. Num teste do tipo certo-errado, com 100 questões, qual a probabilidade de um aluno, respondendo as questões ao acaso, acertar 70% das questões? 9. Se X~B(16, 0.75) determine: a) A média de X b) A variância de X Z= X 1 3, calcule E(Z) e V(Z) c) Se ( ) 10. Um determinado artigo é vendido em caixas a 8 u.m. por caixa. Sabe-se que 0% dos artigos vendidos apresentam algum defeito de fabricação. Um comprador faz a seguinte proposta: Pede para poder amostrar, ao acaso, 10 artigos por caixa. Ele pagará, por caixa, 10 u.m. se nenhum dos artigos amostrados for defeituoso; 5 u.m. se um ou dois artigos amostrados forem defeituosos e 4 u.m. se três ou mais artigos da amostra forem defeituosos. O que é mais lucrativo para o vendedor, manter o seu preço de 8 u.m. por caixa ou aceitar a proposta do comprador? Mostre porquê. ( Sugestão: Considere a variável aleatória X = número de artigos defeituosos, Binomialmente distribuída, e utilize também a variável Y = valor pago por caixa ) DISTRIBUIÇÃO DE POISSON 11. Um processo de fabricação de fitas magnéticas produz, em média, fitas com um defeito a cada 00m de rolo. Qual a probabilidade de que: a) Em 500m de fita não ocorra nenhum defeito? b) Em 800m de fita ocorram pelo menos 3 defeitos? 1. A experiência mostra que de cada 400 lâmpadas, se queimam ao serem ligadas. Qual a probabilidade de que numa instalação de: a) 600 lâmpadas, no mínimo 3 se queimem? b) 900 lâmpadas, exatamente 8 se queimem? 13. Na pintura de paredes aparecem defeitos na proporção média de um defeito por metro quadrado. Qual a probabilidade de aparecerem 3 defeitos numa parede de x m? 14.Numa central telefônica são atendidas 300 chamadas por hora. Qual a probabilidade de: a) Serem atendidas duas chamadas num período de minutos? b) Em T minutos, não ocorrerem chamadas telefônicas? 15.Estima-se em 1% a proporção de canhotos numa população. Qual a probabilidade de termos pelo menos um canhoto numa classe de 30 alunos? 16. Na revisão tipográfica de um livro acharam-se, em média, 1,5 erros por página. Das 800 páginas do livro, estime quantas não apresentam erros?
3 17. O departamento de trânsito registrou num certo ano, numa determinada via pública, 30 acidentes fatais, com um movimento médio diário de 00 veículos. Qual é a probabilidade de que num determinado mês, do próximo ano, ocorram 3 acidentes fatais? 18. Seja X o número de crianças não imunizadas numa campanha de vacinação contra uma determinada doença, onde a probabilidade de não imunização é 0,001. De 5000 crianças vacinadas, qual a probabilidade de não ficarem imunes: a) Uma criança? b) Pelo menos uma criança? 19. Na fabricação de peças de determinado tecido aparecem defeitos ao acaso, um a cada 50 m. a) Qual a probabilidade de que não haja defeitos na produção de 1000m de tecido? b) Se a produção diária é de 65m, num período de 80 dias de trabalho, em quantos desses dias poderemos esperar uma produção diária na qual não haja defeitos? DISTRIBUIÇÃO NORMAL 0. As notas de uma prova são normalmente distribuídas com média 73 e variância 5. Os 15% melhores alunos recebem o conceito A e os 11,9% piores alunos recebem conceito R. Pede-se: a) Nota mínima para receber A? b) Nota mínima para ser aprovado? PX 55, 3 c) ( ) 1. Se X ~ N( 3, 4 ) encontre um valor x tal que: PX ( x) = PX ( x). A observação dos pesos X, de um grande número de espigas de milho, mostrou que essa variável é normalmente distribuída com média µ = 10g e desvio padrão σ =10g. Num programa de melhoramento genético da cultura do milho, entre outras características, uma linhagem deve satisfazer à condição 11 < X < 140. Num programa envolvendo 450 linhagens, qual deve ser o número provável de linhagens que atende à essa condição? 3. Sabe-se que o peso médio, em arrobas, de abate de bovinos é normalmente distribuído com média 18 e variância,5. Um lote de 5000 cabeças, com essa característica, foi destinado ao frigorífico que abate só a partir de um peso mínimo W. Sabendo-se que foram abatidas 400 cabeças, pede-se: a) O número esperado de bovinos com peso entre 17 e 19 arrobas? b) Qual o valor de W?
4 4. O volume de correspondência recebido por uma firma quinzenalmente é normalmente distribuído com média de 4000 cartas e desvio padrão de 00 cartas. Qual a porcentagem de quinzenas em que a firma recebe menos de 3400 cartas? 5. O peso médio de um cigarro é a soma dos pesos do papel e do fumo, e vale em média 1,00g com σ =0,060g. O peso médio do papel é 0,040g com σ =0,00g. Os cigarros são feitos em uma máquina automática que pesa o fumo a ser colocado no cigarro, coloca o papel e enrola o cigarro. a) Determinar o peso médio do fumo em cada cigarro e o desvio padrão. b) Qual a probabilidade de que um cigarro tenha menos de 1,130g de fumo? OBS: Cigarro e papel são independentes 6. Numa indústria a montagem de um certo item é feita em duas etapas. Os tempos necessários para cada etapa são independentes e têm as seguintes distribuições: a X : N 75seg ; 16seg, X tempo da 1 etapa 1 ( ) ( ) a X : N 15seg ; 100seg, X tempo da etapa 1 Qual a probabilidade de que sejam necessários, para montar a peça: a) mais de 10 seg? b) menos de 180 seg? 7. Suponha que X, a carga de ruptura de um cabo (kg), tenha distribuição N(100, 16). Cada rolo de 100m de cabo dá um lucro de 5 u.m., desde que X > 95. Se X 95, o cabo poderá ser utilizado para uma finalidade diferente, a um lucro de 10 u.m. por rolo. Determine o lucro esperado por rolo? 8. Um avião de turismo de 4 lugares pode levar uma carga útil de 350 kg. Supondo que os passageiros têm peso normalmente distribuído com média de 70 kg e desvio padrão de 0 kg e que a bagagem de cada passageiro também é normalmente distribuída com média 1 kg e desvio padrão de 5 kg. Calcule a probabilidade de: a) Haver sobrecarga se o piloto não pesar os passageiros e respectivas bagagens? b) Que o piloto tenha que retirar pelo menos 50 kg de gasolina para evitar sobrecarga? RESPOSTAS (Com as devidas aproximações em alguns casos) 1. a) 65/3888 b) 315/3888 c) 763/ vezes 3. a) 0,096 b) 0,384 c) a) 0,3336 b) 0,6664 c) 0, a) 469 b) a) 0,63 b) 5 7. a) b) 0,064
5 , 3, a) 1 b) 3 c) 0 e E(Y) = 5,1 u.m., portanto é melhor manter 8. ( ) 11. a) 0,081 b) 0, a) 0,5768 b) 0, a) 0, a) 0,007 b) e 5T 15. 0, páginas 17. 0, a) 0,0337 b) 0, a) 0,0183 b) 6,57 dias 0.a) 88,6 b) 55,3 c) 0, , a) 486 b) 16,5 4. 0,13% 5. a) 1,160 g e 0,063 g b) 0, a) 0,176 b) 0, ,4 u.m. 8 a) 0,981 b) 0,0401
Modelos básicos de distribuição de probabilidade
Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não
A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ).
Capítulo 5 Distribuição Normal Muitas variáveis aleatórias contínuas, tais como altura, comprimento, peso, entre outras, podem ser descritas pelo modelo Normal de probabilidades. Este modelo é, sem dúvida,
Exercícios propostos:
INF 16 Exercícios propostos: 1. Sabendo-se que Y=X-5 e que E(X)= e V(X)=1, calcule: a)e(y); b)v(y); c)e(x+y); d)e(x + Y ); e)v(x+y); Resp.: 1; 9; 5; 15; 81. Uma urna contém 5 bolas brancas e 7 bolas pretas.
Lista 4 de exercícios
Lista 4 de exercícios 1. (MORETTIN, 2010) Na leitura de uma escala, os erros variam de -1/4 a ¼, com distribuição uniforme de probabilidade. Calcular a média e a variância da distribuição dos erros. 2.
UNIVERSIDADE FEDERAL DA PARAÍBA. Cálculo das Probabilidades e Estatística I. Terceira Lista de Exercícios
UNIVERSIDADE FEDERAL DA PARAÍBA Cálculo das Probabilidades e Estatística I Professora: Juliana Freitas Pires Terceira Lista de Exercícios Parte I: Variáveis aleatórias, Esperança e Variância Questão 1.
Departamento de Estatística UFSCar Probabilidade e Estatística Lista de Exercícios 2 Prof. José Carlos Fogo (11/09/2014)
Departamento de Estatística UFSCar Probabilidade e Estatística Lista de Exercícios 2 Prof. José Carlos Fogo (11/09/2014) 1) Seja X v.a. representando o número de usuários de um microcomputador no período
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 3-ESTATÍSTICA II (CE003) Prof. Benito Olivares Aguilera
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 3-ESTATÍSTICA II (CE003) Prof. Benito Olivares Aguilera 2 o Sem./17 MODELOS DISCRETOS. 1. Seja X o número de caras obtidas
UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II
UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II Segunda lista de Exercícios - Variáveis Aleatórias Professora Fernanda 1. Uma máquina caça níquel de cassino possui três roletas. Na primeira e segunda
a) 9,1% b) 98,9% c) 3,3%
1 de 5 - Probabilidade Básica - 1. (1.0 Ponto) No lançamento de um dado duas vezes consecutivas, responda: a) qual a probabilidade da soma dos resultados dos dois dados ser par e primo? b) qual a probabilidade
Distribuição de Probabilidade. Prof. Ademilson
Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Poisson 08/14 1 / 19
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Poisson 08/14 1 / 19 Modelo Poisson Na prática muitos experimentos consistem em observar a
UAlg esght DISTRIBUIÇÕES
UAlg esght DISTRIBUIÇÕES TEÓRICAS EXERCÍCIOS ( [email protected] ) Dezembro 2014 Distribuições Teóricas - Exercícios 1 1 - A impressora do centro de cálculo trabalha 90% do tempo. Se realizarmos dez inspecções
2º LISTA DE EXERCÍCIO
DISCIPLINA: CÁLCULO DAS PROBABILIDADES E ESTATÍSTICA I Prof. Luiz Medeiros PERÍODO: 2013.2 2º LISTA DE EXERCÍCIO 1) Em uma empresa de cerâmica sabe-se que existe em média 0,1 defeito por m 2. Um comprador
3.3. Diga qual é o número médio e a variância dos animais que sobrevivem?
1. Um treinador de andebol tem à sua disposição 20 jogadores dos quais deve selecionar 10 para formar uma equipa para um jogo. 12 dos jogadores são atacantes e os restantes saõ defesas. 1.1. Se o selecionador
Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo
Distribuições discretas de probabilidades. Cap. 8 Binomial, Hipergeométrica, Poisson
Distribuições discretas de probabilidades Cap. 8 Binomial, Hipergeométrica, Poisson Definições Variável aleatória: função que associa a cada elemento do espaço amostral um número real. Exemplo: diâmetro
MAE0219 Introdução à Probabilidade e Estatística I
Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico
3 a Lista de PE. Universidade de Brasília Departamento de Estatística
Universidade de Brasília Departamento de Estatística 3 a Lista de PE 1. Duas bolas são escolhidas aleatoriamente de uma urna contendo 8 bolas brancas, 4 pretas, e duas bolas laranjas. Suponha que um jogador
FATEC GT/FATEC SJC. Prof. MSc. Herivelto Tiago Marcondes dos Santos [LISTA 2]
FATEC GT/FATEC SJC Prof. MSc. Herivelto Tiago Marcondes dos Santos [LISTA 2] 1. O tempo necessário para um medicamento contra dor fazer efeito foi modelado de acordo com a densidade Uniforme no intervalo
Conceitos Iniciais de Estatística Módulo 6 : PROBABILIDADE VARIÁVEL ALEATÓRIA CONTÍNUA Prof. Rogério Rodrigues
Conceitos Iniciais de Estatística Módulo 6 : PROBABILIDADE VARIÁVEL ALEATÓRIA CONTÍNUA Prof. Rogério Rodrigues 0 1 CONCEITOS INICIAIS DE ESTATÍSTICA: PROBABILIDADE / VARIÁVEL ALEATÓRIA CONTÍNUA CURSO :
PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades
PRO71 ESTATÍSTICA 3.1 PRO 71 ESTATÍSTICA I 3. Distribuições de Probabilidades Variáveis Aleatórias Variáveis Aleatórias são valores numéricos que são atribuídos aos resultados de um eperimento aleatório.
Stela Adami Vayego DEST/UFPR
Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis
Escola de Engenharia de Lorena - USP ESTATÍSTICA
Prof. Dr. Fernando Catalani Escola de Engenharia de Lorena - USP ESTATÍSTICA Lista de Exercícios 1 Probabilidades, distribuições probabilísticas, Valor Esperado e distribuição binomial 1. Probabilidade
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de
6ª Lista de Probabilidade I Professor: Spencer
6ª Lista de Probabilidade I Professor: Spencer 1) Em um determinado processo de fabricação, 10% das peças são consideradas defeituosas. As peças são acondicionadas em caixas com 5 unidades cada uma, Pergunta-se:
Estatística Aplicada
Estatística Aplicada Intervalos de Confiança Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada INTERVALOS DE CONFIANÇA Processos de estimação Estimação por ponto: o processo em
Probabilidades e Estatística TODOS OS CURSOS
Duração: 90 minutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique convenientemente todas as respostas 2 o semestre 206/207 05/07/207 :30 o Teste C 0 valores. Uma peça de certo tipo é
1 a Lista de Exercícios Estatística p/ Administração II Profª Ana Cláudia
1 a Lista de Exercícios Estatística p/ Administração II Profª Ana Cláudia Questões teóricas: a) Explique porque a probabilidade é um nº entre 0 e 1 b) Qual a diferença entre uma v.a. continua e uma v.a.
Variáveis Aleatórias Contínuas e Distribuição de Probabilidad
Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas
Universidade Federal do Ceará
Universidade Federal do Ceará Faculdade de Economia Vicente Lima Crisóstomo Fortaleza, 2011 1 Sumário Introdução Estatística Descritiva Probabilidade Distribuições de Probabilidades Amostragem e Distribuições
Modelos Probabilisticos Discretos
Modelos Probabilisticos Discretos Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 30 A distribuição Uniforme Discreta Suponha um experimento
Lista de exercícios propostos de Distribuições Discretas Estatística I OBS: Os exercícios estão dispostos em ordem de dificuldade.
Lista de exercícios propostos de Distribuições Discretas Estatística I OBS: Os exercícios estão dispostos em ordem de dificuldade. 1. Sendo X uma variável seguindo uma distribuição Uniforme Discreta, com
Distribuições amostrais
Distribuições amostrais Tatiene Correia de Souza / UFPB [email protected] October 14, 2014 Souza () Distribuições amostrais October 14, 2014 1 / 23 Distribuição Amostral Objetivo Estender a noção de uma
CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES
CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES. INTRODUÇÃO - Conceito de população desconhecida π e proporção da amostra observada P. π P + pequeno erro Perguntas: - Qual é o pequeno erro?
Probabilidade e Estatística
Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis
1073/B - Introdução à Estatística Econômica
Lista de exercicios 2 Prof. Marcus Guimaraes 1073/B - Introdução à Estatística Econômica Ciências Econômicas 1) Suponha um espaço amostral S constituido de 4 elementos: S={a 1,a2,a3,a4}. Qual das funções
UNIVERSIDADE DOS AÇORES Curso Serviço Social Estatística I 1º Ano 1º Semestre 2005/2006
UNIVERSIDADE DOS AÇORES Curso Serviço Social Estatística I 1º Ano 1º Semestre 2005/2006 Ficha de trabalho nº 1 Estatística Descritiva 1. Num conjunto de jovens estudantes pretende-se estudar; 1.1 A profissão
Probabilidade. 1 Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson. Renata Souza
Probabilidade Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson Renata Souza Distribuição de Bernoulli Uma lâmpada é escolhida ao acaso Ensaio de Bernoulli A lâmpada
LISTA 2 INTRODUÇÃO À PROBABILIDADE (Profa. Cira.) OBS.: Apenas os exercícios indicados como adicional não constam no livro adotado.
LISTA 2 INTRODUÇÃO À PROBABILIDADE (Profa. Cira.) OBS.: Apenas os exercícios indicados como adicional não constam no livro adotado. ------------------------------------- (Cap. 2 e 5 Livro)---------------------------------------------
Confiabilidade de sistemas. Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas.
Confiabilidade de sistemas Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas. Uma definição pratica de confiabilidade corresponde à probabilidade de um
Ribeirão Preto, 2º semestre de 2012 PROBABILIDADE E ESTATÍSTICA APLICADA II
FACULDADE DE ECONOMIA, ADMINISTRAÇÃO UNIVERSIDADE DE SÃO PAULO E CONTABILIDADE DE RIBEIRÃO PRETO DEPARTAMENTO DE ECONOMIA Ribeirão Preto, 2º semestre de 2012 PROBABILIDADE E ESTATÍSTICA APLICADA II LISTA
PARTE 2. Profª. Drª. Alessandra de Ávila Montini
PARTE 2 Profª. Drª. Alessandra de Ávila Montini Conteúdo Introdução a Probabilidade Conceito de Experimento Conceito de Espaço Amostral Conceito de Variável Aleatória Principais Distribuições de Probabilidade
Modelos Probabiĺısticos Discretos
Discretos Prof. Gilberto Rodrigues Liska UNIPAMPA 19 de Setembro de 2017 Material de Apoio e-mail: [email protected] Gilberto R. Liska ( UNIPAMPA ) Notas de Aula 19 de Setembro de 2017 1 /
Instituto Politécnico de Leiria Escola Superior de Tecnologia e Gestão Componente Prática de Estatística Aplicada Contabilidade e Finanças
Instituto Politécnico de Leiria Escola Superior de Tecnologia e Gestão Componente Prática de Estatística Aplicada Contabilidade e Finanças FOLHA 2 - Distribuições 1. Considere a experiência aleatória que
2 Distribuições Teóricas Discretas
2 Distribuições Teóricas Discretas Exercício 2.1 Seja X B (n, p) e Y B (n, 1 p), verifique que P (X = r) =P (Y = n r). InterpreteoresultadoemtermosdeprovasdeBernoulli. Exercício 2.2 Utilizando as tabelas
1 Distribuição de Bernoulli
Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 6 Professor: Carlos Sérgio Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas
Universidade Federal da Paraíba Departamento de Estatística Lista 1 - Outubro de 2013
1. Seja X a duração de vida de uma válvula eletrônica e admita que X possa ser representada por uma variável aleatória contínua, com f.d.p. be bx, x 0. Seja p j = P (j X < j + 1). Verifique que p j é da
UNIVERSIDADE FEDERAL DA PARAÍBA. Cálculo das Probabilidades e Estatística I. Segunda Lista de Exercícios
UNIVERSIDADE FEDERAL DA PARAÍBA Cálculo das Probabilidades e Estatística I Professora: Juliana Freitas Pires Segunda Lista de Exercícios Questão 1. Descreva o espaço amostral para cada um dos seguintes
Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto
Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades
VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL
VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL Variável Aleatória Uma função X que associa a cada elemento ω do espaço amostral Ω um valor x R é denominada uma variável aleatória. A variável aleatória pode
Lista de Exercícios #2 Assunto: Variáveis Aleatórias Discretas
1. ANPEC 2018 Questão 3 Considere um indivíduo procurando emprego. Para cada entrevista de emprego (X) esse indivíduo tem um custo linear (C) de 10,00 Reais. Suponha que a probabilidade de sucesso em uma
Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva pessoal.utfpr.edu.
Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva pessoal.utfpr.edu.br/ngsilva Distribuição Uniforme Uma variável aleatória contínua X está
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Probabilidades e Estatística Curso Engenharia do Ambiente 2º Semestre 1º Folha Nº2: Distribuição Binomial, Poisson, Normal e Lognormal 1. A probabilidade de encontrar um insecto
Intervalos de Confiança
Universidade Federal do Paraná - Departamento de Estatística Projeto de Extensão Estatística com Recursos Computacionais Lista de Exercícios: Capitulos 4 Intervalos de Confiança Observação: Interpretar
Universidade Federal de Goiás Instituto de Matemática e Estatística
Universidade Federal de Goiás Instituto de Matemática e Estatística Prova de Probabilidade Prof.: Fabiano F. T. dos Santos Goiânia, 31 de outubro de 014 Aluno: Nota: Descreva seu raciocínio e desenvolva
Parte 4 Variáveis aleatórias
Parte 4 Variáveis aleatórias Uma variável aleatória associa um valor numérico a cada resultado de um fenômeno ou experimento aleatório; Assim como estudado anteriormente, uma variável aleatória pode ser
Variável Aleatória Contínua:
Distribuição Contínua Normal Luiz Medeiros de Araujo Lima Filho Departamento de Estatística UFPB Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari
Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari [email protected] Distribuições Discretas Uniforme Bernoulli Binomial Poisson
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
MAE0219 Introdução à Probabilidade e Estatística I
Exercício 1 1 o semestre de 201 O tempo de vida útil de uma lavadora de roupas automática tem distribuição aproximadamente Normal, com média de 3,1 anos e desvio padrão de 1,2 anos. a Qual deve ser o valor
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
{ C(1 x 2 ), se x ( 1, 1), f(x) = Cxe x/2, se x > 0, x + k, se 0 x 3; 0, c.c. k, se 1 < x 2; kx + 3k, se 2 < x 3;
Universidade de Brasília Departamento de Estatística 4 a Lista de PE 1. Seja X uma variável aleatória com densidade { C(1 x 2 ), se x ( 1, 1), 0, se x / ( 1, 1). a) Qual o valor de C? b) Qual a função
LISTA 3 Introdução à Probabilidade (Profa. Cira.) OBS. Apenas os exercícios indicados como adicional não constam no livro.
LISTA 3 Introdução à Probabilidade (Profa. Cira.) OBS. Apenas os exercícios indicados como adicional não constam no livro. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - V. A. C O N T Í N
Probabilidade Lista 6 - Variáveis Aleatórias Contínuas e Vetores Aleatórios
Probabilidade Lista - Variáveis Aleatórias Contínuas e Vetores Aleatórios Exercício. Uma v.a. X tem distribuição triangular no intervalo [0, ] se sua densidade for dada por 0, x < 0 cx, 0 x /2 c( x), /2
DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)
1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância
Lucas Santana da Cunha de junho de 2017
VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados
Probabilidade e Estatística
Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 1 Leitura obrigatória: Devore, 3.1, 3.2 e 3.3 Chap 5-1 Objetivos Nesta parte, vamos aprender: Como representar a distribuição
1 Distribuições Discretas de Probabilidade
1 Distribuições Discretas de Probabilidade A distribuição discreta descreve quantidades aleatórias (dados de interesse) que podem assumir valores particulares e os valores são finitos. Por exemplo, uma
Ano Lectivo 2006/2007 Ficha nº5
Instituto Superior Politécnico de Viseu Departamento de Matemática da Escola Superior de Tecnologia Estatística Aplicada Engenharia Mecânica e Gestão Industrial Ano Lectivo 2006/2007 Ficha nº5 1. Usando
Escola Superior de Tecnologia de Viseu. Fundamentos de Estatística 2006/2007 Ficha nº 3
Escola Superior de Tecnologia de Viu Fundamentos de Estatística 006/007 Ficha nº 3. Os valores admissíveis de uma variável aleatória discreta X são: 0,,. Sabe- que E(X)=0.8 e que E(X )=.4. a) Defina a
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 1ª Parte: Conceitos básicos, variáveis aleatórias, modelos probabilísticos para variáveis aleatórias discretas, modelo binomial, modelo de Poisson 1 Probabilidade
MAE Introdução à Probabilidade e à Estatística II. Lista de Exercícios 5-1 sem de Profa. Lígia Henriques-Rodrigues
MAE0229 - Introdução à Probabilidade e à Estatística II Lista de Exercícios 5-1 sem de 2018 Classe Profa. Lígia Henriques-Rodrigues 1. Um fabricante de fibra têxtil está investigando um novo fio de cortina,
Lista de exercícios sobre Distribuições Binomial, Poisson e Normal UFPR /2. Monitor Adi Maciel de A. Jr Prof. Jomar.
Lista de exercícios sobre Distribuições Binomial, Poisson e Normal UFPR - 2014/2 Monitor Adi Maciel de A. Jr Prof. Jomar. ----------------//----------------//---------------- Distribuição Binomial N =
Variável Aleatória Poisson. Número de erros de impressão em uma
EST029 Cálculo de Probabilidade I Cap. 7. Principais Variáveis Aleatórias Discretas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Variável Aleatória Poisson Caraterização: Usa-se quando o experimento
MAE0219 Introdução à Probabilidade e Estatística I
Exercício 1 O tempo de vida útil de uma lavadora de roupas automática tem distribuição aproximadamente Normal, com média de 3,1 anos e desvio padrão de 1,2 anos. a Qual deve ser o valor do tempo de garantia
Solução dos Exercícios - Capítulos 1 a 3
Capítulo 9 Solução dos Exercícios - Capítulos a 3 9. Capítulo. a Como o valor se refere aos pacientes estudados, e não a todos os pacientes, esse é o valor de uma estatística amostral. b Estatística amostral
F (x) = P (X x) = Σ xi xp(x i ) E(X) = x i p(x i ).
Variável Aleatória Uma variável aleatória é uma variável numérica, cujo valor medido pode variar de uma réplica para outra do experimento. Exemplos: (i) Variáveis aleatórias contínuas: corrente elétrica,
Professora Ana Hermínia Andrade. Período
Distribuições de probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Modelos de distribuição Para
Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V
Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V Lista 6: Distribuições Contínuas. Distribuição Normal. 1. A distribuição dos pesos de coelhos
VARIÁVEIS ALEATÓRIAS 1
VARIÁVEIS ALEATÓRIAS 1 Na prática é, muitas vezes, mais interessante associarmos um número a um evento aleatório e calcularmos a probabilidade da ocorrência desse número do que a probabilidade do evento.
LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS
Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Matemática MTM 5 Estatística Turma 22 Professor: Rodrigo Luiz Pereira Lara LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS
Variáveis Aleatórias Discretas e Distribuição de Probabilidade
Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das
A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.
UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Prof. Tarciana Liberal Departamento de Estatística INTRODUÇÃO A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através
Lista de Exercícios 2 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 2 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) O número de quilômetros que um carro pode rodar sem que a bateria descarregue possui distribuição exponencial
Probabilidade e Estatística
Probabilidade e Estatística Aula 7 Distribuição da Média Amostral Leitura obrigatória: Devore: Seções 5.3, 5.4 e 5.5 Chap 8-1 Inferência Estatística Na próxima aula vamos começar a parte de inferência
x P(X = x) 0,1 0,7 0,2
GET001 Fundamentos de Estatística Aplicada Lista de Exercícios Módulo IV Parte a Profa. Ana Maria Farias 2017-1 CAPÍTULOS 1 e 2 1. Com objetivo de planejamento, um banco determinou a distribuição de probabilidade
Variáveis Aleatórias Discretas e Distribuições de 3Probabilidade
Variáveis Aleatórias Discretas e Distribuições de 3Probabilidade Variáveis Aleatórias Discretas e Distribuições de Probabilidade Objetivos do aprendizado 3 Como determinar se um experimento é Binomial.
Mais Aplicações sobre cálculo de probabilidades
Mais Aplicações sobre cálculo de probabilidades Prof. Hemílio Fernandes Campos Coêlho Departamento de Estatística - Universidade Federal da Paraíba - UFPB Noções de Epidemiologia Em algumas aplicações
Ano Lectivo 2006/2007 Ficha nº4
Instituto Superior Politécnico de Viseu Departamento de Matemática da Escola Superior de Tecnologia Estatística Aplicada Engenharia Mecânica e Gestão Industrial Ano Lectivo 2006/2007 Ficha nº4 1. De um
INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO
Área Cientifica Curso Matemática Engenharia Electrotécnica Folha Nº5 1. Usando a tabela da normal standard, calcule: a) P(Z1.45), P(Z>-2.15), P(-2.34
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição de Bernoulli e Binomial 07/14 1 / 32 Distribuições Discretas Apresentaremos agora
Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL.
Introdução à Inferência Estatística Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 5 de setembro de 004 Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. 1 Medidas Resumo DISTRIBUIÇÕES
AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017
AULAS 6 e 7 ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 Em aulas passadas vimos as funções de probabilidade de variáveis discretas e contínuas agora vamos ver
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :
