Parte 4 Variáveis aleatórias
|
|
|
- Vitorino Gesser Varejão
- 7 Há anos
- Visualizações:
Transcrição
1 Parte 4 Variáveis aleatórias
2 Uma variável aleatória associa um valor numérico a cada resultado de um fenômeno ou experimento aleatório; Assim como estudado anteriormente, uma variável aleatória pode ser classificada, de acordo com sua escala, em discreta ou contínua. o Dizemos que uma variável aleatória é discreta caso ela assuma resultados num conjunto enumerável de valores (em geral está associada a algum tipo de contagem). 2
3 Exemplo Variáveis aleatórias discretas: Número de internações de pacientes no último ano; Número de sintomas relatados por pacientes em suas primeiras consultas; Número de leitos de UTI de um hospital ocupados por dia (de um total de 10 leitos, por exemplo); Número de caras obtidas em 100 lançamentos de uma moeda. 3
4 o Dizemos que uma variável aleatória é contínua caso ela assuma resultados num conjunto não enumerável de valores (em geral está associada a algum tipo de medida). Exemplo Variáveis aleatórias contínuas: Tempo até a cura de pacientes diagnosticados com uma específica doença; Quociente de inteligência de crianças de certa localidade; Índice de massa corporal de indivíduos com determinado distúrbio alimentar. 4
5 Variáveis aleatórias são representadas por letras maiúsculas (em geral as últimas do alfabeto, como X, Y, Z. Representamos pelas correspondentes letras minúsculas valores que essa variável pode assumir. Já estudamos diferentes formas de atribuir probabilidades aos resultados de um fenômeno ou experimento aleatório e a eventos de interesse (usando frequências, assumindo que os resultados individuais são equiprováveis, usando subjetividade...); 5
6 Assim como é possível atribuir probabilidades a resultados de um experimento, podemos associar probabilidades aos valores de alguma variável aleatória de interesse. Para variáveis aleatórias discretas, associamos a cada um de seus possíveis valores uma probabilidade de ocorrência. A função que associa uma probabilidade a cada valor de uma variável aleatória discreta é chamada de função de probabilidade. 6
7 Exemplo 4.4- Uma população de crianças foi analisada num estudo para determinar a efetividade de uma vacina contra um tipo de alergia. No estudo, as crianças recebiam uma dose de vacina e, após um mês, passavam por um novo teste. Caso ainda tivessem alguma reação alérgica, recebiam outra dose da vacina. Ao final de cinco doses, todas as crianças foram consideradas imunizadas. Os resultados completos estão na tabela a seguir: Doses Frequência
8 Seja X a variável aleatória correspondente ao número de doses da vacina até que a criança seja imunizada. Com base nas frequências apresentadas, determine (e interprete o que está sendo pedido): a) ( X = 3) P ; b) Apresenta a função de probabilidades; c) ( X < 3) P ; d) P ( X > 3) e) ( X 3) P ; f) ( 1 < X 3) P. 8
9 Exemplo 4.5- Suponha que de acordo com as características genéticas de um casal, a probabilidade deles gerarem um filho com uma específica anomalia seja 0,25 (25%). Considere ainda que as condições de diferentes filhos desse casal, quanto à presença (ou ausência) da anomalia sejam independentes. Escreva a função de probabilidades para a variável aleatória X : número de filhos com anomalia caso este casal venha a ter: a) 1 filho; b) 2 filhos; c) 3 filhos; d) n filhos. Este exemplo permite introduzir um importante modelo probabilístico para variáveis aleatórias discretas, o modelo (ou distribuição de probabilidades) binomial. 9
10 O modelo probabilístico binomial Considere n observações independentes de um fenômeno (ou experimento) aleatório, cada uma delas contendo apenas dois resultados possíveis (classificados, genericamente, por sucesso ou fracasso ). Suponha, adicionalmente, que em cada uma dessas observações se tenha uma mesma probabilidade de sucesso, a qual denotaremos por p (a probabilidade de fracasso fica denotada por 1 p); 10
11 Seja X a variável de contagem correspondente ao número de sucessos observados nas n realizações do fenômeno. A função de probabilidade de X fica dada por: P n x x n x ( X = x) = p ( 1 p), x = 0,1,2,..., n, onde n x = x! n! ( n x)!, sendo n = ( n 1) n!. 11
12 n=5,p=0,10 n=5,p=0,50 n=5,p=0, x x 12 P(X=x) P(X=x) P(X=x) x n=10,p=0,10 n=10,p=0,50 n=10,p=0, x x P(X=x) P(X=x) P(X=x) x Figura 4.1 Gráficos da distribuição binomial para diferentes valores de n e p.
13 Exemplo 4.6- Algumas possíveis aplicações do modelo binomial: Número de lançamentos de um dado que resultam na face 6, considerando 20 lançamentos de um dado balanceado ( n = 20 ; p = 1/ 6); Número de filhos do sexo masculino em casais com três filhos, considerando probabilidade 0,5 de ter um filho do sexo masculino e independência entre os sexos de diferentes crianças ( n = 3 ; p = 0, 5); Número de peças defeituosas em lotes de dez peças produzidas por uma industria que produz 1% de suas peças defeituosas ( n = 10 ; p = 0, 01). 13
14 Exemplo 4.7- Discuta a validade do modelo binomial nos seguintes casos: Dos alunos de uma grande universidade, sorteamos 5 e contamos quantos se declaram usuários de droga; Escolhemos 20 lâmpadas ao acaso na prateleira de um supermercado, sendo 10 de uma fábrica e 10 de outra. Contamos o número total de defeituosas; 14
15 Quinze automóveis 0km de uma mesma marca e tipo são submetidos a um teste antipoluição e contamos o número deles que passaram no teste; Um motorista é submetido a um teste em que deve estacionar seu veículo num pequeno espaço ( fazer baliza ). Em 10 tentativas, contamos o número de tentativas em que o motorista estacionou corretamente. 15
16 Exemplo 4.8 O escore de um teste internacional de proficiência na língua inglesa varia de 0 a 700 pontos, com mais pontos indicando um melhor desempenho. Informações, coletadas durante vários anos, permitem estabelecer o seguinte modelo para o desempenho do teste: Pontos Probabilidade 0,06 0,15 0,16 0,25 0,28 0,10 Várias universidades americanas exigem um escore mínimo de 600 pontos para aceitar candidatos de países de língua não inglesa. De um grande grupo de estudantes brasileiros que prestaram o último exame, 16
17 escolhemos ao acaso 8. Qual seria a probabilidade de no máximo dois atenderem ao requisito máximo mencionado? Assim como estudado anteriormente na análise descritiva de amostras, as variáveis aleatórias também podem ser caracterizadas por alguns parâmetros numéricos, como média (à qual é comum se referir como valor esperado da variável aleatória, denotada por µ ), variância 2 (denotada por σ ) e desvio padrão (denotado por σ ). 17
18 No caso da distribuição binomial, a média e o desvio padrão da variável podem ser calculadas pelas seguintes expressões: µ = n p; σ = n p ( 1 p). Exemplo 4.9 Retorne ao exemplo anterior e calcule a média (e o desvio padrão) da variável sob estudo. 18
19 Exemplo 4.10 Suponha X uma variável aleatória que segue o modelo binomial com n = 10. Vamos considerar três valores distintos para p : p 1 = 0,1; p 2 = 0, 5 e p 3 = 0, 9. a) Para qual dos valores de p você acredita que o número esperado de sucessos seja maior? Agora, faça as contas e verifique; b) Para qual dos valores de p você acredita que a variância do número de sucessos seja maior? Agora, faça as contas e verifique. 19
Confiabilidade de sistemas. Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas.
Confiabilidade de sistemas Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas. Uma definição pratica de confiabilidade corresponde à probabilidade de um
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição de Bernoulli e Binomial 07/14 1 / 32 Distribuições Discretas Apresentaremos agora
Aula 3 - Variáveis aleatórias discretas
Aula 3 - Variáveis aleatórias discretas PhD. Wagner Hugo Bonat Laboratório de Estatística e Geoinformação-LEG Universidade Federal do Paraná 1/2017 Bonat, W. H. (LEG/UFPR) 1/2017 1 / 24 Variáveis aleatórias
VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL
VARIÁVEIS ALEATÓRIAS e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado
Estatística (MAD231) Turma: IGA. Período: 2018/2
Estatística (MAD231) Turma: IGA Período: 2018/2 Aula #03 de Probabilidade: 19/10/2018 1 Variáveis Aleatórias Considere um experimento cujo espaço amostral é Ω. Ω contém todos os resultados possíveis: e
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL
VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL Variável Aleatória Uma função X que associa a cada elemento ω do espaço amostral Ω um valor x R é denominada uma variável aleatória. A variável aleatória pode
Lucas Santana da Cunha de junho de 2017
VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados
Principais distribuições discretas Distribuição de Bernoulli sucesso fracasso X = 1, se sucesso X = 0, se fracasso P(X) TOTAL 1 Exemplo 5:
Principais distribuições discretas Na prática, sempre se procura associar um fenômeno aleatório a ser estudado, a uma forma já conhecida de distribuição de probabilidade (distribuição teórica) e, a partir
Capítulo 5 Distribuições de Probabilidades. Seção 5-1 Visão Geral. Visão Geral. distribuições de probabilidades discretas
Capítulo 5 Distribuições de Probabilidades 5-1 Visão Geral 5-2 Variáveis Aleatórias 5-3 Distribuição de Probabilidade Binomial 5-4 Média, Variância e Desvio Padrão da Distribuição Binomial 5-5 A Distribuição
1 Distribuições Discretas de Probabilidade
1 Distribuições Discretas de Probabilidade A distribuição discreta descreve quantidades aleatórias (dados de interesse) que podem assumir valores particulares e os valores são finitos. Por exemplo, uma
Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB
Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja
Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina
Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 21 de maio de 2018 Londrina 1 / 14 Variável aleatória Introdução Definição Uma função que associa um número real
Estatística e Probabilidade Aula 05 Distribuições de Probabilidades. Prof. Gabriel Bádue
Estatística e Probabilidade Aula 05 Distribuições de Probabilidades Prof. Gabriel Bádue Motivação Quais os possíveis resultados que poderão ser obtidos no lançamento de um dado não-viciado? Qual a probabilidade
UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros
UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade
Estatística (MAD231) Turma: IGA. Período: 2017/2
Estatística (MAD231) Turma: IGA Período: 2017/2 Aula #03 de Probabilidade: 04/10/2017 1 Variáveis Aleatórias Considere um experimento cujo espaço amostral é Ω. Ω contém todos os resultados possíveis: e
Modelos Probabiĺısticos Discretos
Discretos Prof. Gilberto Rodrigues Liska UNIPAMPA 19 de Setembro de 2017 Material de Apoio e-mail: [email protected] Gilberto R. Liska ( UNIPAMPA ) Notas de Aula 19 de Setembro de 2017 1 /
Distribuição de Probabilidade. Prof. Ademilson
Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.
PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano
PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano [email protected] Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
VARIÁVEIS ALEATÓRIAS 1
VARIÁVEIS ALEATÓRIAS 1 Na prática é, muitas vezes, mais interessante associarmos um número a um evento aleatório e calcularmos a probabilidade da ocorrência desse número do que a probabilidade do evento.
VARIÁVEIS ALEATÓRIAS 1
VARIÁVEIS ALEATÓRIAS 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado duas vezes e observar
Métodos Estatísticos
Métodos Estatísticos 5 - Distribuição Normal Referencia: Estatística Aplicada às Ciências Sociais, Cap. 7 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Distribuição de Probabilidades A distribuição
Distribuições amostrais
Distribuições amostrais Tatiene Correia de Souza / UFPB [email protected] October 14, 2014 Souza () Distribuições amostrais October 14, 2014 1 / 23 Distribuição Amostral Objetivo Estender a noção de uma
Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB
Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja
Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal
Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:
Probabilidade e Estatística
Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Inferência Estatística stica e Distribuições Amostrais Inferência Estatística stica O objetivo
1 Variáveis Aleatórias
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis
Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008
Variável Aleatória Gilson Barbosa Dourado [email protected] 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória
Prof. Lorí Viali, Dr.
Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X 0 1 2 3 R x X(s) X(S) Uma função X que associa a cada elemento de S (s S) um número real
Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada
Variável Aleatória Uma função X que associa a cada Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ elemento de S (s S) um número real x X(s) é denominada variável aleatória. O
Estatística Aplicada
Estatística Aplicada Distribuições Discretas de Probabilidade Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE Distribuições de Probabilidade
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de
ESTATÍSTICA. x(s) W Domínio. Contradomínio
Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.
Probabilidade. Variáveis Aleatórias e Distribuição de Probabilidades
Probabilidade Variáveis Aleatórias e Distribuição de Probabilidades Na aula de hoje, vamos 1 - Estender o conceito de variável, definindo o conceito de variável aleatória; 2 Entender porque as variáveis
EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais
EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados
Fundamentos de Estatística
Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA [email protected] Petrópolis, 9 de Fevereiro
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :
Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.
Prof. Lorí Viali, Dr. [email protected] http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada
Estatística Básica. Variáveis Aleatórias Discretas. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais
Estatística Básica Variáveis Aleatórias Discretas Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Variável Aleatória Uma quantidade X, associada a cada possível
1 Introdução. 2 Variáveis Aleatórias Discretas (VAD)
Prof. Janete Pereira Amador 1 1 Introdução Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações podem ser descritas por uma variável
Probabilidade e Estatística
Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 1 Leitura obrigatória: Devore, 3.1, 3.2 e 3.3 Chap 5-1 Objetivos Nesta parte, vamos aprender: Como representar a distribuição
Distribuições discretas de probabilidades. Cap. 8 Binomial, Hipergeométrica, Poisson
Distribuições discretas de probabilidades Cap. 8 Binomial, Hipergeométrica, Poisson Definições Variável aleatória: função que associa a cada elemento do espaço amostral um número real. Exemplo: diâmetro
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição
5- Variáveis aleatórias contínuas
5- Variáveis aleatórias contínuas Para variáveis aleatórias contínuas, atribuímos probabilidades a intervalos de valores. Exemplo 5.1 Seja a variável correspondente ao tempo de vida útil de determinado
Modelos básicos de distribuição de probabilidade
Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não
3.3. Diga qual é o número médio e a variância dos animais que sobrevivem?
1. Um treinador de andebol tem à sua disposição 20 jogadores dos quais deve selecionar 10 para formar uma equipa para um jogo. 12 dos jogadores são atacantes e os restantes saõ defesas. 1.1. Se o selecionador
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Distribuição Geométrica Considere novamente uma sequência
Professora Ana Hermínia Andrade. Período
Distribuições de probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Modelos de distribuição Para
PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades
PRO71 ESTATÍSTICA 3.1 PRO 71 ESTATÍSTICA I 3. Distribuições de Probabilidades Variáveis Aleatórias Variáveis Aleatórias são valores numéricos que são atribuídos aos resultados de um eperimento aleatório.
DISTRIBUIÇÕES BERNOULLI E BINOMIAL
DISTRIBUIÇÕES BERNOULLI E BINOMIAL Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 26 de junho de 2017 Distribuição Bernoulli Nos experimentos
Instituto Politécnico de Leiria Escola Superior de Tecnologia e Gestão Componente Prática de Estatística Aplicada Contabilidade e Finanças
Instituto Politécnico de Leiria Escola Superior de Tecnologia e Gestão Componente Prática de Estatística Aplicada Contabilidade e Finanças FOLHA 2 - Distribuições 1. Considere a experiência aleatória que
Distribuições de Probabilidade
Distribuições de Probabilidade 1 Aspectos Gerais 2 Variáveis Aleatórias 3 Distribuições de Probabilidade Binomiais 4 Média e Variância da Distribuição Binomial 5 Distribuição de Poisson 1 1 Aspectos Gerais
Distribuição de Probabilidade. Prof.: Joni Fusinato
Distribuição de Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Modelos de Probabilidade Utilizados para descrever fenômenos ou situações que encontramos na natureza, ou
Revisão de Probabilidade
05 Mat074 Estatística Computacional Revisão de Probabilidade Prof. Lorí Viali, Dr. [email protected] http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito
Distribuições Bernoulli e Binomial
Distribuições Bernoulli e Binomial Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 04 de junho de 2018 Londrina 1 / 12 Distribuição Bernoulli Nos experimentos
Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias
Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para
Probabilidade. 1 Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson. Renata Souza
Probabilidade Distribuição de Bernoulli 2 Distribuição Binomial 3 Multinomial 4 Distribuição de Poisson Renata Souza Distribuição de Bernoulli Uma lâmpada é escolhida ao acaso Ensaio de Bernoulli A lâmpada
Variáveis aleatórias contínuas
Variáveis aleatórias contínuas Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 20/04/2018 WB, FM,
Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral
Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades
Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades
Aula de Estatística 13/10 à 19/10 Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades 4.1 Distribuições de probabilidades Variáveis Aleatórias Geralmente, o resultado de um experimento de probabilidades
Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09
Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas
Experimento Aleatório
Probabilidades 1 Experimento Aleatório Experimento aleatório (E) é o processo pelo qual uma observação é ob;da. Exemplos: ü E 1 : Jogar uma moeda 3 vezes e observar o número de caras ob;das; ü E 2 : Lançar
PEDRO A. BARBETTA Estatística Aplicada às Ciências Sociais 6ed. Editora da UFSC, 2006.
Como usar modelos de probabilidade para entender melhor os fenômenos aleatórios Capítulos 7 e 8. Estatística Aplicada às Ciências Sociais Sexta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC,
Introdução à probabilidade e estatística I
Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: [email protected] Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos
1 Probabilidade: Axiomas e Propriedades
1 Probabilidade: Axiomas e Propriedades 1.1 Definição Frequentista Considere um experimento aleatório que consiste no lançamento de um dado honesto. O espaço amostral desse experimento é Ω = {1, 2, 3,
Estatística Descritiva e Exploratória
Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução
Probabilidade e Estatística
Probabilidade e Estatística Aula 5 Probabilidade: Distribuições de Discretas Parte 2 Leitura obrigatória: Devore, seções 3.4, 3.5 (hipergeométrica), 3.6 Aula 5-1 Objetivos Nesta parte 01 aprendemos a representar,
AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017
AULAS 6 e 7 ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 Em aulas passadas vimos as funções de probabilidade de variáveis discretas e contínuas agora vamos ver
6.3 Valor Médio de uma Variável Aleatória
6. 3 V A L O R M É D I O D E U M A V A R I Á V E L A L E A T Ó R I A 135 1. Considere uma urna contendo três bolas vermelhas e cinco pretas. Retire três bolas, sem reposição, e defina a v.a. X igual ao
Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.
Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador
Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade
Probabilidade Variáveis Aleatórias Distribuição de Probabilidade Variáveis Aleatórias Variável Aleatória Indica o valor correspondente ao resultado de um experimento A palavra aleatória indica que, em
UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II
UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II Segunda lista de Exercícios - Variáveis Aleatórias Professora Fernanda 1. Uma máquina caça níquel de cassino possui três roletas. Na primeira e segunda
Probabilidade e Modelos Probabilísticos
Probabilidade e Modelos Probabilísticos 1ª Parte: Conceitos básicos, variáveis aleatórias, modelos probabilísticos para variáveis aleatórias discretas, modelo binomial, modelo de Poisson 1 Probabilidade
Distribuições de probabilidade de variáveis aleatórias discretas
Distribuições de probabilidade de variáveis aleatórias discretas Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Cronograma 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Poisson
2. INTRODUÇÃO À PROBABILIDADE
2. INTRODUÇÃO À ROILIDDE 2014 Conceitos básicos Experimento aleatório ou fenômeno aleatório Situações ou acontecimentos cujos resultados não podem ser previstos com certeza. Um experimento ou fenônemo
Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Probabilidade Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução Experimento aleatório Definição Qualquer experimento cujo resultado
Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Probabilidade Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Experimento aleatório Definição. Qualquer experimento cujo resultado não pode
Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno
Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:
ESTATÍSTICA TÓPICO 7 VARIÁVEL ALEATÓRIA DISCRETA / DISTRIBUIÇÃO BINOMIAL / DISTRIBUIÇÃO NORMAL
ESTATÍSTICA TÓPICO 7 VARIÁVEL ALEATÓRIA DISCRETA / DISTRIBUIÇÃO BINOMIAL / DISTRIBUIÇÃO NORMAL VARIÁVEIS ALEATÓRIAS Como já vimos no estudo das probabilidades, o conjunto de todos os possíveis resultados
Variáveis Aleatórias e Distribuições de Probabilidade
de Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I
PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PARTE I Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Variáveis Aleatórias Ao descrever um espaço
F (x) = P (X x) = Σ xi xp(x i ) E(X) = x i p(x i ).
Variável Aleatória Uma variável aleatória é uma variável numérica, cujo valor medido pode variar de uma réplica para outra do experimento. Exemplos: (i) Variáveis aleatórias contínuas: corrente elétrica,
Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL.
Introdução à Inferência Estatística Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 5 de setembro de 004 Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. 1 Medidas Resumo DISTRIBUIÇÕES
Probabilidades e Estatística TODOS OS CURSOS
Duração: 90 minutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique convenientemente todas as respostas 2 o semestre 206/207 05/07/207 :30 o Teste C 0 valores. Uma peça de certo tipo é
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
CE Estatística I
CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,
