LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES
|
|
|
- Salvador Camelo Sequeira
- 9 Há anos
- Visualizações:
Transcrição
1 LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES 1- Ordene os dados indicando o 1º, 2º e 3º quartil 45, 56, 62, 67, 48, 51, 64, 71, 66, 52, 44, 58, 55, 61, 48, 50, 62, 51, 61, Faça a análise da distribuição de altura obtida a partir de uma amostra de 40 alunos de uma escola. Altura Frequência 3- Qual a reta ajustada que melhor representa a correlação entre a grandeza X e Y representada abaixo? Xi Yi Calcule a média, a mediana e a moda dos dados apresentados a seguir: 82, 86, 88, 84, 85, 85, 91, 93
2 5- Um professor está interessado em demonstrar que as notas de algumas disciplinas têm relação direta com as notas de outras. No caso foram analisados um conjunto de 12 alunos em duas disciplinas: Estatística e Cálculo. Analise se há uma correlação entre as notas das duas áreas. Aluno Nota em Matemática Nota em Estatística A 5 6 B 8 9 C 7 8 D E 6 5 F 7 7 G 9 8 H 3 4 I 8 6 J 5 3 K 4 7 L O quadro seguinte representa as alturas (em cm) de 40 alunos de uma classe. a) Construir uma tabela de freqüência das alturas dos alunos. b) Construir o histograma.
3 7- Meça os colegas de sua turma e pergunte a massa em kg. Construa uma correlação relacionando a altura e o peso dos colegas somente dos colegas. 8- Um fabricante pretende avaliar a correlação existente entre a temperatura do dia e o consumo de cerveja. Os dados foram inseridos na tabela a seguir. Avalie qual a correlação é mais adequada. 9- Calcule a correlação que relaciona a idade e a altura de uma criança.
4 10- Construa o histograma que represente a distribuição do peso dos estudantes de uma determinada escola.
5 Lista de Exercícios 2 Estatística e Probabilidades 1- Uma empresa precisa selecionar 1 novo colaborador entre 50 que realizaram 6 tipos de provas. 3 deles obtiveram as melhores notas: A, B e C, conforme a tabela. Considerando-se o critério de escolha o candidato com menor variância, qual deles deve ser escolhido? Candidato Prova 1 Prova 2 Prova 3 Prova 4 Prova 5 Prova 6 A 7 7, ,5 9 B C 7, ,5 σ 2 = ( Xi x) 2 ( n 1 ) 2- Cinco empregados coletados aleatoriamente de 3 empresas (A, B e C). Perguntou-se o salário deles (em salários mínimos) Em qual você trabalharia a partir dessa pesquisa? A B C 5, ,5 9 7
6 3- No exercício de correlação entre temperatura do dia ( o C) e consumo de cerveja (litros), calcule qual é o coeficiente R. T C Uma pesquisa com 100 pessoas mediu o tempo de reação para frear um carro em milisegundos. O valor médio obtido foi de 180ms com um desvio padrão de 50ms. Considerando que o tempo de reação obedece a lei da distribuição normal, qual é a probabilidade de encontrar uma pessoa com tempo de reação menor que 100ms? 5- Uma fabrica de cimentos necessita encher sacos com peso médio de 50kg. Mas em alguns casos o peso varia de acordo com a distribuição normal. Uma amostra de 20 sacos de cimento apresentou massa média de 50kg e desvio padrão de 2 kg. Se um saco de cimento for selecionado aleatoriamente no depósito para análise, qual a probabilidade de que ele tenha menos de 48kg?
7 Lista de exercícios 3 Estatística e probabilidades 1- Em um lançamento de duas moedas não viciadas (ao mesmo tempo), qual é a probabilidade de sair 2 coroas? 2- Uma caixa tem 3 bolas brancas e 2 bolas pretas. Selecionando-se aleatoriamente (por sorteio) 2 bolas sem reposição, qual a probabilidade de sair 2 bolas pretas? E se houvesse reposição? 3- Considere 3 lançamentos seguidos de uma moeda honesta. Qual a probabilidade de sair apenas 1 cara nesses 3 lançamentos? 4- Considere que dois dados honestos sejam lançados juntos. Em cada jogada, calcula-se a soma dos resultados. Qual a probabilidade de que a soma seja 6 ou 7? 5- Um piloto tem probabilidade de vencer uma corrida calculada em 1/5. Qual a probabilidade do piloto não vencer a corrida? 6- De um baralho de 52 cartas extraem-se 2 cartas sucessivamente e sem reposição. Qual a probabilidade de se obter um ás e um valete nessa ordem? 7- Lança-se dois dados não viciados. Se a soma dos pontos nos dois lados foi 8, calcule a probabilidade de ocorrer a face 5 em um deles? 8- Uma caixa tem 9 bolas, sendo 2 brancas, 3 vermelhas e 4 pretas. Qual a probabilidade de ser retirar uma bola que não seja preta? 9- Escolhe-se ao acaso um dos anagramas da palavra XADREZ. Qual a probabilidade da palavra escolhida começar por XA? 10- Uma urna contém bolas numeradas de 1 a 25. Uma bola é extraída ao acaso dessa urna. Qual a probabilidade de o número da bola sorteada ser múltiplo de 2 ou de 3?
8 Lista de exercícios número 4 1- Uma caixa contém 11 bolas numeradas de 1 a 11. Retirando-se uma delas ao acaso, observa-se que a mesma traz um número ímpar. Determinar a probabilidade de que esse número seja menor que Dois dados, um azul e um verde são lançados e cada uma das seis faces são equiprováveis nos dois dados. Qual a probabilidade do dado verde ter resultado 6 dado que a soma dos resultados foi 8? 3- Em uma comunidade, 15% das pessoas lêem o jornal A, 12% lêem o jornal B e 3% lêem ambos os jornais. Sorteando-se uma pessoa e sabendo que ela lê o jornal B, qual a probabilidade de que ela leia também o jornal A? 4- Em uma pesquisa realizada com consumidores sobre a preferência da marca de sabão em pó, verificou-se que utilizam a marca X, utilizam a marca Y, utilizam as duas marcas. Foi sorteada uma pessoa desse grupo e verificou-se que ela utiliza a marca X, Qual a probabilidade dessa pessoa também ser usuária da marca Y? 5- Uma caixa tem bolas numeradas de 1 a 10. Sorteamos 1 bola ao acaso. Qual a probabilidade da bola sorteada ser múltiplo de 2? E qual a probabilidade da bola ser múltiplo de 3?
9 Lista de exercícios 5- Estatística e Probabilidades 1-Qual a probabilidade de uma caixa de leite, escolhida aleatoriamente seja do tipo U, sabendo que ele está fora das especificações? Tipo B Tipo C Tipo U Total Dentro das especificações Fora das especificações Total Em uma rede de computadores, em 60% dos dias ocorre alguma falha. Construir a distribuição de probabilidades para a variável aleatória X = número de dias com falha na rede, considerando o período de observação de 3 dias. Suponha que os eventos são independentes. 3- Uma caixa tem 9 bolas, sendo 2 brancas, 3 vermelhas e 4 pretas. Qual a probabilidade de ser retirar uma bola que não seja preta? 4- Um casal pretende ter 3 filhos. Qual a probabilidade de nascerem dois meninos? 5- Dois aparelhos de alarme funcionam de forma independente, detectando presença com probabilidades de 0,95 e 0,90. Qual a probabilidade de que um dado problema seja detectado por apenas um dos aparelhos? 6- Em um lote de 12 peças, 4 são defeituosas. 2 peças são retiradas uma após a outra sem reposição e de forma aleatória. Qual a probabilidade de que ambas sejam boas? 7- Uma fábrica tem 3 máquinas A, B e C responsáveis por 40%, 50% e 10% da produção. Os percentuais de peças defeituosas produzidas pelas respectivas máquinas são: 3%, 5% e 2%. Uma peça é sorteada ao acaso e verifica-se que ela é defeituosa. Qual a probabilidade de que ela tenha vindo da máquina B?
10 8- Uma moeda viciada é lançada 8 vezes. A probabilidade de se obter cara em cada jogada é de 0,60. No total de lançamentos, qual a probabilidade de se obter 5 caras? 9- Uma central telefônica PABX recebe uma média de 5 chamadas por minuto. Qual a probabilidade de que a central não receber nenhuma chamada durante um intervalo de 1 minuto? 10- Um servidor HTTP recebe uma média de 3,5 acessos por minuto. Qual a probabilidade de observarmos apenas 2 acessos por minuto? 11- Considerando X como sendo uma variável aleatória discreta igual ao número de vezes em que ocorre a face CARA em 5 lançamentos de uma moeda honesta. Qual a probabilidade de ocorrer duas caras? Qual a probabilidade de ocorrer no máximo 2 caras? 12- Um banco de sangue catalogou doadores durante 5 dias. Os dados foram organizados na tabela. Analisando estas informações, calcule qual a probabilidade de um doador ter o sangue do tipo O ou do tipo A. Calcule também a probabilidade de um doador selecionado aleatoriamente ter o sangue tipo B ou que seu Rh seja negativo. Sangue tipo Sangue tipo Sangue tipo Sangue tipo Total O A B AB Fator Rh Fator Rh Total
11 13- Em uma amostra de 150 estudantes, 70 disseram que somente têm um aparelho de CD, 50 disseram que somente têm uma TV e 25 disseram que têm ambos. O Diagrama de Venn a seguir descreve esta situação. Se um estudante e selecionado ao acaso, qual e a probabilidade de que ele tenha somente um aparelho de CD? De que ele tenha somente uma TV? De que ele tenha tanto uma TV como um aparelho de CD? 14- Considerando um lote de peças. Admitamos que 10% delas sejam defeituosas. Duas peças são selecionadas aleatoriamente. Qual a probabilidade de que ambas sejam perfeitas? 15- Considere o circuito da figura. A probabilidade de que cada relé esteja fechado é de 12%. Todos os relés funcionam independentemente. Qual é a probabilidade de que o circuito permita a passagem de corrente entre A e B? 16 Uma multinacional produz circuitos integrados em 3 fábricas F1, F2 e F3 na proporção de 30%, 45% e 25% respectivamente. As probabilidades de que um circuito integrado produzido por essas fábricas não funcione são 1%, 2% e 3%. Escolhido ao acaso um circuito com defeito, qual a probabilidade de que ele seja fabricado na F1?
12 17- Um professor importante, residente no Rio de Janeiro, preocupado com um possível sequestro, adota a seguinte estratégia para se deslocar da sua casa até o escritório onde trabalha: duas vezes por semana usa um carro branco, duas vezes por semana usa um carro azul e uma vez por semana um carro cinza prateado; duas vezes por semana usa a rota A, duas vezes por semana a rota B e uma vez por semana a rota C; A decisão sobre qual rota e qual carro utilizar em uma dada semana é independente e é escolhida ao acaso no domingo à noite, porém sempre é mantida a proporção acima. Determine a probabilidade deste professor estar usando o carro azul na rota B em uma terça-feira durante uma semana sem feriados. 18- Suponha que numa linha de produção a probabilidade de se obter uma peça defeituosa (sucesso) é p=0,1. Toma-se uma amostra de 10 peças para serem inspecionadas. Qual a probabilidade de se obter: a) Uma peça defeituosa? b) Nenhuma peça defeituosa? c) Duas peças defeituosas? D) No mínimo duas peças defeituosas? E) No máximo duas peças defeituosas? 19- Um módulo eletrônico é formado por peças do tipo A, B e C. A taxa de defeitos em cada peça é de 50 por milhão, 80 por milhão e 120 por milhão respectivamente. Somente montando é possível perceber o defeito. Qual o número de módulos por milhão que darão o defeito? 20- Na Páscoa uma avó compra ovos para seus 8 netos. Ela comprou 1 chocolate Lacta e 2 chocolates Garotos para cada neto. Dentro do chocolate há brindes, sendo que a probabilidade de se encontrar um brinde no chocolate Lacta é de 1/8. Já para o chocolate Garoto a chance é de 1/16. Nesse caso, qual é a probabilidade do neto mais velho ser o único a ganhar um brinde no chocolate Lacta?
PARTE COMPLEMENTAR DO LIVRO: SEGREDOS DA ESTATÍSTICA APLICADA À GEOGRAFIA
PARTE COMPLEMENTAR DO LIVRO: SEGREDOS DA ESTATÍSTICA APLICADA À GEOGRAFIA Todos os direitos reservados. A reprodução não autorizada desta publicação, no todo ou em parte, constitui violação de direitos
GABARITO DA AVALIAÇÃO 1 ESTATÍSTICA E PROBABILIDADES ENGENHARIA DE TELECOMUNICAÇÕES
GABARITO DA AVALIAÇÃO 1 ESTATÍSTICA E PROBABILIDADES ENGENHARIA DE TELECOMUNICAÇÕES 014-1 1- Ordene os dados. Indique o 1º, º e 3º quartil. Desenhe o diagrama de caixa. Calcule a média e a mediana dos
1 Definição Clássica de Probabilidade
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica
Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES
Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES 1) Determine a probabilidade de cada evento: a) Um nº par aparece no lançamento de um dado; b) Uma figura
UNIVERSIDADE FEDERAL DA PARAÍBA. Cálculo das Probabilidades e Estatística I. Segunda Lista de Exercícios
UNIVERSIDADE FEDERAL DA PARAÍBA Cálculo das Probabilidades e Estatística I Professora: Juliana Freitas Pires Segunda Lista de Exercícios Questão 1. Descreva o espaço amostral para cada um dos seguintes
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :
Se a bola retirada da urna 1 for branca temos, pelo princípio da multiplicação:
Livro: Probabilidade - Aplicações à Estatística Paul L. Meyer Capitulo 3 Probabilidade Condicionada e Independência. 1. Probabilidade Condicionada. Definição: Definição. Dizemos que os representam uma
Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.
PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No
Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a
Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a probabilidade se sair bola: a. azul; b. vermelha; c. amarela. 2.
Introdução à Estatística
Introdução à Estatística Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução a Probabilidade Existem dois tipos de experimentos:
UNIVERSIDADE DOS AÇORES Curso Serviço Social Estatística I 1º Ano 1º Semestre 2005/2006
UNIVERSIDADE DOS AÇORES Curso Serviço Social Estatística I 1º Ano 1º Semestre 2005/2006 Ficha de trabalho nº 1 Estatística Descritiva 1. Num conjunto de jovens estudantes pretende-se estudar; 1.1 A profissão
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos
Prof.: Joni Fusinato
Introdução a Teoria da Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE Prof. Aurimenes A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios.
PROBABILIDADE PROPRIEDADES E AXIOMAS
PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por
CAIXA ECONOMICA FEDERAL. Prof. Sérgio Altenfelder
14.) (ICMS-MG/05) Um empréstimo contraído no início de abril, no valor de R$ 15.000,00 deve ser pago em dezoito prestações mensais iguais, a uma taxa de juros compostos de 2% ao mês, vencendo a primeira
QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE
QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE 1) Uma moeda não tendenciosa é lançada quatro vezes. A probabilidade de que sejam obtidas duas caras e duas coroas é: (A) 3/8 (B) ½ (C) 5/8 (D) 2/3
1. (Meyer,2000) Suponha que o conjunto fundamental seja formado pelos inteiros positivos
Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Disciplina: LCE0211-Estatística Geral Prof. Idemauro Antonio Rodrigues de Lara 4 a lista de exercícios 1. (Meyer,2000) Suponha que
Probabilidade e Estatística
Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis
Lista de exercícios de Matemática Eventos, espaço amostral e definição de probabilidade. Probabilidade condicional. Exercícios gerais.
p: João Alvaro w: www.matemaniacos.com.br e: [email protected]. No lançamento de dois dados, D e D 2, tem-se o seguinte espaço amostral, dado em forma de tabela de dupla entrada. Lista de exercícios
Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística. Probabilidades
Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística Probabilidades Aluna(o): Aluna(o): Turma: Responsável: Prof. Silvano Cesar da Costa L O N D R I N A Estado do Paraná
Matemática & Raciocínio Lógico
Matemática & Raciocínio Lógico para concursos Prof. Me. Jamur Silveira www.professorjamur.com.br facebook: Professor Jamur PROBABILIDADE No estudo das probabilidades estamos interessados em estudar o experimento
EST012 - Estatística Econômica I Turma A - 1 o Semestre de 2019 Lista de Exercícios 3 - Variável aleatória
Exercício 1. Considere uma urna em que temos 4 bolas brancas e 6 bolas pretas. Vamos retirar, ao acaso, 3 bolas, uma após a outra e sem reposição. Sejam X: o número de bolas brancas e Y : o número de bolas
Prof. Luiz Alexandre Peternelli
Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos
PROBABILIDADES PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO
PROBABILIDADES Probabilidade é um conceito filosófico e matemático que permite a quantificação da incerteza, permitindo que ela seja aferida, analisada e usada para a realização de previsões ou para a
Universidade Federal da Paraíba Departamento de Estatística Lista 1 - Julho de 2016
1. Suponha que o conjunto fundamental seja formado pelos inteiros positivos de 1 a 10. Sejam A = {2, 3, 4}, B = {3, 4, 5} e C = {5, 6, 7}. Enumere os elementos dos seguintes conjuntos: (a) A c B. (b) A
Probabilidade em espaços discretos. Prof.: Joni Fusinato
Probabilidade em espaços discretos Prof.: Joni Fusinato [email protected] [email protected] Probabilidade em espaços discretos Definições de Probabilidade Experimento Espaço Amostral Evento Probabilidade
Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo
3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três.
1 a Lista de Exercício - Estatística (Probabilidade) Profa. Ms. Ulcilea A. Severino Leal Algumas considerações importantes sobre a resolução dos exercícios. (i) Normas da língua culta, sequência lógica
LISTA 29 - PROBABILIDADE 1
LISTA 9 - PROBABILIDADE ) Um time de futebol amador ganhou uma taça ao vencer um campeonato. Os jogadores decidiram que o próprio seria guardado na casa de um deles. Todos quiseram guardar a taça em suas
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Disciplina Estatística Aplicada Curso Engenharia Mec. Gest. Industrial 4º Semestre 2º Folha Nº2: Probabilidades 1. Na inspecção final a uma componente electrónica esta é classificada
Teoria das Probabilidades
Teoria das Prof. Eduardo Bezerra (CEFET/RJ) 23 de fevereiro de 2018 Eduardo Bezerra (CEFET/RJ) Teoria das 2018.1 1 / 54 Roteiro Experimento aleatório, espaço amostral, evento 1 Experimento aleatório, espaço
CAPÍTULO 3 PROBABILIDADE
CAPÍTULO 3 PROBABILIDADE 1. Conceitos 1.1 Experimento determinístico Um experimento se diz determinístico quando repetido em mesmas condições conduz a resultados idênticos. Exemplo 1: De uma urna que contém
Lista de exercícios Defina o espaço amostral para cada um dos seguintes experimentos aleatórios:
UNIVERSIDADE FEDERAL DE SÃO CARLOS Centro de Ciências Agrárias Departamento de Tecnologia Agroindustrial e Socioeconomia Rural Disciplina: Noções de Probabilidade e Estatística (221171) - 2019 Prof. a
3 a Lista de PE. Universidade de Brasília Departamento de Estatística
Universidade de Brasília Departamento de Estatística 3 a Lista de PE 1. Duas bolas são escolhidas aleatoriamente de uma urna contendo 8 bolas brancas, 4 pretas, e duas bolas laranjas. Suponha que um jogador
PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA
PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço
PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti
Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de incerteza que existe em um determinado experimento.
Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 1 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Historicamente sabe-se que 10% dos artigos de uma firma são de segunda qualidade. Um inspetor de controle
Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 1 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Historicamente sabe-se que 10% dos artigos de uma firma são de segunda qualidade. Um inspetor de controle
3. Probabilidade P(A) =
7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de
Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz
1073/B - Introdução à Estatística Econômica
Lista de exercicios 2 Prof. Marcus Guimaraes 1073/B - Introdução à Estatística Econômica Ciências Econômicas 1) Suponha um espaço amostral S constituido de 4 elementos: S={a 1,a2,a3,a4}. Qual das funções
Probabilidade e Estatística Probabilidade Condicional
Introdução Probabilidade e Estatística Probabilidade Condicional Em algumas situações, a probabilidade de ocorrência de um certo evento pode ser afetada se tivermos alguma informação sobre a ocorrência
Segunda Lista de Exercícios Cálculo de Probabilidades II Prof. Michel H. Montoril
Exercício 1. Uma urna contém 4 bolas numeradas: {1, 2, 2, 3}. Retira-se dessa urna duas bolas aleatoriamente e sem reposição. Sejam 1 : O número da primeira bola escolhida; 2 : O número da segunda bola
Exercícios propostos:
INF 16 Exercícios propostos: 1. Sabendo-se que Y=X-5 e que E(X)= e V(X)=1, calcule: a)e(y); b)v(y); c)e(x+y); d)e(x + Y ); e)v(x+y); Resp.: 1; 9; 5; 15; 81. Uma urna contém 5 bolas brancas e 7 bolas pretas.
Variáveis Aleatórias. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Variáveis Aleatórias Variável Aleatória Variável aleatória (VA) é uma função que associa a cada
Probabilidade Condicional e Independência
Meyer, P. L., Probabilidade: aplicações à Estatística, 2ª edição, Livros Técnicos e Científicos Editora, Rio de Janeiro, 1983. 1. A urna 1 contém x bolas brancas e y bolas vermelhas. A urna 2 contém z
3 NOÇÕES DE PROBABILIDADE
3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação
Lista 2: Probabilidade Condicional
Probabilidade Lista 2: Probabilidade Condicional 1) Em uma competição de aeromodelismo, vence o participante que conseguir pousar mais vezes seu aeroplano na área especificada. Esta área consiste em um
Ministério da Educação. Nome:... Número:
Ministério da Educação Nome:...... Número: Unidade Lectiva de: Introdução às Probabilidades e Estatística Ano Lectivo de 2003/2004 Código1334 Teste Formativo Nº 2 1. Considere que na selecção de trabalhadores
UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II
UNIVERSIDADE FEDERAL DO PARANÁ CE003 - ESTATÍSTICA II Segunda lista de Exercícios - Variáveis Aleatórias Professora Fernanda 1. Uma máquina caça níquel de cassino possui três roletas. Na primeira e segunda
Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise
Probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Você reconhece algum desses experimentos? Alguns
ESTATÍSTICA. Prof. Ari Antonio, Me. Ciências Econômicas. Unemat Sinop 2012
ESTTÍSTIC rof. ri ntonio, Me Ciências Econômicas Unemat Sinop 2012 1. robabilidades Diz respeito a experiências aleatórias: - Lançamento de uma moeda - Lançamento de um par de dados - Retirada de uma carta
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução
MATEMÁTICA A - 1o Ano Probabilidades - Noções gerais Propostas de resolução Exercícios de exames e testes intermédios 1. Organizando todos os resultados possíveis para os dois números possíveis de observar,
EST012 - Estatística Econômica I Turma A - 1 o Semestre de 2019 Lista de Exercícios 2 - Introdução à Probabilidade
Exercício 1. Em um lançamento de um dado convencional, sejam os seguintes eventos: E 1 : face par; E 2 : face que não seja 1 ou 4 e E 3 : face maior ou igual a 3. Calcule: (a) P(E 1 ); (b) P(E 1 E 2 );
Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA
Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA 01. Num saco estão 10 bolas indistinguíveis ao tato, das quais 6 são azuis e 4 são verdes. Retiram-se, sucessivamente e sem reposição duas bolas. Determine
Portal da OBMEP. Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE. Fração como Probabilidade. Sexto Ano do Ensino Fundamental
Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE Fração como Probabilidade Sexto Ano do Ensino Fundamental Prof. Francisco Bruno Holanda Prof. Antonio Caminha Muniz Neto 1 Introdução
Probabilidade e Estatística
Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Inferência Estatística stica e Distribuições Amostrais Inferência Estatística stica O objetivo
T o e r o ia a da P oba ba i b lida d de
Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que
3.3. Diga qual é o número médio e a variância dos animais que sobrevivem?
1. Um treinador de andebol tem à sua disposição 20 jogadores dos quais deve selecionar 10 para formar uma equipa para um jogo. 12 dos jogadores são atacantes e os restantes saõ defesas. 1.1. Se o selecionador
1 Distribuição de Bernoulli
Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 6 Professor: Carlos Sérgio Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas
A B e A. Calcule as suas respectivas probabilidades.
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 2-BIOESTATÍSTICA II (CE020) Prof. Benito Olivares Aguilera 1 o Sem./17 1. Expresse em termos de operações entre eventos:
Teoria das Probabilidades
08/06/07 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto
1 Distribuições Discretas de Probabilidade
1 Distribuições Discretas de Probabilidade A distribuição discreta descreve quantidades aleatórias (dados de interesse) que podem assumir valores particulares e os valores são finitos. Por exemplo, uma
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema I Probabilidades e Combinatória. 1º Teste de avaliação.
Escola Secundária com º ciclo D. Dinis 1º Ano de Matemática A Tema I Probabilidades e Combinatória 1º Teste de avaliação Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas
2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2
GET00189 Probabilidade I Lista de exercícios - Capítulo 1 Profa. Ana Maria Lima de Farias SEÇÃO 1.1 Experimento aleatório, espaço amostral e evento 1. Lançam-se três moedas. Enumere o espaço amostral e
Lista de exercícios Defina o espaço amostral para cada um dos seguintes experimentos aleatórios:
UNIVERSIDADE FEDERAL DE SÃO CARLOS Centro de Ciências Agrárias Departamento de Tecnologia Agroindustrial e Socioeconomia Rural Disciplina: Noções de Probabilidade e Estatística (221171) - 2018 Prof. a
Teoria da Probabilidade
Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos
Teoria das Probabilidades
Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 08:8 ESTATÍSTICA APLICADA I - Teoria das
Confiabilidade de sistemas. Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas.
Confiabilidade de sistemas Uma importante aplicação de probabilidade nas engenharias é no estudo da confiabilidade de sistemas. Uma definição pratica de confiabilidade corresponde à probabilidade de um
Estatística Aplicada. Prof. Carlos Alberto Stechhahn EXERCÍCIOS - REVISÃO ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE. Administração. p(a) = n(a) / n(u)
Estatística Aplicada Administração p(a) = n(a) / n(u) EXERCÍCIOS - REVISÃO ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE Prof. Carlos Alberto Stechhahn 2014 1. Tema: Noções de Probabilidade 1) Considere o lançamento
Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução
Introdução PROBABILIDADE Há certos fenômenos (ou experimentos) que, embora sejam repetidos muitas vezes e sob condições idênticas, não apresentam os mesmos resultados. Por exemplo, no lançamento de uma
Exercícios de Probabilidade
Exercícios de Probabilidade Fernando Loureiro 7 de Junho de 06 Exercícios Resolvidos. (ESGRANRIO/PETROBRAS 0) Um jogo consiste em lançar uma moeda honesta até obter duas caras consecutivas ou duas coroas
AULA 08 Probabilidade
Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral
Aula 16 - Erivaldo. Probabilidade
Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar
2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2
GET00116 Fundamentos de Estatística Aplicada Lista de exercícios Probabilidade Profa. Ana Maria Lima de Farias Capítulo 1 Probabilidade: Conceitos Básicos 1. Lançam-se três moedas. Enumere o espaço amostral
Profa. Patrícia G. P. Lourençano Disciplina: Estatística Lista de exercícios de probabilidade
Profa. Patrícia G. P. Lourençano Disciplina: Estatística Lista de exercícios de probabilidade 1. Se P(A) = 1/2 e P(B) = 1/4 e A e B são eventos mutuamente exclusivos, calcule: (a) P(A c ) (b) P(B c ) (c)
LEIA ATENTAMENTE AS INSTRUÇÕES
Matemática e suas Tecnologias CÓDIGO DA PROVA / SIMULADO Aluno(a): POMA - Matemática Questões Professores: Neydiwan PC 0-0 - 4 ª Série º Bimestre - N 0 / 06 / 06 LEIA ATENTAMENTE AS INSTRUÇÕES Este caderno
c) 17 b) 4 17 e) 17 21
Probabilidade I Exercícios. Dois jogadores A e B vão lançar um par de dados. Eles combinam que se a soma dos números dos dados for 5, A ganha e se a soma for 8, B é quem ganha. Os dados são lançados. Sabe-se
Prova 2 - FEELT Valor: 25 pontos 14/11/2018. Data limite para entregar a prova: 22/11/2018 (quinta-feira).
Instrucões Utilize um método randômico 1 para selecionar 5 das 20 questões que irão compor sua prova. Por exemplo, simule o lançamento de um dado de 20 faces (www.roll-dice-online.com) para obter 5 números
Exercícios de Probabilidade - Lista 1. Profa. Ana Maria Farias
Exercícios de Probabilidade - Lista 1 Profa. Ana Maria Farias 1. Lançam-se três moedas. Enumere o espaço amostral e os eventos A = faces iguais ; B = cara na primeira moeda ; C = coroa na segunda e terceira
SME0320 Estatistica ICMC-USP Ricardo Ehlers Lista 4
SME0320 Estatistica ICMC-USP Ricardo Ehlers Lista 4 1. Dois dados honestos são lançados. Calcule a probabilidade condicional de que pelo menos um deles caia no 6 se os dados cairam em números diferentes.
5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas?
TERCEIRA LISTA DE EXERCÍCIOS DE PROBABILIDADE CURSO: MATEMÁTICA PROF. LUIZ CELONI 1) Dê um espaço amostral para cada experimento abaixo. a) Uma urna contém bolas vermelhas (V), bolas brancas (B) e bolas
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE
PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de
A tabela abaixo apresenta a distribuição dos equipamentos de uma grande empresa.
A tabela abaixo apresenta a distribuição dos equipamentos de uma grande empresa. Qual é a probabilidade de que um equipamento selecionado aleatoriamente esteja inativo ou seja do tipo A? a) 6/27 b) 14/27
Matemática E Extensivo V. 5
Extensivo V. Exercícios 0) Casos possíveis: {,,,,, } Casos favoráveis: {,, } Assim, a probabilidade é: 0) 70% P Casos possíveis: 7 + 0 possibilidades Casos favoráveis: 7 (7 bolas pretas) P 7 0,7 70% 0
Coordenadoria de Matemática. Apostila de Probabilidade
Coordenadoria de Matemática Apostila de Probabilidade Vitória ES 1. INTRODUÇÃO CAPÍTULO 03 Quando investigamos algum fenômeno, verificamos a necessidade de descrevê-lo por um modelo matemático que permite
CAIXA ECONÔMICA FEDERAL
ESTATISTICA (exercícios) 1.) As alturas dos jogadores de basquete da Seleção Brasileira são 1,98 m; 2,04 m; 2,06 m; 2,02 m e 2,05 m. A média de altura dessa seleção, em m, é de: a.) 2,01 b.) 2,02 c.) 2,03
Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 João queria sair de casa, mas não sabia qual era a previsão do tempo. Ao ligar a TV no canal do tempo, a jornalista anunciou que existia a possibilidade de chuva no fim da tarde
Probabilidade e Estatística Preparação para P1
robabilidade e Estatística reparação para rof.: Duarte ) Uma TV que valia R$ 00,00, entrou em promoção e sofreu uma redução de 0% em seu preço. Qual é o novo preço da TV? ) Um produto foi vendido por R$
Probabilidade Condicional (grupo 2)
page 39 Capítulo 5 Probabilidade Condicional (grupo 2) Veremos a seguir exemplos de situações onde a probabilidade de um evento émodificadapelainformação de que um outro evento ocorreu, levando-nos a definir
Processos Estocásticos
Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Considere um dado cúbico, com as faces numeradas de 1 a 6, e um saco que contém cinco bolas, indistinguíveis
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Uma pessoa lança um dado cúbico, com as faces numeradas de 1 a 6, e regista o número da face que ficou
Trabalho de Recuperação Final - 3 Ano - Ensino Médio
Trabalho de Recuperação Final - 3 Ano - Ensino Médio 1. (Fuvest) Considere o experimento que consiste no lançamento de um dado perfeito (todas as seis faces têm probabilidades iguais). Com relação a esse
ORGANIZAÇÃO E TRATAMENTO DE DADOS
FICHAS DE TRABALHO 9.º ANO COMPILAÇÃO TEMA 6 ORGANIZAÇÃO E TRATAMENTO DE DADOS PROBABILIDADES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA 6 ORGANIZAÇÃO E TRATAMENTO
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Curso Engenharia e Gestão Industrial 2º Semestre 1º Folha Nº2 1. Na inspecção final a um produto este é classificado como aceitável para lançamento no mercado ou não. O produto
