Exercícios de Probabilidade
|
|
|
- Marcos Flores Arruda
- 7 Há anos
- Visualizações:
Transcrição
1 Exercícios de Probabilidade Fernando Loureiro 7 de Junho de 06 Exercícios Resolvidos. (ESGRANRIO/PETROBRAS 0) Um jogo consiste em lançar uma moeda honesta até obter duas caras consecutivas ou duas coroas consecutivas. Na primeira situação, ao obter duas caras consecutivas, ganha-se o jogo. Na segunda, ao obter duas coroas consecutivas, perde-se o jogo. A probabilidade de que o jogo termine, com vitória, até o sexto lance, é (a) 7/6 (b) 3/64 (c) (d) (e) /64 Para facilitar a resolução do exercícios, façamos a árvore de decisão do problema acima: a jogada ara ara ara ara ara ara ara ara ara Os galhos tracejados em vermelho representam as situações favoráveis ao nosso problema. om isso, tudo o que precisamos é calcular as probabilidades destes ramos: Na parte de cima da árvore temos: Já na parte de baixo : e ou e e e e e ou e e e e omo ficamos com parte de cima ou parte de baixo, totalizando as probabilidades: ( ) ( ) 4 ( ) 3 ( ) 5
2 . (ESGRANRIO/TRANSPETRO 0) Um dos riscos de acidentes em dutos de gás natural é de vazamento. A probabilidade de que o vazamento provoque um incêndio é de %. aso não haja incêndio, o problema não acabou, pois pode ocorrer explosão de uma nuvem de gás. No caso de não haver incêndio, a probabilidade de haver explosão é de %. Dado que houve um vazamento, qual é a probabilidade aproximada de não haver incêndio e não ocorrer explosão? (a) % (b) % (c) 97% (d) 98% (e) 99% Sejam os eventos: V - haver vazamento I - haver incêndio E - haver explosão e de suas respectivas negações quando com o símbolo na frente. A totalidade das opções deve somar 00%, logo, ficamos com a seguinte árvore de decisão: V I (%) I E (%) E (98%) om isso, dado que houve vazamento, a probabilidade de não haver incêndio e não ocorrer explosão é de 98%. 3. (ESGRANRIO/BNDES 03) Suponha que no banco em que Ricardo trabalha, ele faça parte de um grupo de quatro administradores e que no mesmo banco existam também cinco economistas. Será formado um comitê composto por três administradores e três economistas, todos escolhidos aleatoriamente. Qual é a probabilidade de o comitê formado ter Ricardo como um dos componentes? (a) 0 (b) 0,5 (c) 0,50 (d) 0,75 (e) Se o comitê terá 3 administradores e o grupo têm 4, existem três chances dentro de quatro de Ricardo ser um dos componentes do comitê. Logo a probabilidade será 3/4 = 0,75 4. (ESGRANRIO/PETROBRAS 005) Uma urna contém 5 bolas gravadas com as letras A, A, N, N, T. Extraindo-se as bolas uma por uma, sem reposição, a probabilidade de se obter o nome NATAN é: (a).5 (b) /85 (c) /0 (d) /60 (e) 0
3 = 30 (ESGRANRIO/PETROBRÁS 005/ENG. PROD.)Uma determinada fábrica produz peças tipo A e B nas proporções e /3, respectivamente. A probabilidade de ocorrência da peça defeituosa do tipo A é de 0% e do tipo B é 0%. Retirando-se, ao acaso, uma peça produzida na fábrica, a probabilidade de ela de ser defeituosa é de: (a) 0 (b) /5 (c) /0 (d) /6 (e) /5 Mais uma questão onde o desenho da árvore de decisão nos ajuda bastante: A 0% 80% D D /3 B 0% 90% D D A probabilidade de ser defeituosa é: 3 0% 3 0% = = 5 Resposta (e) 6. (ESGRANRIO/BR DISTRIBUIDORA 0/ENG. PROD.)Numa caixa, há três moedas: duas são honestas, e uma tem três vezes mais probabilidade de dar cara do que de dar coroa. Uma moeda é selecionada aleatoriamente da caixa e é lançada sucessivamente duas vezes. Qual a probabilidade da ocorrência de duas caras? (a) 9/7 (b) 3/3 (c) 7/48 (d) 7/54 (e) 5/64 3
4 Montando a árvore de decisão, ficamos com: m m m3 3/4 /4 3/4 /4 3/4 /4 Os ramos em vermelho tracejados são as nossas situações de interesse. Fazendo o cálculo destas, ficamos com: ( 3 ) ( 3 ) ( ) 4 = (MONTGOMERY) Um dia de produção de 850 peças fabricadas contém 50 peças que não atendem aos requisitos do cliente. Duas peças foram selecionadas aleatoriamente sem reposição do lote. Qual é a probabilidade da segunda peça ser defeituosa dado que a primeira peça é defeituosa? Temos o total de 850 peças onde 50 destas são defeituosas. Se retirarmos a primeira peça e esta for defeituosa, ficaremos com 849 peças no total e 49 defeituosas, já que uma defeituosa foi retirada. Logo, a probabilidade da segunda peça ser defeituosa dado que a primeira é defeituosa é (MONTGOMERY) ontinuando do exemplo anterior, se três peças são selecionadas aleatoriamente, qual é a probabilidade de que as duas primeiras sejam defeituosas e a terceira não o seja? Este evento pode ser descrito em notação abreviada como P(ddn). 4
5 A probabilidade do primeiro item ser defeituoso é 50/850. Já a probabilidade do segundo item ser defeituoso dado que o primeiro também o é será 49/849, conforme vimos no exercício anterior. Para definir o evento terceiro item não defeituoso precisamos pensar no seguinte: se no universo de 850 itens, eu tenho 50 defeituosos, 800 itens não são defeituosos. Logo, a probabilidade do terceiro item não ser defeituoso, dado que os dois primeiros são será 800/848. om isso, P(ddn) = = 0, (ESGRANRIO/TRANSPETRO 0/ENG. PROD.) A tabela abaixo apresenta a distribuição dos equipamentos de uma grande empresa. Estado do Equipamento Tipo de Equipamento A B Total Ativo Inativo Total Qual é a probabilidade de que um equipamento selecionado aleatoriamente esteja inativo ou seja do tipo A? (a) 6/7 (b) 4/7 (c) 0/7 (d) 6/ (e) 9/ Seja I o evento ser inativo e A o evento ser equipamento do tipo A. P(I) = 90/70, P(A) = 0/70 e P(I A) = 60/70 omo P(I A) = P(I)P(A) P(I A) P(I A) = 90/700/70 60/70 = 4/7 0. (FGV PROJETOS/FISAL DE POSTURAS 05) Uma urna contém apenas bolas brancas e bolas pretas. São vinte bolas ao todo e a probabilidade de uma boa retirada aleatoriamente da urna ser branca é 5. Duas bolas são retiradas da urna sucessivamente e sem reposição. A probabilidade de as duas bolas retiradas serem pretas é: (a) 6/5 (b) 6/9 5
6 (c) /9 (d) 4/5 (e) 3/5 Se a probabilidade de uma bola branca ser retirada é de, significa que nós temos ao todo 4 5 bolas brancas já que de 0 = 4. 5 Se temos 4 bolas brancas, o restante são todas bolas pretas, ou seja, 0 4 = 6 bolas pretas. omo são duas retiradas sem reposição, na primeira retiradas teremos probabilidade 6 0 de sair bola preta, e na segunda retirada 5 9. Logo, nossa resposta é = 9. Exercícios Sugeridos. Discos de plásticos de policarbonato de um fornecedor são analizados quanto a resistência à arranhão e choque. Os resultados de 00 discos são então resumidos em uma tabela: Resistência à arranhão Resistência à choque Alta Baixa Alta 70 9 Baixa 6 5 Seja A o evento disco com alta resistência à choque, e B o evento alta resistência à arranhão. Determine as seguintes probabilidades: (a) P(A) (b) P(B) (c) P(A B) (d) P(B A). (UERJ 0) Uma fábrica produz sucos com os seguintes sabores: uva, pêssego e laranja. onsidere uma caixa com garrafas desses sucos, sendo 4 garrafas de cada sabor. Retirando-se, ao acaso, garrafas dessa caixa, a probabilidade de que ambas contenham suco com o mesmo sabor equivale a: (a) 9,% (b) 8,% (c) 7,3% (d) 36,4% Gabarito dos Exercícios Sugeridos 6
7 . (a) P(A) = 86/00 (b) P(B) = 79/00 (c) P(A B) = 70/79 (d) P(B A) = 70/86. (c) 7,3% 7
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos
UNIVERSIDADE FEDERAL DA PARAÍBA. Cálculo das Probabilidades e Estatística I. Segunda Lista de Exercícios
UNIVERSIDADE FEDERAL DA PARAÍBA Cálculo das Probabilidades e Estatística I Professora: Juliana Freitas Pires Segunda Lista de Exercícios Questão 1. Descreva o espaço amostral para cada um dos seguintes
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE Prof. Aurimenes A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios.
1 Definição Clássica de Probabilidade
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica
PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA
PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço
MA12 - Unidade 18 Probabilidade Condicional
MA12 - Unidade 18 Probabilidade Condicional Paulo Cezar Pinto Carvalho PROFMAT - SBM 4 de Abril de 2014 Um dado honesto é lançado duas vezes. a) Qual é a probabilidade de sair 1 no 1 o lançamento? b) Qual
Probabilidade e Estatística Probabilidade Condicional
Introdução Probabilidade e Estatística Probabilidade Condicional Em algumas situações, a probabilidade de ocorrência de um certo evento pode ser afetada se tivermos alguma informação sobre a ocorrência
Probabilidade em espaços discretos. Prof.: Joni Fusinato
Probabilidade em espaços discretos Prof.: Joni Fusinato [email protected] [email protected] Probabilidade em espaços discretos Definições de Probabilidade Experimento Espaço Amostral Evento Probabilidade
Estatística: Probabilidade e Distribuições
Estatística: Probabilidade e Distribuições Disciplina de Estatística 2012/2 Curso: Tecnólogo em Gestão Ambiental Profª. Ms. Valéria Espíndola Lessa 1 Aula de Hoje 23/11/2012 Estudo da Probabilidade Distribuição
Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES
Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES 1) Determine a probabilidade de cada evento: a) Um nº par aparece no lançamento de um dado; b) Uma figura
Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.
PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No
Teoria das probabilidades
Teoria das probabilidades Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 25 de abril de 2018 Londrina 1 / 22 Conceitos probabiĺısticos são necessários para se
Estatística. Disciplina de Estatística 2011/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa
Estatística Disciplina de Estatística 20/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa Estatística Inferencial Estudos das Probabilidades (noção básica) Amostragens e Distribuição
PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 2 07 e 08 março MOQ-12 Probabilidades e Int. a Processos Estocásticos
PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 2 07 e 08 março 2007 1 1. Probabilidade Condicional 2. Propriedades 3. Partições 4. Teorema de Probabilidade Total 5. Teorema de Bayes 6. Independencia
3. Probabilidade P(A) =
7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de
BIOESTATISTICA. Unidade IV - Probabilidades
BIOESTATISTICA Unidade IV - Probabilidades 0 PROBABILIDADE E DISTRIBUIÇÃO DE FREQUÊNCIAS COMO ESTIMATIVA DA PROBABILIDADE Noções de Probabilidade Após realizar a descrição dos eventos utilizando gráficos,
TEORIA DA PROBABILIDADE
TEORIA DA PROBABILIDADE Lucas Santana da Cunha [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 22 de maio de 2017 Introdução Conceitos probabiĺısticos são necessários
CAPÍTULO 3 PROBABILIDADE
CAPÍTULO 3 PROBABILIDADE 1. Conceitos 1.1 Experimento determinístico Um experimento se diz determinístico quando repetido em mesmas condições conduz a resultados idênticos. Exemplo 1: De uma urna que contém
Estatística Empresarial. Fundamentos de Probabilidade
Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação
T o e r o ia a da P oba ba i b lida d de
Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que
Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise
Probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Você reconhece algum desses experimentos? Alguns
Prof.: Joni Fusinato
Introdução a Teoria da Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso
2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2
GET00189 Probabilidade I Lista de exercícios - Capítulo 1 Profa. Ana Maria Lima de Farias SEÇÃO 1.1 Experimento aleatório, espaço amostral e evento 1. Lançam-se três moedas. Enumere o espaço amostral e
Introdução à Estatística
Introdução à Estatística Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução a Probabilidade Existem dois tipos de experimentos:
Prof.Letícia Garcia Polac. 26 de setembro de 2017
Bioestatística Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 26 de setembro de 2017 Sumário 1 2 Probabilidade Condicional e Independência Introdução Neste capítulo serão abordados
QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE
QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE 1) Uma moeda não tendenciosa é lançada quatro vezes. A probabilidade de que sejam obtidas duas caras e duas coroas é: (A) 3/8 (B) ½ (C) 5/8 (D) 2/3
PROBABILIDADES PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO
PROBABILIDADES Probabilidade é um conceito filosófico e matemático que permite a quantificação da incerteza, permitindo que ela seja aferida, analisada e usada para a realização de previsões ou para a
SME0320 Estatistica ICMC-USP Ricardo Ehlers Lista 4
SME0320 Estatistica ICMC-USP Ricardo Ehlers Lista 4 1. Dois dados honestos são lançados. Calcule a probabilidade condicional de que pelo menos um deles caia no 6 se os dados cairam em números diferentes.
Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução
Introdução PROBABILIDADE Há certos fenômenos (ou experimentos) que, embora sejam repetidos muitas vezes e sob condições idênticas, não apresentam os mesmos resultados. Por exemplo, no lançamento de uma
LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES
LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES 1- Ordene os dados indicando o 1º, 2º e 3º quartil 45, 56, 62, 67, 48, 51, 64, 71, 66, 52, 44, 58, 55, 61, 48, 50, 62, 51, 61, 55 2- Faça a análise da
MA12 - Unidade 17 Probabilidade
MA12 - Unidade 17 Probabilidade Paulo Cezar Pinto Carvalho PROFMAT - SBM 17 de Maio de 2013 Teoria da Probabilidade Teoria da Probabilidade: modelo matemático para incerteza. Objeto de estudo: experimentos
Noções sobre Probabilidade
Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de
LISTA 29 - PROBABILIDADE 1
LISTA 9 - PROBABILIDADE ) Um time de futebol amador ganhou uma taça ao vencer um campeonato. Os jogadores decidiram que o próprio seria guardado na casa de um deles. Todos quiseram guardar a taça em suas
Universidade Federal de Goiás Instituto de Matemática e Estatística
Universidade Federal de Goiás Instituto de Matemática e Estatística Prova 1 de Probabilidade I Prof.: Fabiano F. T. dos Santos Goiânia, 15 de setembro de 2014 Aluno: Nota: Descreva seu raciocínio e desenvolva
PROBABILIDADE PROPRIEDADES E AXIOMAS
PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por
ESTATÍSTICA. Prof. Ari Antonio, Me. Ciências Econômicas. Unemat Sinop 2012
ESTTÍSTIC rof. ri ntonio, Me Ciências Econômicas Unemat Sinop 2012 1. robabilidades Diz respeito a experiências aleatórias: - Lançamento de uma moeda - Lançamento de um par de dados - Retirada de uma carta
Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)
Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative
ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO
ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO 1. (Magalhães e Lima, pg 40) Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos: (a) Uma moeda é lançada duas vezes
Matemática & Raciocínio Lógico
Matemática & Raciocínio Lógico para concursos Prof. Me. Jamur Silveira www.professorjamur.com.br facebook: Professor Jamur PROBABILIDADE No estudo das probabilidades estamos interessados em estudar o experimento
Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Probabilidade Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Experimento aleatório Definição. Qualquer experimento cujo resultado não pode
Lista de exercícios de Matemática Eventos, espaço amostral e definição de probabilidade. Probabilidade condicional. Exercícios gerais.
p: João Alvaro w: www.matemaniacos.com.br e: [email protected]. No lançamento de dois dados, D e D 2, tem-se o seguinte espaço amostral, dado em forma de tabela de dupla entrada. Lista de exercícios
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Probabilidades e Estatística Curso Engenharia do Ambiente 2º Semestre 1º Ficha n.º1: Probabilidades e Variáveis Aleatórias 1. Lançam- ao acaso 2 moedas. a) Escreva o espaço de resultados
ESCOLA SUPERIOR DE TECNOLOGIA
Departamento Matemática Disciplina Estatística Aplicada Curso Engenharia Mec. Gest. Industrial 4º Semestre 2º Folha Nº2: Probabilidades 1. Na inspecção final a uma componente electrónica esta é classificada
Exercícios de Probabilidade - Lista 1. Profa. Ana Maria Farias
Exercícios de Probabilidade - Lista 1 Profa. Ana Maria Farias 1. Lançam-se três moedas. Enumere o espaço amostral e os eventos A = faces iguais ; B = cara na primeira moeda ; C = coroa na segunda e terceira
Prof. Luiz Alexandre Peternelli
Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos
2. INTRODUÇÃO À PROBABILIDADE
2. INTRODUÇÃO À PROBABILIDADE 2019 Conceitos básicos Experimento aleatório ou fenômeno aleatório Situações ou acontecimentos cujos resultados não podem ser previstos com certeza. Um experimento ou fenônemo
Probabilidade Condicional
18 Probabilidade Condicional Sumário 18.1 Introdução....................... 2 18.2 Probabilidade Condicional............... 2 1 Unidade 18 Introdução 18.1 Introdução Nessa unidade, é apresentada mais uma
Probabilidade Condicional
Disciplina: 221171 robabilidade ondicional rof. a Dr. a Simone Daniela Sartorio de Medeiros DTiSeR-r 1 robabilidade condicional Em muitas situações práticas, o fenômeno aleatório com o qual trabalhamos
ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO
Área Científica Matemática Probabilidades e Estatística Curso Engenharia do Ambiente º Semestre º Ficha n.º: Probabilidades e Variáveis Aleatórias. Lançam-se ao acaso moedas. a) Escreva o espaço de resultados
1) Calcular a probabilidade de se obter 2 prêmios ao abrirem-se 2 círculos de uma mesa com 25 círculos dos quais 5 são premiados.
COLÉGIO SANTA MARIA Matemática I / II - Professor: Flávio Verdugo Ferreira Lista de exercícios: Probabilidades 1) Calcular a probabilidade de se obter 2 prêmios ao abrirem-se 2 círculos de uma mesa com
TEORIA DAS PROBABILIDADES
TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da
BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE
01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP
PROBABILIDADE E ESTATÍSTICA PROBABILIDADES
PROBABILIDADE E ESTATÍSTICA PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Revisando - Análise combinatória
PROBABILIDADE. Luciana Santos da Silva Martino. PROFMAT - Colégio Pedro II. 01 de julho de 2017
Sumário PROBABILIDADE Luciana Santos da Silva Martino PROFMAT - Colégio Pedro II 01 de julho de 2017 Sumário 1 Conceitos Básicos 2 Probabildade Condicional 3 Espaço Amostral Infinito Outline 1 Conceitos
Lista de exercícios Defina o espaço amostral para cada um dos seguintes experimentos aleatórios:
UNIVERSIDADE FEDERAL DE SÃO CARLOS Centro de Ciências Agrárias Departamento de Tecnologia Agroindustrial e Socioeconomia Rural Disciplina: Noções de Probabilidade e Estatística (221171) - 2019 Prof. a
3 NOÇÕES DE PROBABILIDADE
3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação
Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a
Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a probabilidade se sair bola: a. azul; b. vermelha; c. amarela. 2.
Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Probabilidade Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução Experimento aleatório Definição Qualquer experimento cujo resultado
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.
2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :
Probabilidade Condicional (grupo 2)
page 39 Capítulo 5 Probabilidade Condicional (grupo 2) Veremos a seguir exemplos de situações onde a probabilidade de um evento émodificadapelainformação de que um outro evento ocorreu, levando-nos a definir
Resposta: Resposta: 4 ou seja, 1.
1. (Unicamp 2016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a a) 1. 4 b). 8 c) 1. 2 d). 4
2. INTRODUÇÃO À PROBABILIDADE
2. INTRODUÇÃO À ROILIDDE 2014 Conceitos básicos Experimento aleatório ou fenômeno aleatório Situações ou acontecimentos cujos resultados não podem ser previstos com certeza. Um experimento ou fenônemo
Probabilidade Parte 1. Camyla Moreno
Probabilidade Parte 1 Camyla Moreno Probabilidade A teoria das probabilidades é um ramo da Matemática que cria, elabora e pesquisa modelos para estudar experimentos ou fenômenos aleatórios. Principais
AULA 08 Probabilidade
Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral
Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz
1 Distribuições Discretas de Probabilidade
1 Distribuições Discretas de Probabilidade A distribuição discreta descreve quantidades aleatórias (dados de interesse) que podem assumir valores particulares e os valores são finitos. Por exemplo, uma
Se a bola retirada da urna 1 for branca temos, pelo princípio da multiplicação:
Livro: Probabilidade - Aplicações à Estatística Paul L. Meyer Capitulo 3 Probabilidade Condicionada e Independência. 1. Probabilidade Condicionada. Definição: Definição. Dizemos que os representam uma
Portal da OBMEP. Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE. Fração como Probabilidade. Sexto Ano do Ensino Fundamental
Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE Fração como Probabilidade Sexto Ano do Ensino Fundamental Prof. Francisco Bruno Holanda Prof. Antonio Caminha Muniz Neto 1 Introdução
Universidade Federal de Goiás Instituto de Matemática e Estatística
Universidade Federal de Goiás Instituto de Matemática e Estatística Prova de Probabilidade Prof.: Fabiano F. T. dos Santos Goiânia, 31 de outubro de 014 Aluno: Nota: Descreva seu raciocínio e desenvolva
Probabilidade e Estatística
Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis
3 a Lista de PE. Universidade de Brasília Departamento de Estatística
Universidade de Brasília Departamento de Estatística 3 a Lista de PE 1. Duas bolas são escolhidas aleatoriamente de uma urna contendo 8 bolas brancas, 4 pretas, e duas bolas laranjas. Suponha que um jogador
A tabela abaixo apresenta a distribuição dos equipamentos de uma grande empresa.
A tabela abaixo apresenta a distribuição dos equipamentos de uma grande empresa. Qual é a probabilidade de que um equipamento selecionado aleatoriamente esteja inativo ou seja do tipo A? a) 6/27 b) 14/27
Princípios básicos de probabilidade e aplicação à genética
Princípios básicos de probabilidade e aplicação à genética 1ª Parte: Princípios básicos de probabilidade Probabilidade é a chance que um evento tem de ocorrer, entre dois ou mais eventos possíveis. Por
01 - (UEM PR) um resultado "cara sobre casa preta" é (MACK SP)
ALUNO(A): Nº TURMA: 2º ANO PROF: Claudio Saldan CONTATO: [email protected] LISTA DE EXERCÍCIOS PROBABILIDADE 0 - (UEM PR) Considere a situação ideal na qual uma moeda não-viciada, ao ser lançada sobre
2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2
GET00116 Fundamentos de Estatística Aplicada Lista de exercícios Probabilidade Profa. Ana Maria Lima de Farias Capítulo 1 Probabilidade: Conceitos Básicos 1. Lançam-se três moedas. Enumere o espaço amostral
Lista de exercícios Defina o espaço amostral para cada um dos seguintes experimentos aleatórios:
UNIVERSIDADE FEDERAL DE SÃO CARLOS Centro de Ciências Agrárias Departamento de Tecnologia Agroindustrial e Socioeconomia Rural Disciplina: Noções de Probabilidade e Estatística (221171) - 2018 Prof. a
24 de outubro de 2012
Escola Básica de Santa Catarina Ficha de Avaliação de Matemática 24 de outubro de 2012 A PREENCHER PELO ALUNO 9ºano 90m Nome: nº Turma C A PREENCHER PELO PROFESSOR Classificação: Nível: ( ) Rubrica do
Lucas Santana da Cunha de junho de 2017
VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados
DISTRIBUIÇÕES BERNOULLI E BINOMIAL
DISTRIBUIÇÕES BERNOULLI E BINOMIAL Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 26 de junho de 2017 Distribuição Bernoulli Nos experimentos
Universidade Federal da Paraíba Departamento de Estatística Lista 1 - Julho de 2016
1. Suponha que o conjunto fundamental seja formado pelos inteiros positivos de 1 a 10. Sejam A = {2, 3, 4}, B = {3, 4, 5} e C = {5, 6, 7}. Enumere os elementos dos seguintes conjuntos: (a) A c B. (b) A
Prof. Dr. Lucas Santana da Cunha de maio de 2018 Londrina
Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 21 de maio de 2018 Londrina 1 / 14 Variável aleatória Introdução Definição Uma função que associa um número real
Material Teórico - Módulo Probabilidade Condicional. Probabilidade Condicional - Parte 1. Segundo Ano do Ensino Médio
Material Teórico - Módulo Probabilidade Condicional Probabilidade Condicional - Parte 1 Segundo Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Probabilidade
Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal
Probabilidade Tópicos Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal Conjuntos Conjunto: Na matemática, um conjunto é uma coleção de elementos com características
Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 1 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Historicamente sabe-se que 10% dos artigos de uma firma são de segunda qualidade. Um inspetor de controle
Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico
Lista de Exercícios 1 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Historicamente sabe-se que 10% dos artigos de uma firma são de segunda qualidade. Um inspetor de controle
Distribuições Bernoulli e Binomial
Distribuições Bernoulli e Binomial Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 04 de junho de 2018 Londrina 1 / 12 Distribuição Bernoulli Nos experimentos
INTRODUÇÃO À PROBABILIDADE
INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo
PROBABILIDADE. ENEM 2016 Prof. Marcela Naves
PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.
Probabilidade - EBC I Prof. Douglas Léo
1 (ESGRANRIO - PETROBRÁS - ADMINIST- 2010 Em um posto de combustíveis entram, por hora, cerca de 300 clientes. Desses, 210 vão colocar combustível, 130 vão completar o óleo lubrificante e 120 vão calibrar
Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas. Probabilidades. Cristian Villegas
Probabilidades Cristian Villegas [email protected] Setembro de 2013 Apostila de Estatística (Cristian Villegas) 1 Introdução Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas
1. (Meyer,2000) Suponha que o conjunto fundamental seja formado pelos inteiros positivos
Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Disciplina: LCE0211-Estatística Geral Prof. Idemauro Antonio Rodrigues de Lara 4 a lista de exercícios 1. (Meyer,2000) Suponha que
Modelos de Probabilidade e Inferência Estatística
Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 1 03/14 1 / 49 Conceitos Fundamentais Prof. Tarciana Liberal
Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 1 04/14 1 / 35
Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 1 04/14 1 / 35 Prof. Tarciana Liberal (UFPB) Aula 1 04/14 2 / 35 Prof. Tarciana Liberal (UFPB)
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Considere um dado cúbico, com as faces numeradas de 1 a 6, e um saco que contém cinco bolas, indistinguíveis
Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Gravitação F = GM 1 M 2 /r 2. Aceleração clássica. v = at. Aceleração relativística
Determinístico Sistema Real Prof. Lorí Viali, Dr. [email protected] http://www.mat.ufrgs.br/~viali/ Probabilístico Gravitação F GM 1 M 2 /r 2 Causas Efeito Aceleração clássica v at Aceleração relativística
