BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE
|
|
|
- Paulo Furtado Santarém
- 9 Há anos
- Visualizações:
Transcrição
1 01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP 016) Um dado convencional e uma moeda, ambos não viciados, serão lançados simultaneamente. Uma das faces da moeda está marcada com o número, e a outra com o número 6. A probabilidade de que a média aritmética entre o número obtido da face do dado e o da face da moeda esteja entre e é igual a A) 1 B) C) 1 D) E) 1 0. (EPCAR-AFA/016) Em uma mesa há dois vasos com rosas. O vaso A contém 9 rosas das quais tem espinhos e o vaso B contém 8 rosas sendo que exatamente 6 não tem espinhos. Retira-se, aleatoriamente, uma rosa do vaso A e coloca-se em B. Em seguida, retira-se uma rosa de B. A probabilidade de essa rosa retirada de B ter espinhos é A) 8 81 B) 1 81 C) D) 81 1
2 TEXTO PARA A PRÓXIMA QUESTÃO: O gráfico abaixo apresenta informações sobre os números de livros lidos no mês passado pelos alunos de uma determinada turma. Sabendo-se que a informação de todos os alunos consta nesse gráfico, e que não há aluno que leu mais de livros, utilize-o para responder à(s) questão(ões). (modificação no gráfico, para melhor representar a ideia envolvida) 0. (G1 - IFSP 016) Escolhido aleatoriamente um aluno dessa turma, a probabilidade de o aluno escolhido não ter lido livro no mês passado é: A),% B),7% C),% D) 1,7% E) 7,% 0. (EPCAR-AFA/01)Um jogo é decidido com um único lançamento do dado cuja planificação está representada abaixo. Participam desse jogo quatro pessoas: Carlos, que vencerá o jogo se ocorrer face preta ou menor que ; José vencerá se ocorrer face branca e número primo; Vicente vencerá caso ocorra face preta e número par; Antônio vencerá se ocorrer face branca ou número menor que. Nessas condições, é correto afirmar que A) Vicente não tem chance de vencer. B) Carlos tem, sozinho, a maior probabilidade de vencer. C) a probabilidade de José vencer é o dobro da de Vicente. D) a probabilidade de Antônio vencer é maior do que a de Carlos.
3 06. (FUVEST 01) De um baralho de 8 cartas, sete de cada naipe, Luís recebe cinco cartas: duas de ouros, uma de espadas, uma de copas e uma de paus. Ele mantém consigo as duas cartas de ouros e troca as demais por três cartas escolhidas ao acaso dentre as cartas que tinham ficado no baralho. A probabilidade de, ao final, Luís conseguir cinco cartas de ouros é: 1 A) 10 1 B) 0 10 C) 1771 D) 7117 E) (ESPM 01) Escolhendo-se ao acaso dois algarismos distintos do sistema decimal de numeração, a probabilidade de que a soma deles seja um número primo é: A) 0% B) 0% C) 0% D) % E) % 08. (MACKENZIE 01) Em uma das provas de uma gincana, cada um dos membros de cada equipe deve retirar, ao acaso, uma bola de uma urna contendo bolas numeradas de 1 a 10, que deve ser reposta após cada retirada. A pontuação de uma equipe nessa prova é igual ao número de bolas com números pares sorteadas pelos seus membros. Assim, a probabilidade de uma equipe conseguir pelo menos um ponto é A) B) 7 8 C) 9 10 D) 11 1 E) (UNESP 01) Uma loja de departamentos fez uma pesquisa de opinião com consumidores, para monitorar a qualidade de atendimento de seus serviços. Um dos consumidores que opinaram foi sorteado para receber um prêmio pela participação na pesquisa. A tabela mostra os resultados percentuais registrados na pesquisa, de acordo com as diferentes categorias tabuladas. categorias percentuais ótimo regular péssimo 17 não opinaram 1
4 Se cada consumidor votou uma única vez, a probabilidade de o consumidor sorteado estar entre os que opinaram e ter votado na categoria péssimo é, aproximadamente, A) 0%. B) 0%. C) 6%. D) 9%. E) %. 10. (FGV 01) Dois dados convencionais e honestos são lançados simultaneamente. A probabilidade de que a soma dos números das faces seja maior que, ou igual a, é A) 6 B) C) 11 1 D) 8 9 E) 1 6 TEXTO PARA A PRÓXIMA QUESTÃO: Utilize as informações a seguir para a(s) quest(ões) abaixo. Esta figura mostra o alvo de uma academia de arco e flecha. A pontuação que um jogador recebe ao acertar uma flecha em cada uma das faixas circulares está indicada na respectiva faixa. O raio do círculo maior mede 60 cm, o do menor mede 10 cm e a diferença entre os raios de quaisquer dois círculos consecutivos é de 10 cm. Todos os círculos têm o mesmo centro.
5 11. (INSPER 01) O treinador de Rafael propôs a ele o cálculo de um índice de precisão que avalie a sua habilidade como atirador. Para calculá-lo, Rafael precisa: - multiplicar cada pontuação possível do alvo pela probabilidade de ele acertar uma flecha na faixa correspondente; - somar os resultados das multiplicações feitas para as 6 faixas. Rafael registrou na tabela a seguir as pontuações que ele obteve durante um treino no qual ele lançou 00 flechas. Pontuação Acertos Usando os dados da tabela para estimar as probabilidades, o índice de precisão de Rafael é A) 96. B) 97. C) 98 D) 99. E) (FUVEST 01) O gamão é um jogo de tabuleiro muito antigo, para dois oponentes, que combina a sorte, em lances de dados, com estratégia, no movimento das peças. Pelas regras adotadas, atualmente, no Brasil, o número total de casas que as peças de um jogador podem avançar, numa dada jogada, é determinado pelo resultado do lançamento de dois dados. Esse número é igual à soma dos valores obtidos nos dois dados, se esses valores forem diferentes entre si; e é igual ao dobro da soma, se os valores obtidos nos dois dados forem iguais. Supondo que os dados não sejam viciados, a probabilidade de um jogador poder fazer suas peças andarem pelo menos oito casas em uma jogada é A) 1 B) 1 C) 17 6 D) 1 E) (ESPM 01) A distribuição dos alunos nas turmas de um curso é mostrada na tabela abaixo. A B C Homens 6 6 Mulheres 8 Escolhendo-se uma aluna desse curso, a probabilidade de ela ser da turma A é: A) 1 B) 1 C) 1 D) E) 7
6 1. (ESPCEX-AMAN/01) Se escolhermos, ao acaso, um elemento do conjunto dos divisores inteiros positivos do número 60, a probabilidade de esse elemento ser um número múltiplo de 1 é: A) 1 B) C) 1 D) E) 8 1. (FGV 01) Dois eventos A e B de um espaço amostral são independentes. A probabilidade do evento A é P(A) 0, P A B 0,8. e a probabilidade da união de A com B é Pode-se concluir que a probabilidade do evento B é: A) /6 B) / C) / D) / E) 1/ 16. (G1 - IFSP 01) O sangue humano é classificado em quatro tipos: A, B, AB e O. Além disso, também pode ser classificado pelo fator Rh em: Rh+ ou Rh. As pessoas do tipo O com Rh são consideradas doadoras universais e as do tipo AB com Rh+ são receptoras universais. Feita uma pesquisa sobre o tipo sanguíneo com 00 funcionários de uma clínica de estética, o resultado foi exposto na tabela a seguir. A B AB O Rh+ 7 Rh Um desses 00 funcionários será sorteado para um tratamento de pele gratuito. A probabilidade de que o sorteado seja doador universal é A) 7,%. B) 10%. C) 1%. D) 17,%. E) 0%. 17. (MACKENZIE 01) Em uma secretaria, dois digitadores atendem departamentos. Se em cada dia útil um serviço de digitação é solicitado por departamento a um digitador escolhido ao acaso, a probabilidade de que, em um dia útil, nenhum digitador fique ocioso, é A) 1 B) C) 7 8 D) E) 8 6
7 18. (UNICAMP/01) Um caixa eletrônico de certo banco dispõe apenas de cédulas de 0 e 0 reais. No caso de um saque de 00 reais, a probabilidade do número de cédulas entregues ser ímpar é igual a A) 1. B). C). D). TEXTO PARA A PRÓXIMA QUESTÃO: Em um curso de computação, uma das atividades consiste em criar um jogo da memória com as seis cartas mostradas a seguir. Inicialmente, o programa embaralha as cartas e apresenta-as viradas para baixo. Em seguida, o primeiro jogador vira duas cartas e tenta formar um par. 19. (INSPER 01) A probabilidade de que o primeiro jogador forme um par em sua primeira tentativa é A) 1. B) 1. C) 1. D) 1. E) Resposta: [C] GABARITO COMENTADO ()! Existem P modos de obter exatamente três caras em lançamentos. Por outro lado, existem! apenas duas maneiras de obter caras consecutivamente: ccck e kccc. Em consequência, a probabilidade pedida é, ou seja, 1. 7
8 0.Resposta: [A] Seja x a média aritmética entre o número obtido no dado e o da face da moeda. Lançando simultaneamente o dado e a moeda, é possível obter 6 1 resultados distintos. Supondo x ], [, tem-se que os eventos favoráveis são (1, 6), (, ),(, ) e (,). Em consequência, podemos afirmar que a probabilidade pedida é, 1 ou seja, Resposta: [D] Para saber a probabilidade total da rosa retirada do vaso B ter espinhos é preciso analisar os dois cenários da primeira rosa retirada do vaso A e colocada em B. Cenário 1: rosa retirada do vaso A e colocada em B tem espinhos. Probabilidade de retirar uma rosa com espinhos do vaso A: 9 ( rosas com espinhos do total 9) Probabilidade de, após a colocação de uma rosa com espinhos em B, retirar uma rosa com espinhos do vaso B: 9 ( rosas com espinhos do novo total 8 1 9) 1 que é a probabilidade do cenário 1 acontecer Cenário : rosa retirada do vaso A e colocada em B não tem espinhos. Probabilidade de retirar uma rosa sem espinhos do vaso A: 9 ( rosas sem espinhos do total 9) Probabilidade de, após a colocação de uma rosa com espinhos em B, retirar uma rosa com espinhos do vaso B: 9 ( rosas com espinhos do novo total 8 1 9) 8 que é a probabilidade do cenário acontecer A probabilidade total final de se retirar uma rosa com espinhos do vaso B será a soma das probabilidades destes dois cenários previstos: Resposta: [E] A turma possui alunos. Logo, como alunos não leram nenhum livro no mês passado, segue que a probabilidade pedida é 100% 7,%. 0 0.Resposta: [C] Sejam A, C, J e V, respectivamente, os eventos que representam as vitórias de Antônio, Carlos, José e Vicente. Logo, segue que A {1,,, 6}, C {1,,, }, J {, } e V {}. Em consequência, como o espaço amostral possui 6 eventos, podemos concluir que a probabilidade de vitória de cada um dos jogadores, na ordem estabelecida anteriormente, é 1,, e
9 Portanto, a probabilidade de José vencer é o dobro da de Vicente. 06.Resposta: [C]! Luís pode receber cartas de ouros de 10 maneiras e cartas quaisquer de!!! modos. Portanto, segue que a probabilidade pedida é igual a.! 0! Resposta: [B] O número total de possibilidades de se escolher algarismos ao acaso entre os 10 algarismos disponíveis é de: 10! ! 90 C10 C10 possibilidades!(10 )! 8! O número total de possibilidades de escolha de dois algarismos cuja soma é um número primo é igual a: possibilidades Logo, a probabilidade de que, escolhendo-se ao acaso dois algarismos distintos, a soma deles seja um número primo é: 18 P 0, 0% 08. Resposta: [E] A probabilidade de um membro retirar uma bola ímpar é 1. Assim, a probabilidade de que a equipe não consiga nenhum ponto é. Portanto, segue que a resposta é Resposta: [A] A probabilidade pedida é dada por % 0% Resposta: [D] O evento complementar do evento soma maior do que, ou igual a, é soma menor do que ou igual a, e diferente de, ou seja, {(1,1), (1, ), (,1), (, )}. Assim, como o espaço amostral possui elementos, segue que a resposta é
10 11. Resposta: [A] O índice pedido é dado por: Resposta: [C] Existem resultados possíveis, e os casos favoráveis são (, ), (, 6), (, ), (, ), (, 6), (, ), (, ), (, 6), (, ), (, ), (, ), (, 6), (6, ), (6, ), (6, ), (6, ) e (6, 6). Portanto, a probabilidade pedida é Resposta: [B] Queremos calcular a probabilidade condicional P(A aluna). Sabemos que a turma A possui 8 alunas e que o total de alunas do curso é igual a 8 8. Portanto, a probabilidade pedida é Resposta: [C] 60 =.. Número de divisores positivos de 60: ( + 1).( + 1).( 1 + 1) = Divisores de 60 que são múltiplos de 1: {1,,6,60,7,10,180,60} n = 8 Portanto, a probabilidade pedida será: P = 8/ = 1/. 1. Resposta: [D] Desde que A e B são independentes, tem-se P(A B) P(A) P(B). Portanto, do Teorema da Soma, vem P(A B) P(A) P(B) P(A B) 0,8 0, P(B) 0, P(B) 0, P(B) 0,6 P(B). 10
11 16. Resposta: [C] 0 1 1% Resposta: [B] Cada departamento pode solicitar um digitador de maneiras distintas. Logo, pelo Princípio Multiplicativo, os três departamentos podem solicitar um digitador de 8 modos em um dia útil. Por outro lado, um dos digitadores ficará ocioso, em um dia útil, desde que o outro digitador seja solicitado por todos os departamentos, e isso pode ocorrer de maneiras. Em consequência, a probabilidade pedida é dada por Resposta: [B] Sejam x, y e n, respectivamente, o número de cédulas de 0 reais, o número de cédulas de 0 reais e o número total de cédulas, isto é, n x y. Logo, para um saque de 00 reais, temos: 0x 0y 00 n x y 0 x 0 0 y 8 n 0 x 0 x 0 0 y 8 Como 0 x é um múltiplo de, por inspeção, encontramos Ω {(x, y) ; (0, 8), (, 6), (10, ), (1, ), (0, 0)}.. Portanto, como os únicos casos favoráveis são (, 6) e (1, ), segue-se que a probabilidade pedida é igual a. 19. Resposta: [D] Virando a primeira carta, a probabilidade de que a próxima forme um par é igual a 1, cinco cartas restantes é igual à primeira. pois apenas uma das 11
Resposta: Resposta: 4 ou seja, 1.
1. (Unicamp 2016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a a) 1. 4 b). 8 c) 1. 2 d). 4
MATEMÁTICA MÓDULO 4 PROBABILIDADE
PROBABILIDADE Consideremos um experimento com resultados imprevisíveis e mutuamente exclusivos, ou seja, cada repetição desse experimento é impossível prever com certeza qual o resultado que será obtido,
Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução
Introdução PROBABILIDADE Há certos fenômenos (ou experimentos) que, embora sejam repetidos muitas vezes e sob condições idênticas, não apresentam os mesmos resultados. Por exemplo, no lançamento de uma
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES
COLEÇÃO DARLAN MOUTINHO VOL. 0 RESOLUÇÕES Me ta PÁGINA 8 0 0 Havendo apenas bolas verdes e azuis na urna, segue que a resposta é dada por Basta dividirmos o número de ocorrências, pelo número total de
Exercícios de Aprofundamento Mat. Combinação e Probabilidade
1. (Unifesp 2015) Um tabuleiro de xadrez possui 64 casas quadradas. Duas dessas casas formam uma dupla de casas contíguas se estão lado a lado, compartilhando exatamente um de seus lados. Veja dois exemplos
PROBABILIDADE. c) 1/4 d) 1/12 e) nda MATQUEST PROBABILIDADE PROF.: JOSÉ LUÍS
MATQUEST PROBABILIDADE PROF.: JOSÉ LUÍS PROBABILIDADE 1- (Osec-SP) Foram preparadas noventa empadinhas de camarão, sendo que, a pedido, sessenta delas deveriam ser bem mais apimentadas. Por pressa e confusão
REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO ALUNO(A): Nº: MATEMÁTICA
REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul MATEMÁTICA 0. (UFRGS - VESTIBULAR 205) Escolhe-se
Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr.
1 Ciclo 3 Encontro 2 PROBABILIDADE Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. Probabilidade 2 Texto: Módulo Introdução à Probabilidade O que é probabilidade? parte 1 de Fabrício Siqueira
PROBABILIDADE PROPRIEDADES E AXIOMAS
PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos
PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA
PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço
01 - (UEM PR) um resultado "cara sobre casa preta" é (MACK SP)
ALUNO(A): Nº TURMA: 2º ANO PROF: Claudio Saldan CONTATO: [email protected] LISTA DE EXERCÍCIOS PROBABILIDADE 0 - (UEM PR) Considere a situação ideal na qual uma moeda não-viciada, ao ser lançada sobre
Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema.
PROBABILIDADE CONDICIONAL E DISTRIBUIÇÃO BINOMINAL 1. PROBABILIDADE CONDICIONAL Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema. Suponha que um redator
Lista de exercícios de Matemática Eventos, espaço amostral e definição de probabilidade. Probabilidade condicional. Exercícios gerais.
p: João Alvaro w: www.matemaniacos.com.br e: [email protected]. No lançamento de dois dados, D e D 2, tem-se o seguinte espaço amostral, dado em forma de tabela de dupla entrada. Lista de exercícios
Prof.: Joni Fusinato
Introdução a Teoria da Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE Prof. Aurimenes A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios.
Probabilidade em espaços discretos. Prof.: Joni Fusinato
Probabilidade em espaços discretos Prof.: Joni Fusinato [email protected] [email protected] Probabilidade em espaços discretos Definições de Probabilidade Experimento Espaço Amostral Evento Probabilidade
Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise
Probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Você reconhece algum desses experimentos? Alguns
EXERCÍCIOS REVISIONAIS SOBRE BINÔMIO DE NEWTON SISTEMAS LINEARES PROBABILIDADE 2 ANO
QUESTÃO 1: Uma urna contém 4 bolas vermelhas, 6 pretas e 5 azuis. Retirando-se dessa urna, ao acaso, uma bola, CALCULE a probabilidade de ela: ser vermelha. ser vermelha ou preta. não ser azul. QUESTÃO
Exercícios. 1. (Uerj 2017) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes:
Probabilidade - Questões Extras Exercícios 1. (Uerj 01) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes: A {0, 1,, 3, 4, 5, 6,, 8, 9} 1. Cada número primo de A foi multiplicado
= 3 modos de escolher duas pessoas 2
01. x/(x+0) /3 ó x 40 Resposta: E 0. [E] RESOLUÇÃO REVENEM 3 De acordo com o gráfico, temos que o número total de filhos é dado por 71 + 6 + 3. Portanto, como sete mães tiveram um único filho, segue que
Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.
Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com
Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.
Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com
REGRAS PARA CÁLCULO DE PROBABILIDADES
REGRAS PARA CÁLCULO DE PROBABILIDADES Prof. Dr. Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ 15 de abril de 2019 Londrina 1 / 17 As probabilidades sempre se referem a ocorrência de eventos
Matemática. Probabilidade Básica. Professor Dudan.
Matemática Probabilidade Básica Professor Dudan www.acasadoconcurseiro.com.br Matemática PROBABILIDADE Denifinição 0 P 1 Eventos favoráveis Probabilidade = Total de eventos 1. Se a probabilidade de chover
1) Calcular a probabilidade de se obter 2 prêmios ao abrirem-se 2 círculos de uma mesa com 25 círculos dos quais 5 são premiados.
COLÉGIO SANTA MARIA Matemática I / II - Professor: Flávio Verdugo Ferreira Lista de exercícios: Probabilidades 1) Calcular a probabilidade de se obter 2 prêmios ao abrirem-se 2 círculos de uma mesa com
Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan
Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan Matemática Probabilidade Denifinição 0 P 1 Eventos favoráveis Probabilidade = Total de eventos 1. Se a probabilidade de chover num dia de
Módulo de Introdução à Probabilidade. O que é Probabilidade? 2 a série E.M.
Módulo de Introdução à Probabilidade O que é Probabilidade? a série E.M. Probabilidade O que é Probabilidade? 1 Exercícios Introdutórios Exercício 1. Qual a probabilidade de, aleatoriamente, escolhermos
Estatística Aplicada. Prof. Carlos Alberto Stechhahn EXERCÍCIOS - REVISÃO ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE. Administração. p(a) = n(a) / n(u)
Estatística Aplicada Administração p(a) = n(a) / n(u) EXERCÍCIOS - REVISÃO ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE Prof. Carlos Alberto Stechhahn 2014 1. Tema: Noções de Probabilidade 1) Considere o lançamento
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º Ensino Médio Professor: Elias Matemática Atividades para Estudos Autônomos Data: 7 / 8 / 2018 Aluno(: Nº: Turma: Assunto: ANÁLISE
AULA 08 Probabilidade
Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral
T o e r o ia a da P oba ba i b lida d de
Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que
Probabilidade Condicional (grupo 2)
page 39 Capítulo 5 Probabilidade Condicional (grupo 2) Veremos a seguir exemplos de situações onde a probabilidade de um evento émodificadapelainformação de que um outro evento ocorreu, levando-nos a definir
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Considere um dado cúbico, com as faces numeradas de 1 a 6, e um saco que contém cinco bolas, indistinguíveis
Portal da OBMEP. Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE. Fração como Probabilidade. Sexto Ano do Ensino Fundamental
Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE Fração como Probabilidade Sexto Ano do Ensino Fundamental Prof. Francisco Bruno Holanda Prof. Antonio Caminha Muniz Neto 1 Introdução
b) 35 c) 14 d) 35 Gab: D
0 - (PUC SP/006) Em um ônibus há apenas bancos vazios, cada qual com lugares. Quatro rapazes e quatro moças entram nesse ônibus e devem ocupar os bancos vagos. Se os lugares forem escolhidos aleatoriamente,
EXERCÍCIOS DE SALA EXERCÍCIOS PROPOSTOS
Professor: Thiago Pacífico OSG 47/16 EXERCÍCIOS DE SALA 1 4 6 7 8 9 10 B C A B A C C A B C 11 1 1 14 1 16 17 18 19 0 C D E B A D B D B B EXERCÍCIOS PROPOSTOS 1. Calculando as probabilidades linha a linha:
Aulas particulares. Conteúdo
Conteúdo Capítulo 6...2 Probabilidade...2 Exercícios...4 Restpostas...9 Capítulo 7... 12 Análise combinatória... 12 Fatorial... 12 Arranjo... 13 Combinação... 16 Exercícios... 17 Respostas... 22 1 Capítulo
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução
MATEMÁTICA A - 1o Ano Probabilidades - Noções gerais Propostas de resolução Exercícios de exames e testes intermédios 1. Organizando todos os resultados possíveis para os dois números possíveis de observar,
CAPÍTULO 3 PROBABILIDADE
CAPÍTULO 3 PROBABILIDADE 1. Conceitos 1.1 Experimento determinístico Um experimento se diz determinístico quando repetido em mesmas condições conduz a resultados idênticos. Exemplo 1: De uma urna que contém
4. Seja A o acontecimento associado a uma experiência aleatória em que o espaço amostral é Quais as igualdades necessariamente falsas?
mata. Lançou-se 70 vezes um dado em forma de tetraedro com as faces numeradas de a e obteve-se vezes a face, 0 vezes a face, vezes a face e as restantes a face. Determine a frequência relativa dos acontecimentos:
ESPAÇO AMOSTRAL E EVENTO. 2) Jogando um dado ideal e anotando a face voltada para cima, teremos o espaço amostral E= {1,2,3,4,5,6}
NOÇÕES DE PROBABILIDADE O estudo da probabilidade vem da necessidade de em certas situações, prevermos a possibilidade de ocorrência de determinados fatos. EXPERIMENTOS ALEATÓRIOS Experimentos aleatórios
TRABALHO DE RECUPERAÇÃO FINAL DE MATEMÁTICA. ( Segundos Técnicos ) NOME: TURMA: Nº PROFESSOR: Daniel Verotti_
TRABALHO DE RECUPERAÇÃO FINAL DE MATEMÁTICA ( Segundos Técnicos ) NOME: TURMA: Nº PROFESSOR: Daniel Verotti_ Análise Combinátoria, Probabilidade, Matrizes e Determinantes A resolução detalhada das questões
MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos
MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Exercícios de exames e testes intermédios 1. Seja Ω o espaço amostral (espaço de resultados) associado a uma certa experiência
LISTA 29 - PROBABILIDADE 1
LISTA 9 - PROBABILIDADE ) Um time de futebol amador ganhou uma taça ao vencer um campeonato. Os jogadores decidiram que o próprio seria guardado na casa de um deles. Todos quiseram guardar a taça em suas
Aula de Probabilidade
Aula de Probabilidade Experimento Aleatório: É todo experimento que, quando repetido várias vezes e sob as mesmas condições, não apresenta os mesmos resultados. O lançamento de um dado e de uma moeda são
Questão 01 - (FGV /2015)
SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR SARGENTO NADER ALVES DOS SANTOS SÉRIE/ANO: ª Série
Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a
Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a probabilidade se sair bola: a. azul; b. vermelha; c. amarela. 2.
Noções sobre Probabilidade
Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de
Aula 16 - Erivaldo. Probabilidade
Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar
3º trimestre Sala de estudos Data: 29/09/17 Ensino Médio 2º ano classe: Prof. Maurício Nome: nº
º trimestre Sala de estudos Data: 9/09/7 Ensino Médio º ano classe: Prof. Maurício Nome: nº. (Acafe 07) Uma prova consta de 7 questões de múltipla escolha, com 4 alternativas cada uma, e apenas uma correta.
3. Probabilidade P(A) =
7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de
Processos Estocásticos
Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer
TESTE GLOBAL PROBABILIDADES 12.º ANO
TESTE GLOBAL PROBABILIDADES 2.º ANO NOME: N.º: TURMA: ANO LETIVO: / DATA: / / DURAÇÃO DO TESTE: 90 MINUTOS VERSÃO 2 Na tua folha de respostas, indica de forma legível a versão do teste. FORMULÁRIO Probabilidades
LEIA ATENTAMENTE AS INSTRUÇÕES
Matemática e suas Tecnologias CÓDIGO DA PROVA / SIMULADO Aluno(a): POMA - Matemática Questões Professores: Neydiwan PC 0-0 - 4 ª Série º Bimestre - N 0 / 06 / 06 LEIA ATENTAMENTE AS INSTRUÇÕES Este caderno
Regras de probabilidades
Regras de probabilidades Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 16 de maio de 2018 Londrina 1 / 17 Propriedades As probabilidades sempre se referem a
A tabela abaixo apresenta a distribuição dos equipamentos de uma grande empresa.
A tabela abaixo apresenta a distribuição dos equipamentos de uma grande empresa. Qual é a probabilidade de que um equipamento selecionado aleatoriamente esteja inativo ou seja do tipo A? a) 6/27 b) 14/27
3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três.
1 a Lista de Exercício - Estatística (Probabilidade) Profa. Ms. Ulcilea A. Severino Leal Algumas considerações importantes sobre a resolução dos exercícios. (i) Normas da língua culta, sequência lógica
Matemática & Raciocínio Lógico
Matemática & Raciocínio Lógico para concursos Prof. Me. Jamur Silveira www.professorjamur.com.br facebook: Professor Jamur PROBABILIDADE No estudo das probabilidades estamos interessados em estudar o experimento
c) 17 b) 4 17 e) 17 21
Probabilidade I Exercícios. Dois jogadores A e B vão lançar um par de dados. Eles combinam que se a soma dos números dos dados for 5, A ganha e se a soma for 8, B é quem ganha. Os dados são lançados. Sabe-se
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias Matemática Atividades para Estudos Autônomos Data: 5 / 6 / 2017 Aluno(a): N o : Turma: 1) (Ufes)
Lista Extra:Probabilidade +10-Mat1-2 anos
Lista Extra:Probabilidade +10-Mat1-2 anos 1. (Upe 2014) Dois atiradores, André e Bruno, disparam simultaneamente sobre um alvo. - A probabilidade de André acertar no alvo é de 80%. - A probabilidade de
Nome: n o : Recuperação de Matemática 3ª. E.M. 2017
Nome: n o : Ensino: Médio Série: 3ª. Turma: Data: Professor: Márcio Recuperação de Matemática 3ª. E.M. 017 Números Complexos 1. Sejam os números complexos z 1 = x 5 + ( + y)i e z = 4 3i. Determine x e
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Uma pessoa lança um dado cúbico, com as faces numeradas de 1 a 6, e regista o número da face que ficou
MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos
MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Exercícios de exames e testes intermédios 1. Seja Ω, conjunto finito, o espaço de resultados associado a uma certa experiência
ESCOLA SECUNDÁRIA DE CASQUILHOS
ESCOLA SECUNDÁRIA DE CASQUILHOS 12º Ano Turma B - C.C.H. de Ciências e Tecnologias - 1ª Teste de Avaliação de Matemática A V1 Duração: 90 min 04 Nov. 09 Prof.: Na folha de respostas, indicar de forma legível
é um número natural 1. (Espcex (Aman) 2016) A solução da equação
Lista de Exercícios: Substitutiva e A.P.E. 3º Trimestre 1. (Espcex (Aman) 2016) A solução da equação a) maior que nove. b) ímpar. c) cubo perfeito. d) divisível por cinco. e) múltiplo de três. 3!(x 1)!
Lista de Análise Combinatória Pré-vestibular Noturno Professor: Leandro (Pinda)
Lista de Análise Combinatória Pré-vestibular Noturno Professor: Leandro (Pinda) 1. (Famerp 2018) Lucas possui 6 livros diferentes e Milton possui 8 revistas diferentes. Os dois pretendem fazer uma troca
REGRAS DE PROBABILIDADE
REGRAS DE PROBABILIDADE Lucas Santana da Cunha [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 24 de maio de 2017 Propriedades As probabilidades sempre se referem a
2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2
GET00189 Probabilidade I Lista de exercícios - Capítulo 1 Profa. Ana Maria Lima de Farias SEÇÃO 1.1 Experimento aleatório, espaço amostral e evento 1. Lançam-se três moedas. Enumere o espaço amostral e
Matemática E Extensivo V. 5
Extensivo V. Exercícios 0) Casos possíveis: {,,,,, } Casos favoráveis: {,, } Assim, a probabilidade é: 0) 70% P Casos possíveis: 7 + 0 possibilidades Casos favoráveis: 7 (7 bolas pretas) P 7 0,7 70% 0
Probabilidades Aulas 55 e 56 prof. Aguiar
Probabilidades Aulas 55 e 56 prof. Aguiar - 2013 Extra 1: Uma urna contém 3 bolas brancas, 2 bolas vermelhas e 2 bolas pretas. Sorteamos 4 bolas, sucessivamente e sem reposição. Qual é a probabilidade
PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 2 07 e 08 março MOQ-12 Probabilidades e Int. a Processos Estocásticos
PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 2 07 e 08 março 2007 1 1. Probabilidade Condicional 2. Propriedades 3. Partições 4. Teorema de Probabilidade Total 5. Teorema de Bayes 6. Independencia
TEMA 1 COMBINATÓRIA E PROBABILIDADES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 COMBINATÓRIA E PROBABILIDADES
FICHAS DE TRABALHO.º ANO COMPILAÇÃO TEMA COMBINATÓRIA E PROBABILIDADES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA COMBINATÓRIA E PROBABILIDADES Matemática A.º Ano
Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES
Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES 1) Determine a probabilidade de cada evento: a) Um nº par aparece no lançamento de um dado; b) Uma figura
PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti
Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de incerteza que existe em um determinado experimento.
ANÁLISE COMBINATÓRIA II E PROBABILIDADE
1. (Fac. Albert Einstein - Medicina 2016) Suponha que nos Jogos Olímpicos de 2016 apenas um representante do Brasil faça parte do grupo de atletas que disputarão a final da prova de natação dos 100 metros
PROBABILIDADE CONDICIONAL E TEOREMA DE BAYES
PROBABILIDADE CONDICIONAL E TEOREMA DE BAYES Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 08 de junho de 2016 Probabilidade Condicional
MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução
MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução Exercícios de exames e testes intermédios 1. Como P (B) = 1 P ( B ) = P (B) P (A B) vem que P (B) = 1 0,7
Aula 10 - Erivaldo. Probabilidade
Aula 10 - Erivaldo Probabilidade Experimento determinístico Dizemos que um experimento é determinístico quando repetido em condições semelhantes conduz a resultados idênticos. Experimento aleatório Dizemos
Estatística. Disciplina de Estatística 2011/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa
Estatística Disciplina de Estatística 20/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa Estatística Inferencial Estudos das Probabilidades (noção básica) Amostragens e Distribuição
Estatística: Probabilidade e Distribuições
Estatística: Probabilidade e Distribuições Disciplina de Estatística 2012/2 Curso: Tecnólogo em Gestão Ambiental Profª. Ms. Valéria Espíndola Lessa 1 Aula de Hoje 23/11/2012 Estudo da Probabilidade Distribuição
1 Definição Clássica de Probabilidade
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica
Q05. Ainda sobre os eventos A, B, C e D do exercício 03, quais são mutuamente exclusivos?
LISTA BÁSICA POIA PROBABILIDADES A história da teoria das probabilidades teve início com os jogos de cartas, de dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo
2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2
GET00116 Fundamentos de Estatística Aplicada Lista de exercícios Probabilidade Profa. Ana Maria Lima de Farias Capítulo 1 Probabilidade: Conceitos Básicos 1. Lançam-se três moedas. Enumere o espaço amostral
PROBABILIDADE. Luciana Santos da Silva Martino. PROFMAT - Colégio Pedro II. 01 de julho de 2017
Sumário PROBABILIDADE Luciana Santos da Silva Martino PROFMAT - Colégio Pedro II 01 de julho de 2017 Sumário 1 Conceitos Básicos 2 Probabildade Condicional 3 Espaço Amostral Infinito Outline 1 Conceitos
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema I Probabilidades e Combinatória. 1º Teste de avaliação.
Escola Secundária com º ciclo D. Dinis 1º Ano de Matemática A Tema I Probabilidades e Combinatória 1º Teste de avaliação Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas
Lista 1 Matemática Pré-Vestibular Probabilidade
/0 Lista Matemática Pré-Vestibular Probabilidade PROF. WANZELLER. (ACAFE 0) Uma gaveta tem duas bolas azuis, três bolas brancas e cinco bolas vermelhas. Considere as afirmações a seguir, assinalando V
O conceito de probabilidade
A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de
TEORIA DAS PROBABILIDADES
TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 22/05/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 22/05/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA Dado um pentágono regular ABCDE, constrói-se uma circunferência pelos vértices B e E de
INTRODUÇÃO À PROBABILIDADE
INTRODUÇÃO À PROBABILIDADE Análise e Elaboração de Projetos Apresentação Prof Dr Isnard Martins Conteúdo: Profº Dr Carlos Alberto (Caio) Dantas Profº Dr Luiz Renato G. Fontes Prof Dr Victor Hugo Lachos
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 22/05/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 22/05/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA Dado um pentágono regular ABCDE, constrói-se uma circunferência pelos vértices B e E de
ANÁLISE COMBINATÓRIA E PRINCÍPIO FUNDAMENTAL DA CONTAGEM
1. (Fac. Albert Einstein - Medicin 2016) Suponha que nos Jogos Olímpicos de 2016 apenas um representante do Brasil faça parte do grupo de atletas que disputarão a final da prova de natação dos 100 metros
Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística. Probabilidades
Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística Probabilidades Aluna(o): Aluna(o): Turma: Responsável: Prof. Silvano Cesar da Costa L O N D R I N A Estado do Paraná
Exercícios de Probabilidade - Lista 1. Profa. Ana Maria Farias
Exercícios de Probabilidade - Lista 1 Profa. Ana Maria Farias 1. Lançam-se três moedas. Enumere o espaço amostral e os eventos A = faces iguais ; B = cara na primeira moeda ; C = coroa na segunda e terceira
