= 3 modos de escolher duas pessoas 2
|
|
|
- Octavio Dinis
- 6 Há anos
- Visualizações:
Transcrição
1 01. x/(x+0) /3 ó x 40 Resposta: E 0. [E] RESOLUÇÃO REVENEM 3 De acordo com o gráfico, temos que o número total de filhos é dado por Portanto, como sete mães tiveram um único filho, segue que a probabilidade pedida é [D] De acordo com o gráfico, a única peixaria que vende peixes frescos na condição ideal é a V. Portanto, a probabilidade pedida é [E] 34 atropelamentos (10 com mortes e 4 sem mortes) 0. [D] Sejam os eventos A: amostra pertence à cultura A e B: amostra escolhida germinou. Queremos calcular a probabilidade condicional P(A B). Portanto, de acordo com os dados da tabela, temos n(a B) 39 que P(A B). n(b) [D] O número total de espécies animais é dado por Portanto, a probabilidade pedida é dada por 09. [C] Possíveis resultados para: Arthur: {(1,11); (,10); (3,9); (4,8); (,7)} ( possibilidades); Bernardo: {(,1); (3,14); (4,13); (,1); (6,11); (7,10);(8,9)} (7 possibilidades); Caio: {(7,1); (8,14); (9,13); (10,1)} (4 possibilidades); Portanto, Bernardo apresenta mais chances de vencer. 10. [C] Cursando Não Cursando Total Homem Mulher Total Portanto, a probabilidade do fato ocorrer é: 40 P(A) 0, [B] 3 Existem 3 modos de escolher duas pessoas dentre aquelas que pretendem fazer intercâmbio no 10 10! Chile, e 4 maneiras de escolher duas! 8! pessoas quaisquer. Logo, a probabilidade pedida é [D] Considere a figura % 49,96% [D] [E] O espaço amostral da escolha de Rafael terá 4 elementos e sua escolha, de acordo com as condições do problema, poderá ser Rural, Residencial Urbano ou Residencial Suburbano. Logo, a probabilidade será: 3 4. A região indicada é a que João tem a menor probabilidade de acertar. Nessa região ele ganha 4 prêmios. 1
2 13. [A] Observando que de 11 a 19 existem cinco números ímpares e quatro números pares, segue que o primeiro e o último cartão devem ser, necessariamente, ímpares. Desse modo, existem! modos de dispor os cartões ímpares e 4! modos de dispor os cartões pares. Portanto, como existem 9! maneiras de empilhar os nove cartões aleatoriamente, a probabilidade pedida é 18. [D] De acordo com os dados da tabela, obtemos o seguinte diagrama.! 4!! ! ! [B] A probabilidade de um parafuso escolhido ao acaso ser defeituoso é dada por P(A e defeituoso) + P(B e defeituoso) , Portanto, a probabilidade de um estudante selecionado ao acaso preferir apenas MPB é dada por % 11% [C] Considere o diagrama abaixo. 3, Daí, como <, segue-se que o desempenho conjunto dessas máquinas pode ser classificado [E] 100 0,09 0,91 91%. 16. [D] Número de elementos do espaço amostral: Evento A vencer: {(1,), (,4),(3,3),(4,),(,1), (1,6),(,),(3,4),(4,3),(,),(6,1),(,6),(3,),(4,4),(,3),(6, )} 16 Probabilidade de A vencer: Probabilidade de B vencer Logo, a resposta D é a adequada. 17. [C] 11 11% Queremos calcular a probabilidade condicional: n(saudável negativo) P(saudável negativo). n(negativo) Portanto, de acordo com o diagrama, temos que 380 P(saudável negativo) [A] O jogador I converte chutes em gol com probabilidade 4 3, enquanto que o jogador II converte chutes em gol com probabilidade. 3 Portanto, como >, 4 3 para iniciar a partida. 7 3 o jogador I deve ser escolhido
3 1. [E] Sejam os eventos A: criança e B: tem problema respiratório causado pelas queimadas. Queremos calcular P(A B),ou seja, a probabilidade condicional de A dado B. Temos que n(a B) P(A B) n(b) , ) O dado A ganha do dado B com probabilidade de /3. O dado A só ganha de B -->> se A PA() 4/6 /3 --->>>>VERDADDEIRA ) O dado B ganha do dado C com probabilidade de /3. O dado B ganha do dado C só quando C PC() 4/6 /3 --->>> VERDADEIRA 3) O dado C ganha do dado A com probabilidade de /9. O dado C ganha do dado A quando [C E A 1] OU C 6 PC()xPA(1)+PC(6)(4/6)(/6)+(/6)0/36/9- >VERDADEIRA p11/1 3. [D] No método I, a probabilidade de um aluno do turno diurno ser sorteado é, enquanto que a probabilidade de um aluno do turno noturno ser sorteado é No método II, a probabilidade de um aluno do turno diurno ser sorteado é, enquanto que a probabilidade de um aluno do turno noturno ser sorteado é I. Verdadeira, pois (1/)(1/)(1/) 1/8 1,% II. Falsa, 3/8 III. Verdadeira, pois.(1/)(1/) 0,0 IV. Falsa, 0%. 6. [A] Supondo que serão utilizadas apenas as vogais a, e, i, o e u, segue-se, pelo Princípio Multiplicativo, que a resposta é Observação: Considerando o acordo ortográfico de 009, a questão não teria resposta. 7. [B] Para que o teste termine na quinta pergunta, o candidato deverá errar exatamente uma pergunta dentre as quatro primeiras e errar a quinta. Por conseguinte, o resultado é 4 (0,8) 3 0, 0, 4 0,1 0,04 0, Portanto, no método I, a probabilidade de um aluno do noturno ser sorteado é maior do que a de um aluno do diurno, enquanto no método II ocorre o contrário. 3
4 8. [A] Supondo que duas cartelas de um mesmo jogador não possuem 6 dezenas iguais, segue-se que Arthur, Bruno, Caio, Douglas e Eduardo possuem, respectivamente, as seguintes possibilidades de serem premiados: 7 8 0; ; ; e Portanto, como o número de casos possíveis para o resultado do sorteio é o mesmo para todos, podemos concluir que Caio e Eduardo são os que têm as maiores probabilidades de serem premiados. 9. [E] As cores que podem ficar com o maior número de bolas, após o procedimento de retirada e depósito, são a verde (3 ou 4) e a vermelha (4). Portanto, como a probabilidade de retirar uma bola verde da urna é , e a probabilidade de retirar uma bola vermelha da urna é , segue que o jogador deve escolher a cor vermelha. 30. [D] Considerando que as pessoas que não sabem e que não respondem não tenham banda larga acima de Mbps, temos: % 100 Observe o esquema que nos mostra as possíveis disposições dos algarismos 9 possibilidades Número total de possibilidades: 4! [D] O espaço amostral do lançamento dos dois dados é (1, 1), (1, ), (1, 3), (1, 4), (1, ), (1, 6), (, 1), (, ), (, 3), (, 4), (, ), (, 6), (3, 1), (3, ), (3, 3), (3, 4), (3, ), (3, 6), Ω. (4, 1), (4, ), (4, 3), (4, 4), (4, ), (4, 6), (, 1), (, ), (, 3), (, 4), (, ), (, 6), (6, 1), (6, ), (6, 3), (6, 4), (6, ), (6, 6) Desse modo, como a soma dos dados é igual a 6 em (,1), (4, ), (3, 3), (, 4) e (1, ), segue que a probabilidade de Pedro ganhar o sorteio é. 36 Por outro lado, os únicos resultados favoráveis a Tadeu e Ricardo são, respectivamente, (1, 1) e (6, 6). Logo, a probabilidade de Tadeu ou Ricardo ficarem com a taça 1 1 é Portanto, como >, Tadeu e Ricardo tinham razão, pois os dois juntos tinham menor probabilidade de ganhar a guarda da taça do que Pedro. 33. [A] De acordo com as informações do enunciado, podemos construir a seguinte tabela: Posição º B C º D B 3º C A 4º A D Portanto, como nenhum dos times obteve a mesma classificação no torneio em 004 e 00, segue que a probabilidade pedida vale zero (evento impossível). 4
5 34. [B] Considerando os dois setores juntos têm-se um semicírculo de Raio 10 km. Portanto, a probabilidade será dada por: π , % 39. [A] Devemos fazer uma permutação de 10 com repetição de 3, com repetição de 3 e com repetição de e com repetição de. 3,3,, 10! ! P ! 3!! 3! 3!!! 40. [C] Como possuem doze sufixos e em cada sufixo seis possíveis números e em cada número dez números possíveis temos: [D] Probabilidade não é algo exato, não significa que a cada dez anos cairá um raio, mas que existe chance de que isto ocorra, portanto a alternativa D é a correta. 36. [C] Seja (O, V, M) uma terna ordenada que denota a pontuação obtida em cada teste da escala de Glasgow. [A] Falsa. Considere o contraexemplo (3, 4, 6). [B] Falsa. Note que a terna (, 3, 6) contradiz a afirmação. [C] Verdadeira. De fato, pois em nenhuma das três ternas (1, 1, 6), (1,, 1) e (4,1,1) o trauma é moderado. [D] Falsa. Tome o contraexemplo (3, 4, ). [E] Falsa. É suficiente o contraexemplo (,1, 6). 37. [A] Existem 6 4 ternas de letras consecutivas e quadras de algarismos consecutivos. Assim, pelo Princípio Multiplicativo, segue que a resposta é [C] O resultado corresponde ao número de combinações simples de 7 vértices tomados a, isto é, 7 7! 1.!!
De quantas formas distintas a estratégia desse cliente poderá ser posta em prática?
1. (Enem 014) Um cliente de uma videolocadora tem o hábito de alugar dois filmes por vez. Quando os devolve, sempre pega outros dois filmes e assim sucessivamente. Ele soube que a videolocadora recebeu
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES
COLEÇÃO DARLAN MOUTINHO VOL. 0 RESOLUÇÕES Me ta PÁGINA 8 0 0 Havendo apenas bolas verdes e azuis na urna, segue que a resposta é dada por Basta dividirmos o número de ocorrências, pelo número total de
Matemática E Extensivo V. 5
Extensivo V. Exercícios 0) Casos possíveis: {,,,,, } Casos favoráveis: {,, } Assim, a probabilidade é: 0) 70% P Casos possíveis: 7 + 0 possibilidades Casos favoráveis: 7 (7 bolas pretas) P 7 0,7 70% 0
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES
COLEÇÃO DRLN MOUTINHO VOL. 01 RESOLUÇÕES Me ta PFC PÁGIN 22 01 LETR B 02 Do enunciado, temos: Há 3 possibilidades para a escolha do goleiro. O total de maneiras de escolher os outros três jogadores, após
Resposta: Resposta: 4 ou seja, 1.
1. (Unicamp 2016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a a) 1. 4 b). 8 c) 1. 2 d). 4
Matemática E Extensivo V. 5
Extensivo V. Exercícios 0) Casos possíveis: {,,,,, } Casos favoráveis: {,, } Assim, a probabilidade é: 0) 70% P Casos possíveis: 7 + 0 possibilidades Casos favoráveis: 7 (7 bolas pretas) P 7 0,7 70% 0
BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE
01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP
MATEMÁTICA MÓDULO 4 PROBABILIDADE
PROBABILIDADE Consideremos um experimento com resultados imprevisíveis e mutuamente exclusivos, ou seja, cada repetição desse experimento é impossível prever com certeza qual o resultado que será obtido,
Lista de exercícios de Matemática Eventos, espaço amostral e definição de probabilidade. Probabilidade condicional. Exercícios gerais.
p: João Alvaro w: www.matemaniacos.com.br e: [email protected]. No lançamento de dois dados, D e D 2, tem-se o seguinte espaço amostral, dado em forma de tabela de dupla entrada. Lista de exercícios
Resoluções de Exercícios
Resoluções de Exercícios MATEMÁTICA V Capítulo 05 Noções de Probabilidade Parte II 3 o ) P(I B) = Observação: Diagrama de Árvore Considere as probabilidades seguintes a) P(I) = = P(II) b) P(B I) = e P(V
Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Fernanda Aranzate) Este conteúdo pertence ao Descomplica.
17 PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter Semana (Fernanda Aranzate) Este conteúdo pertence ao Descomplica. Está vedada a cópia Probabilidade 08 jun Exercícios 01. Resumo 02. Exercícios de
LISTA 29 - PROBABILIDADE 1
LISTA 9 - PROBABILIDADE ) Um time de futebol amador ganhou uma taça ao vencer um campeonato. Os jogadores decidiram que o próprio seria guardado na casa de um deles. Todos quiseram guardar a taça em suas
Matemática E Intensivo V. 2
Matemática E Intensivo V. Exercícios 0) a) b) c) 8 8 8 a) 8 = =!! C = = ( 8 )!!!! b) 0 0 0 0 = =!! C = = ( 0 )!! 8!! n 0 n n c) Cn 0 = =!! = = ( n 0)! 0! n! 0) 0x O terceiro termo é dado por: T r + = n
Resoluções de Exercícios
Resoluções de Exercícios Conhecimentos Numéricos Capítulo 0 Análise Combinatória Parte II 0 E Colocando em cada mês crianças, teríamos 8 crianças distribuídas, e restariam crianças. Então, colocando as
Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise
Probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Você reconhece algum desses experimentos? Alguns
Aula 10 - Erivaldo. Probabilidade
Aula 10 - Erivaldo Probabilidade Experimento determinístico Dizemos que um experimento é determinístico quando repetido em condições semelhantes conduz a resultados idênticos. Experimento aleatório Dizemos
PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA
PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço
PROBABILIDADE PROPRIEDADES E AXIOMAS
PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por
Técnicas de Contagem I II III IV V VI
Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de
Probabilidade e Estatística. Testes. Probabilidade Teórica. número de resultados do evento A número de resultados do espaço amostral S P(A) =
Aula n ọ 07 Probabilidade e Estatística Probabilidade Teórica P(A) = Regra da Soma número de resultados do evento A número de resultados do espaço amostral S P(A B) = P(A) + P(B) P(A B) Regra da Soma para
AULA 08 Probabilidade
Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral
Mat Top. Tópico: Probabilidade. Professores: V) A probabilidade de esse número ser múltiplo de 6 é
Nome: Mat Top Professores: Fred Kennedy Sérgio Data: Tópico: Probabilidade QUESTÃO 0 Lançando-se dois dados honestos e verificando-se as faces superiores, qual é a probabilidade: a) de se obter soma igual
c) 17 b) 4 17 e) 17 21
Probabilidade I Exercícios. Dois jogadores A e B vão lançar um par de dados. Eles combinam que se a soma dos números dos dados for 5, A ganha e se a soma for 8, B é quem ganha. Os dados são lançados. Sabe-se
Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.
Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com
1 Definição Clássica de Probabilidade
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos
Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.
Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com
Exercícios de Probabilidade - Lista 1. Profa. Ana Maria Farias
Exercícios de Probabilidade - Lista 1 Profa. Ana Maria Farias 1. Lançam-se três moedas. Enumere o espaço amostral e os eventos A = faces iguais ; B = cara na primeira moeda ; C = coroa na segunda e terceira
Prof.: Joni Fusinato
Introdução a Teoria da Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso
Combinatória e Probabilidade
Combinatória e Probabilidade 1. (Enem) Considere o seguinte jogo de apostas: Numa cartela com 60 números disponíveis, um apostador escolhe de 6 a 10 números. Dentre os números disponíveis, serão sorteados
2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2
GET00189 Probabilidade I Lista de exercícios - Capítulo 1 Profa. Ana Maria Lima de Farias SEÇÃO 1.1 Experimento aleatório, espaço amostral e evento 1. Lançam-se três moedas. Enumere o espaço amostral e
Aula 16 - Erivaldo. Probabilidade
Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar
Matemática 4 Módulo 9
Matemática 4 Módulo 9 ANÁLISE COMBINATÓRIA I COMENTÁRIOS ATIVIDADES PARA SALA (n + )! (n + )(n )!. I. Dada a função ƒ (n). Simplificando, temos: n! + (n )! (n + ).n.(n )! (n + ).(n )! (n )![(n + ).n (n
Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema.
PROBABILIDADE CONDICIONAL E DISTRIBUIÇÃO BINOMINAL 1. PROBABILIDADE CONDICIONAL Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema. Suponha que um redator
Matemática E Extensivo V. 5
Extensivo V Exercícios 0) a) / b) / c) / a) N(E) N(A), logo P(A) b) N(E) N(A), logo P(A) c) N(E) N(A), logo P(A) 0) a) 0 b) / % c) 9/0 90% d) /0 % 0) E a) N(E) 0 + + + 0 b) N(E) 0 N(A), logo P(A) 0, %
Sumário. 2 Índice Remissivo 12
i Sumário 1 Definições Básicas 1 1.1 Fundamentos de Probabilidade............................. 1 1.2 Noções de Probabilidade................................ 3 1.3 Espaços Amostrais Finitos...............................
Estatística Aplicada. Prof. Carlos Alberto Stechhahn EXERCÍCIOS - REVISÃO ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE. Administração. p(a) = n(a) / n(u)
Estatística Aplicada Administração p(a) = n(a) / n(u) EXERCÍCIOS - REVISÃO ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE Prof. Carlos Alberto Stechhahn 2014 1. Tema: Noções de Probabilidade 1) Considere o lançamento
Teoria das Probabilidades
08/06/07 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto
Roteiro D. Nome do aluno: Número: Revisão. Combinações;
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Roteiro D Nome do aluno: Número: Periodo: Grupo: Revisão Tópicos Tarefa Pesquisar história do Fatorial e outros tipos
2 a Lista de PE Solução
Universidade de Brasília Departamento de Estatística 2 a Lista de PE Solução 1. a Ω {(d 1, d 2, m : d 1, d 2 {1,..., 6}, m {C, K}}, onde C coroa e K cara. b Ω {0, 1, 2,...} c Ω {(c 1, c 2, c 3, c 4 : c
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE Prof. Aurimenes A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios.
d) c) b) e) 1. Lista Especial Matemática - Probabilidade Prof. Adriano Sales
Lista Especial Matemática - Probabilidade Prof. Adriano Sales TEXTO PARA AS PRÓXIMAS 2 QUESTÕES: Em um concurso de televisão, apresentam-se ao participante três fichas voltadas para baixo, estando representadas
Exercícios de Aprofundamento Mat. Combinação e Probabilidade
1. (Unifesp 2015) Um tabuleiro de xadrez possui 64 casas quadradas. Duas dessas casas formam uma dupla de casas contíguas se estão lado a lado, compartilhando exatamente um de seus lados. Veja dois exemplos
ANÁLISE COMBINATÓRIA
ANÁLISE COMBINATÓRIA 1) (PUC) A soma das raízes da equação (x + 1)! = x 2 + x é (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 2) (UFRGS) Um painel é formado por dois conjuntos de sete lâmpadas cada um, dispostos como
Teoria das Probabilidades
Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 08:8 ESTATÍSTICA APLICADA I - Teoria das
( ) ( ) Questões tipo exame. O número pedido é: Questões tipo exame Pág Os algarismos 1 e 2 podem ocupar 5 A. posições diferentes.
Questões tipo exame Pág. 6.. Os algarismos e podem ocupar A posições diferentes. Os restantes lugares são ocupados por três algarismos escolhidos de entre oito, portanto, existem A maneiras diferentes
Matemática. Probabilidade Básica. Professor Dudan.
Matemática Probabilidade Básica Professor Dudan www.acasadoconcurseiro.com.br Matemática PROBABILIDADE Denifinição 0 P 1 Eventos favoráveis Probabilidade = Total de eventos 1. Se a probabilidade de chover
UECEVest - TD DE ESPECÍFICA DE MATEMÁTICA
ANÁLISE COMBINATÓRIA 1. Um banco solicitou aos seus clientes a criação de uma senha pessoal de seis dígitos, formada somente por algarismos de 0 a 9, para acesso à conta-corrente pela internet. Entretanto,
AULAS 07 E 08: ARRANJOS SIMPLES E COMBINAÇÕES SIMPLES EXERCÍCIOS PROPOSTOS
ANUAL VOLUME 2 MATEMÁTICA III AULAS 07 E 08: ARRANJOS SIMPLES E COMBINAÇÕES SIMPLES EXERCÍCIOS PROPOSTOS 01. Marcela C13,5 13! 1312 1110 98! C13,5 1287 5! 8! 543218! 02. Para calcularmos o número binomial
Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan
Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan Matemática Probabilidade Denifinição 0 P 1 Eventos favoráveis Probabilidade = Total de eventos 1. Se a probabilidade de chover num dia de
T o e r o ia a da P oba ba i b lida d de
Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que
MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução
MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução Exercícios de exames e testes intermédios 1. Como P (B) = 1 P ( B ) = P (B) P (A B) vem que P (B) = 1 0,7
Probabilidade em espaços discretos. Prof.: Joni Fusinato
Probabilidade em espaços discretos Prof.: Joni Fusinato [email protected] [email protected] Probabilidade em espaços discretos Definições de Probabilidade Experimento Espaço Amostral Evento Probabilidade
Matemática & Raciocínio Lógico
Matemática & Raciocínio Lógico para concursos Prof. Me. Jamur Silveira www.professorjamur.com.br facebook: Professor Jamur PROBABILIDADE No estudo das probabilidades estamos interessados em estudar o experimento
4 3 10! Resposta pedida: 3! x 4! = 144 Resposta: C
ágina 80. reparar o Exame 0 07 Matemática A 4 0! 4 x x 0!. Devemos escolher, das oito posições, duas para as letras A: temos 8 formas de o fazer. Das seis posições restantes, uma tem de ser para a letra
Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr.
1 Ciclo 3 Encontro 2 PROBABILIDADE Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. Probabilidade 2 Texto: Módulo Introdução à Probabilidade O que é probabilidade? parte 1 de Fabrício Siqueira
PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache
PROBABILIDADE Aula 2 Probabilidade Básica Fernando Arbache Probabilidade Medida da incerteza associada aos resultados do experimento aleatório Deve fornecer a informação de quão verossímil é a ocorrência
Lista de Exercícios #1 Assunto: Probabilidade
1. ANPEC 2017 Questão 07 Com relação à Teoria da Probabilidade pode-se afirmar que: (0) Sejam os eventos independentes A e B, então P(A B) P(A) P(B). (1) Se A B, então P(A) P(B) P(B A). (2) Seja A, B e
3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três.
1 a Lista de Exercício - Estatística (Probabilidade) Profa. Ms. Ulcilea A. Severino Leal Algumas considerações importantes sobre a resolução dos exercícios. (i) Normas da língua culta, sequência lógica
Estatística. Disciplina de Estatística 2011/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa
Estatística Disciplina de Estatística 20/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa Estatística Inferencial Estudos das Probabilidades (noção básica) Amostragens e Distribuição
Q05. Ainda sobre os eventos A, B, C e D do exercício 03, quais são mutuamente exclusivos?
LISTA BÁSICA POIA PROBABILIDADES A história da teoria das probabilidades teve início com os jogos de cartas, de dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo
Questão 1. Um brinquedo infantil caminhão-cegonha é formado por uma carreta e dez carrinhos nela transportados, conforme a figura.
SE18 - Matemática LMAT 5A3 - Permutações, combinações e arranjos Questão 1 (Enem 2017) Um brinquedo infantil caminhão-cegonha é formado por uma carreta e dez carrinhos nela transportados, conforme a figura.
Questão 1. Qual é a probabilidade de esse morador se atrasar para o serviço no dia para o qual foi dada a estimativa de chuva?
SE18 - Matemática LMAT 6A3 - Probabilidades condicionais Questão 1 (Enem 2017) Um morador de uma região metropolitana tem 50% de probabilidade de atrasar-se para o trabalho quando chove na região; caso
Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL.
Estatística Aplicada Administração p(a) = n(a) / n(u) PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL Prof. Carlos Alberto Stechhahn 2014 1. Noções de Probabilidade Chama-se experimento
PROBABILIDADE CONDICIONAL E TEOREMA DE BAYES
PROBABILIDADE CONDICIONAL E TEOREMA DE BAYES Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 08 de junho de 2016 Probabilidade Condicional
2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2
GET00116 Fundamentos de Estatística Aplicada Lista de exercícios Probabilidade Profa. Ana Maria Lima de Farias Capítulo 1 Probabilidade: Conceitos Básicos 1. Lançam-se três moedas. Enumere o espaço amostral
RESOLUÇÃO SIMULADO 2ª SÉRIE B7 2º BIMESTRE 2016
Resposta da questão 1: Resposta da questão : Resposta da questão 3: Resposta da questão : Resposta da questão 5: Resposta da questão 6: Resposta da questão 7: Resposta da questão 8: Resposta da questão
PROBABILIDADE. ENEM 2016 Prof. Marcela Naves
PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.
[AE-1 2] Assunto: Probabilidade
Data: 25/08/18 Assunto: Probabilidade Prof.: Adriano Sales TEXTO PARA AS PRÓXIMAS 2 QUESTÕES: Em um concurso de televisão, apresentam-se ao participante três fichas voltadas para baixo, estando representadas
Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano
Escola Secundária/, da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 0/ Distribuição de probabilidades.º Ano Nome: N.º: Turma:. Numa turma do.º ano, a distribuição dos alunos por idade e sexo
Lista de exercícios Defina o espaço amostral para cada um dos seguintes experimentos aleatórios:
UNIVERSIDADE FEDERAL DE SÃO CARLOS Centro de Ciências Agrárias Departamento de Tecnologia Agroindustrial e Socioeconomia Rural Disciplina: Noções de Probabilidade e Estatística (221171) - 2018 Prof. a
Solução da prova da 1.ª Fase. b) Queremos os números interessantes do tipo ABC6. Isso implica que A x B x C = 6. Temos dois casos a considerar:
Solução da prova da 1.ª Fase Nível 3 Ensino Médio 1. a Fase 15 de setembro de 018 QUESTÃO 1 a) Para que o número 14A8 seja interessante devemos ter: 1 x 4 x A = 8; logo, A =. b) Queremos os números interessantes
Prof.Letícia Garcia Polac. 26 de setembro de 2017
Bioestatística Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 26 de setembro de 2017 Sumário 1 2 Probabilidade Condicional e Independência Introdução Neste capítulo serão abordados
PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti
Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de incerteza que existe em um determinado experimento.
A B e A. Calcule as suas respectivas probabilidades.
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 2-BIOESTATÍSTICA II (CE020) Prof. Benito Olivares Aguilera 1 o Sem./17 1. Expresse em termos de operações entre eventos:
Probabilidade Condicional (grupo 2)
page 39 Capítulo 5 Probabilidade Condicional (grupo 2) Veremos a seguir exemplos de situações onde a probabilidade de um evento émodificadapelainformação de que um outro evento ocorreu, levando-nos a definir
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES e a t M Arranjo Combinação e Permutação PÁGINA 33 01 O número de interruptores será igual ao número de combinações de 6 elementos (lâmpadas) tomados de 3 em 3.
Matemática E Semiextensivo v. 3
Semiextensivo v. Exercícios 0) a) b) 7 c) d) 5 e) 56 a) 5 0 5! 0!. 5! 5!. 5! 05) S 4, 8 x 4 8 x 4 8 ou x 4 + 8 x x + 4 x 4 x 8 b) 7 7!!. 6! 7. 6!. 6! c)!!. 7 06) S {5, } 0 0 8 x x 8 d) 0 5 0! 5!. 5! 0.
Estatística: Probabilidade e Distribuições
Estatística: Probabilidade e Distribuições Disciplina de Estatística 2012/2 Curso: Tecnólogo em Gestão Ambiental Profª. Ms. Valéria Espíndola Lessa 1 Aula de Hoje 23/11/2012 Estudo da Probabilidade Distribuição
Matemática A RESOLUÇÃO GRUPO I. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos º Ano de Escolaridade. 1.
Teste Intermédio Matemática A Versão Duração do Teste: 90 minutos 9..0.º Ano de Escolaridade Decreto-Lei n.º 7/00, de de março????????????? RESOLUÇÃO GRUPO I. Resposta (B) Tem-se, a 0+ b + 0,, pelo que
Prof.: Joni Fusinato
Probabilidade Condicional Prof.: Joni Fusinato [email protected] [email protected] Probabilidade Condicional É a probabilidade de ocorrer um evento A sabendo-se que já ocorreu um evento B. Assim,
Colégio Nossa Senhora de Lourdes
Colégio Nossa Senhora de Lourdes Professor: Leonardo Maciel Matemática APOSTILA - PROBABILIDADE 1. (Pucrj 2015) Em uma urna existem 10 bolinhas de cores diferentes, das quais sete têm massa de 300 gramas
3. Probabilidade P(A) =
7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de
Experiências Aleatórias. Espaço de Resultados. Acontecimentos
Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados
Atividades de Função do 1 Grau e 2 Grau, Exponencial e Logaritmo, Matemática Básica, Problemas de contagem e Geometria Básica
DISCIPLINA: Matemática DATA: 24/05/2017 Atividades de Função do 1 Grau e 2 Grau, Exponencial e Logaritmo, Matemática Básica, Problemas de contagem e Geometria Básica 01 - Um time de futebol amador ganhou
Prof. Luiz Alexandre Peternelli
Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos
Lista de Exercícios de Recuperação de MATEMÁTICA 2
Lista de Exercícios de Recuperação de MATEMÁTICA NOME Nº SÉRIE: DATA BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática EM ) Uma prova tem 4 testes com 5 alternativas cada um. Respondendo aleatoriamente
Resolução dos exercícios de probabilidade Cap. 6 - Pág. 54
Resolução dos exercícios de probabilidade Cap. 6 - Pág. 54 Para estas notas, consideraremos as siglas CP = casos possíveis CF = casos favoráveis CP = quantidade de casos possíveis CF = quantidade de casos
PROBABILIDADE MÓDULO 7 PROBABILIDADE
PROBABILIDADE MÓDULO 7 PROBABILIDADE PROBABILIDADE Há certos fenômenos (ou experimentos) que, embora sejam repetidos muitas vezes e sob condições idênticas, não apresentam os mesmos resultados. Por exemplo,
RACIOCÍNIO LÓGICO. 04. Se dois dados, um azul e um branco, forem lançados, a probabilidade de sair 5 no azul ou 3 no branco é superior a 2/3.
RACIOCÍNIO LÓGICO 01. Anagramas são agrupamentos de letras que são obtidos ao se mudar a ordem destas em uma palavra. Cada vez que se muda a ordem das letras, obtém-se um novo anagrama. A quantidade de
8 A do total de lançamentos, ou seja, x = 5625 Resposta: C
Página 7 Preparar o Exame 0 07 Matemática A. x7x 7 Observa que sair primeiro o sabor laranja e depois o sabor morango são casos diferentes x Resposta: D. Repara que se os dois primeiros rebuçados foram
b) Se entre as 7 empresas escolhidas devem figurar obrigatoriamente as empresas R e S, de quantas formas ele poderá escolher as empresas?
1 1. (Fgv 97) Um administrador de um fundo de ações dispõe de ações de 10 empresas para a compra, entre elas as da empresa R e as da empresa S. a) De quantas maneiras ele poderá escolher 7 empresas, entre
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 2014/20 PROFESSOR (a) DISCIPLINA Matemática ALUNO (a) SÉRIE 2º ano 1. OBJETIVO
RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS
CENTRO UNIVERSITÁRIO FRANCISCANO Curso de Administração Disciplina: Estatística I Professora: Stefane L. Gaffuri RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS Sessão 1 Experimentos Aleatórios e
