Matemática E Semiextensivo v. 3

Tamanho: px
Começar a partir da página:

Download "Matemática E Semiextensivo v. 3"

Transcrição

1 Semiextensivo v. Exercícios 0) a) b) 7 c) d) 5 e) 56 a) 5 0 5! 0!. 5! 5!. 5! 05) S 4, 8 x 4 8 x 4 8 ou x x x + 4 x 4 x 8 b) 7 7!!. 6! 7. 6!. 6! c)!!. 7 06) S {5, } x x 8 d) 0 5 0! 5!. 5! ! ! e) 8 5 8! 5!.! ! 56 5!.! 0) C ) D 9 9, pois ) ! ! !.! 8!.! x + 8 x ou x x 0 x x x 5 x 5 07) x 6. a 4 (x² a) T 5 T (x²) 4. ( a) (x²) 8. ( a) x a x 6. a 4 08) 04 09) C 0) A (4x 6 6y 0 ) 0, então: ( ) 0 (4 6) 0 ( ) 0 04 T 5 T (x³)8 4. ( 4y) (x³) 4. ( 4y) x. 56. y x. y 4 T 7 T (x³)0 6. (y ) 6 0. (x³) 4. (y ) 6 0. x. y

2 ) 5 ) D ) T p + 6 p p. x6 p. 6 x p. x6 p. ( x) p 6 p. x6 p. x p. ( ) p 6 p. x6 p p. ( ) p Como o termo deve ser independente de x, então: 6 p p 0, logo p. T + 6. x6.. ( ). 6. x T p + p. (x) p. p x p. (x) p. (x) p p. (x) p p. p. x p Como o termo deve ser independente de x, então: p 0, logo p 6. T x n n, logo n 8 + n 8 4) 84 5) B T p + 9 p. (x²)9 p. p x 9 p. x8 p. x p 9 p. x8 p Como o termo deve ser independente de x, então: 8 p 0, logo p 6. T x x Primeiro vamos encontrar uma fórmula geral para encontrar os termos de grau e grau. T p + 4 p. ( )4 p. (x) p 4 p. ( )4 p. p. x p Para grau temos p, então: T + T 4. ( )4.. x 4... x T 6 x Para grau temos p, então: 4 T + T. ( )4.. x 6.. 4x² 48x² Somando os termos, temos : 6 x + 48x² 6x( + x) 6) Falso. (a b) 5 (.. ) 5 ( ) 5 ( ) 5 7) Verdadeiro. 8) D 9) 6 T p + 0 p. (x4 ) 0 p. p 0 x p. x40 4p. ( x) p 0 p. x40 4p. x p. ( ) p 0 p. x40 4p p. ( ) p Como o termo deve ser independente de x, então: 40 5p 0, logo p 8. T x0. ( ) T p + 5 p. ( x)5 p. ( x) p 5 p. x 5 p. x 5 p. x p 5 p. x 5 p p + 5 p p. x Como o expoente de x é 7, logo: 5 p p p+ p 7 45 p 4 6 p T + 5. x x 7 Evento de interesse: Eventos possíveis: 6 P 6

3 0) 6 ) D Evento de interesse: Eventos possíveis: P 6 Evento de interesse: 5 peixarias Eventos possíveis: peixaria dentro do ideal P 5 ) Falso. A probabilidade de sair o é: 6 A probabilidade de NÃO sair o é: 5 6 ) Verdadeiro. 4) D Probabilidade de ser O Probabilidade de ser rh % Probabilidade de ser borboleta: Total de espécies: 66 P 0, ,95% 66 5) Falso. Números de diagonais do hexágono regular: d 6.( 6 ) 6. 9 Número de retas que ligam dois vértices: Retas que passam pelo centro : P ) 5 PA ( ) + P ( A ) obter coroa obter cara P(A) + 4. P(A) 5. P(A) 7) 4 8) A P(A) 5 A Tirar um valete B Carta de copas P(A B) P(A) + P(B) P(A B) P(A B) P(A) + P(B) P(A B) x x x % 9) D 0) D ) E É fácil de observar que a probabilidade de obtermos um funcionário que calça 8, sabendo que calça mais que 6, é: P(A) 5 7 Probabilidade de A: 9 Probabilidade de germinação: 77 P 9 77 Pacientes doença de queimadas: 00 Crianças desse grupo: 50 P ,75

4 ) C ) B saudáveis saudáveis com resultado negativo com resultado negativo P A área do sinal das emissoras é um semicírculo de raio 0 km. Logo: A 0. 4, 57 km² Logo, P 57 0,5 5% 68 b) 8 A probabilidade de nascer menino ou menina é a mesma. Temos assim de nascer em 4 crianças, 6 mas a ordem do nascimento é essencial, pois podemos ter (H H M M) ou (H M H M). Logo, P 4 4!!.! 6 A probabilidade é c) 5 6 O cálculo da letra a apresentou a possibilidade 6 de se ter exclusivamente meninas. Logo: 4) 4 P. 6 moeda 5) a) 6% dado 4 P % 9) C P Chover Não chover Segunda 0% 70% Sexta 85% 5% 6) B 7) B b) P O tempo total é de 00 segundos. A razão do tempo que a luz verde fica acesa é de Logo, P P % 8) a) 6 P ) 7 8 4) E Note que a probabilidade de não chover na segunda (70%) é maior que a probabilidade de não chover na sexta (5%) Obter exclusivamente coroa:.. 8 Ao menos uma cara: , 4 Todas as possibilidades: P 8 8! 4!. 4! 70 Caso que queremos: H M H M H M H M ou M H M H M H M H. Logo, P

5 4) E 4) C Ordem do nascimento: P!! Probabilidade de nascer em dois meninos:.. 8 P. 8 0,75 7,5% 8 47) D Sexo feminino: x Sexo masculino: x + 0 Total: x + 0 x + 0 x (x + 0) 5. (x + 0) x 5 8 Logo, o total é de Para as questões 48 e 49: Linha : Linha : 4 Linha : Linha 4: 48) A TVE TEV ETV EVT VET VTE acertos acerto 0 acerto acerto 0 acerto acerto Espaço amostral: 6 elementos. 44) A 45) D Linha 5: P III. Verdadeiro. P(A ou B) % Terremoto ocorrendo no mar: 70% 60% de causar dano % Vale 4% do total. 40% de não causar dano % 46) 0 Vale 8% do total. Somente a 0 está correta. Relembrando a matéria de análise combinatória: 8, 4 P! 8!. 4! ) B Para ganhar exatamente 00 reais, ele deve obter acertos. No quadro acima não existe a possibilidade, logo a probabilidade é zero. Não ganhar qualquer prêmio: Total: 6 P 6 50) D Pela união de eventos temos: P(A B) P(A) + P(B) P(A B). Então calculando para cada caminho: a) A E e B E P(E E ) 0,8 + 0,5 (0,8. 0,5) P(E E ), 0,4 0,9 90% b) A E e B E 4 P(E E 4 ) 0,8 + 0, (0,8. 0,) P(E E 4 ), 0,4 0,86 86% c) A E e B E 4 Impossível pois esses caminhos não se cruzam. d) A E e B E 5 P(E E 5 ) 0,7 + 0,4 (0,7. 0,4) P(E E 5 ), 0,8 0,8 8% e) A E e B E 6 P(E E 6 ) 0,7 + 0,6 (0,7. 0,6) P(E E 6 ), 0,4 0,88 88% Com isso, podemos afirmar que o melhor caminho é E E 5. 5

6 5) 5 Q(4) 4³ Q(4) Q(4) 5 5) 4 P(). ³ 4. ² P() P() 4 5) P(x) x² x ) C 55) D P(x + ) (x + )² 5 (x + ) + 8 P(x + ) x² + x + 5x P(x + ) x² x + 4 Logo P(x) x² x + 4 Se gr(p) n e gr(q) N, com n > N, logo gr (P ± Q) n. [ P(x) ] + [ P(x) ] + P(x). [ P(x) ] + P(x) 58) m, n, p 59) E 60) A p m m p + 7 n m m p p p + 7 n m p 4p + 4 m p x + A.( x + ) + B.( x ) x x x + Ax + A+ Bx B x x x + ( A + B) x + ( A B) x x A+ B A B A e B P(x) x + a P() x + a 0, pois é raiz de P(x). gr 5 gr 0 gr 5 gr 5 gr 5 Logo + a 0 a gr 0 Então P(x) x ou P(x) x + Logo, como estamos falando da soma de polinômios em que o maior grau é 0, o grau da soma será 0. 56) a 7, b, c 5 e d 4 P(x) (a 7)x³ + (b 6)x² + (5 c)x + (d 8) 0 a 7 0 a 7 b 6 0 b 6 b 5 c 0 c 5 d 8 0 d 8 d 4 57) 4 b 0 b a b 5 a 5 a 7 c c 5 Logo, a + b + 5c Se P(x) x, logo P( ) 4 4 Se P(x) x +, então P( ) ( ) Logo P(x) x +. 6) A, B, C A Bx C x x + + x + x A x.( + x + ) + ( Bx + C ).( x ) ( x ).( x + x + ) Ax + Ax + A+ Bx B Cx C x x + x + x x x x ( A B) x + + ( A B + C) x + ( A C) x (A + B)x² + (A B + C)x + (A C) A+ B 0 A B+ C 0 A C A, B, C 6

7 6) C x 4 A + B x x + x x 4 x A.( x ) + B.( x + ) ( ).( x ) x 4 Ax A+ B B x x x 4 (A + B)x + (B A) A + B B A 4 6) 66 64) B A e B P (a )x² + (b + 4c)x + ( a + b + ) P 0x² + 58x + 9 a 0 a b + 4c 58 a + b c b + 9 4c 40 b 54 c 5 b 8 Soma: a + b + c P(x) + x + x x x 49 I. Verdadeiro. P() PAde. 50 termos S 50 ( + 50 ) II. Falsa. P( ) ( ) ( ) Logo, P( ) 5 III. Falsa. P(0) IV. Verdadeiro. Observando a questãoo II, os termos de grau ímpar são , ou seja, uma PA. Logo S 5 ( + 5 ) ) D 4 x + 0x + 0x x + 4x x 4x 8x x 4 8 4x 8x + 0x x + 6x + x 8x x x ) B x x + 4x 0 x 7x + 6 x + 7x 6x x 5 5x + 5x 0 5x 5 0 Logo Q(x) x 5. Temos Q() 5 67) D x x x + 0x 4 x + 0x + 4x x x x + 0x 8 4x 4 Logo r(x) 4x 4 68) E P (x) 6x x + 6x P( x) x x + 6x + 9x x x x + x + x 0 Veja que P é divisível por P. Logo, letra e é incorreta. 7

8 69) B 70) E 7) E 7) B P(x) (x² x + ). (x² + ) + ( x + ) P(x) 6x 4 9x + 5x x + x + P(x) 6x 4 9x + 5x 4x Q(x) 6x x + x e r(x) P(x) (x² + ). (x ) + P(x) x³ x² + x + P(x) x³ x² + x 4 x x + ax + bx + c x + 0x x + 0x + 4x x x x + ( a+ 4) x + ( b ) c + x + 0x x + 8 ( a+ 4) x + ( b ) ( c + 8) Q'(x) x e r(x) (a + 4)x² + (b )x + (c + 8) Como queremos que P(x) seja divisível por Q(x) então r(x) 0. Logo: a+ 4 0 a 4 b 0 b c c 8 4 x 4x 0x + a b x 5 4 x + x 5x x x 8 x 5x + ax + b + x x + 5x 8x + ( a+ 5) b + 8x 8 90 ( a ) ( 90 + b) 7) B 74) A x + x + px + q x + x + x x x x + ( p ) q x x ( p ) ( q ) Logo: p 0 p p + q q 0 q 4 x + x + x + a b x + 0x 4 x + 0x + x x + x + 4 x + 4x + ax + b x 0x + x 4 x + ( + a) b + + 4x 0x 4 Logo + a 0 a b b 4 75) D ( + ax ) + ( b + 4) Temos: a² + b² x x + mx n x + x x x + x x x + ( m+ ) x n x + x 4 ( m+ 4) ( n 4) Logo: m m 4 m n n 4 0 n 4 Como é divisível, logo r(x) 0. Temos: a 0 a a + b b 0 b 90 8

9 76) B x + 0x + ( 8+ mx ) n x x x + x + x x + ( 6 + m) x n x + ( 5 + m) ( n) Logo: 5 + m 0 m 5 m. n 5. 0 n 0 n 77) 65 4 x x ax + bx c x + 0x x + 0x + 4x x x x + ( 4 a) x + ( b ) x c x + 0x x + 8 ( 4 ax ) + ( b ) ( 8 c) 4 a 0 a 4 b 0 b 8 c 0 c 8 a + b + c

GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2).

GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2). 01) a) P (1) = 1 + 7 1 17 1 P (1) = 1 + 7 17 P (1) = 11 P (1) é sempre igual a soma dos coeficientes de P (x) b) P (0) = 0 + 7 0 17 0 P (0) = 0 + 0 0 P (0) = P (0) é sempre igual ao termo independente

Leia mais

Matemática E Extensivo V. 5

Matemática E Extensivo V. 5 Extensivo V Exercícios 0) a) / b) / c) / a) N(E) N(A), logo P(A) b) N(E) N(A), logo P(A) c) N(E) N(A), logo P(A) 0) a) 0 b) / % c) 9/0 90% d) /0 % 0) E a) N(E) 0 + + + 0 b) N(E) 0 N(A), logo P(A) 0, %

Leia mais

Matemática E Intensivo V. 2

Matemática E Intensivo V. 2 Matemática E Intensivo V. Exercícios 0) a) b) c) 8 8 8 a) 8 = =!! C = = ( 8 )!!!! b) 0 0 0 0 = =!! C = = ( 0 )!! 8!! n 0 n n c) Cn 0 = =!! = = ( n 0)! 0! n! 0) 0x O terceiro termo é dado por: T r + = n

Leia mais

POLINÔMIOS. Nível Básico

POLINÔMIOS. Nível Básico POLINÔMIOS Nível Básico. (Eear 07) Considere P(x) x bx cx, tal que P() e P() 6. Assim, os valores de b e c são, respectivamente, a) e b) e c) e d) e. (Epcar (Afa) 05) Considere o polinômio a) x 0 não é

Leia mais

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:

Leia mais

SE18 - Matemática. LMAT 6B2-1- Polinômios (Operações com polinômios) Questão 1

SE18 - Matemática. LMAT 6B2-1- Polinômios (Operações com polinômios) Questão 1 SE18 - Matemática LMAT 6B2-1- Polinômios (Operações com polinômios) Questão 1 (Eear 2017) Considere P(x) = 2x 3 + bx 2 + cx, tal que P(1) = -2 e P(2) = 6. Assim, os valores de b e c são, respectivamente,

Leia mais

Funções Polinomiais com Coeficientes Complexos. Teorema do Resto. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Funções Polinomiais com Coeficientes Complexos. Teorema do Resto. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Teorema do Resto 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Teorema do Resto 1 Exercícios Introdutórios

Leia mais

Aula 16 - Erivaldo. Probabilidade

Aula 16 - Erivaldo. Probabilidade Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar

Leia mais

Erivaldo. Polinômios

Erivaldo. Polinômios Erivaldo Polinômios Polinômio ou Função Polinomial Definição: P(x) = a o + a 1.x + a 2.x 2 + a 3.x 3 +... + a n.x n a o, a 1, a 2, a 3,..., a n : Números complexos Exemplos: 1) f(x) = x 2 + 3x 7 2) P(x)

Leia mais

Matemática E Extensivo V. 8

Matemática E Extensivo V. 8 Matemática E Extensivo V. 8 Resolva Aula 9 9.) D x + x 7x 6 = x = é raiz. Aula.) x + px + = Se + i é raiz, então i também é. 5 7 6 Soma = b a = p p = + i + i p = p = Q(x) = x + 5x + Resolvendo Q(x) =,

Leia mais

Fácil e Poderoso. Dinâmica 1. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Algébrico-Simbólico

Fácil e Poderoso. Dinâmica 1. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Algébrico-Simbólico Fácil e Reforço escolar M ate mática Poderoso Dinâmica 1 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 3ª do Ensino Médio Algébrico-Simbólico Polinômios e Equações Algébricas. Primeira

Leia mais

Matemática E Intensivo V. 2

Matemática E Intensivo V. 2 Matemática E Intensivo V. Exercícios 0) E P 6 6! 70 0) motorista possibilidades p. p. p. p. p 8 possibilidades 0) motorista P 6. P 0 0) E P 0 68800 Então precisam de 68800 dias. Aproximadamente 99,9 anos

Leia mais

Matemática A - 10 o Ano Ficha de Trabalho

Matemática A - 10 o Ano Ficha de Trabalho Matemática A - 10 o Ano Ficha de Trabalho Álgebra - Divisão Inteira de Polinómios Grupo I 1. Tendo em conta que n N; a n, a n 1,..., a 1, a 0 R e a n 0; b n, b n 1,..., b 1, b 0 R e b n 0, considere os

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. a) P() = ³ + 7. ² 7. P() = + 7 7

Leia mais

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes

Leia mais

EXTENSIVO APOSTILA 11 EXERCÍCIOS DE SALA MATEMÁTICA A

EXTENSIVO APOSTILA 11 EXERCÍCIOS DE SALA MATEMÁTICA A EXTENSIVO APOSTILA EXERCÍCIOS DE SALA MATEMÁTICA A AULA 0 0) Sendo PC Preço de Custo PV Preço de Venda PP Preço de Venda Promocional temos: PV,50 PC PP 0,80 PV Substituindo: PP = 0,80,50 PC PP =,0 PC No

Leia mais

3 + =. resp: A=5/4 e B=11/4

3 + =. resp: A=5/4 e B=11/4 ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 3º ENSINO MÉDIO - PROF. CARLINHOS BONS ESTUDOS! ASSUNTO : POLINÔMIOS 1) Identifique as expressões abaixo que são

Leia mais

Funções Polinomiais com Coeficientes Complexos. Dispositivo de Briot-Ruffini. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Funções Polinomiais com Coeficientes Complexos. Dispositivo de Briot-Ruffini. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini

Leia mais

QUESTÕES DE VESTIBULARES

QUESTÕES DE VESTIBULARES QUESTÕES DE VESTIBULARES 01- (ACAFE) Dados os polinômios: p(x) = 5-2x + 3x 2, q(x) = 7 + x + x 2 - x 3 e r(x) = 1-3x + x 4. O valor de p(x) + r (x) - q(x) para x = 2 é: A) 5 B) 13 C) 11 D) 24 E) 19 02-

Leia mais

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço

Leia mais

Matemática E Extensivo V. 5

Matemática E Extensivo V. 5 Extensivo V. Exercícios 0) Casos possíveis: {,,,,, } Casos favoráveis: {,, } Assim, a probabilidade é: 0) 70% P Casos possíveis: 7 + 0 possibilidades Casos favoráveis: 7 (7 bolas pretas) P 7 0,7 70% 0

Leia mais

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a

Leia mais

AULA 01 (A) 9. (B) 1. (C) 0. (D) 7. (E) 10. (E) Se k 5 então axterá ( ) grau 1. (D) d(3) 4. (E) d(4) 12.

AULA 01 (A) 9. (B) 1. (C) 0. (D) 7. (E) 10. (E) Se k 5 então axterá ( ) grau 1. (D) d(3) 4. (E) d(4) 12. AULA 01 Observe cada um dos polinômios a seguir: x p( x) x 9x 4x x x 7 3 (I) 7 6 5 3 x 3x (II) mx ( ) 5 4 3 (III) n( x) 8x 3x 10x 3 6 Se organizarmos estes polinômios em ordem crescente de grau teremos

Leia mais

Matemática A - 10 o Ano

Matemática A - 10 o Ano Matemática A - 10 o Ano Resolução da Ficha de Trabalho Álgebra - Divisão Inteira de Polinómios Grupo I 1. Considerando os polinómios p e b no enunciado temos que o termo de maior grau de p b é a nx n b

Leia mais

PROBABILIDADES PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO

PROBABILIDADES PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO PROBABILIDADES Probabilidade é um conceito filosófico e matemático que permite a quantificação da incerteza, permitindo que ela seja aferida, analisada e usada para a realização de previsões ou para a

Leia mais

(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é:

(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é: APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado

Leia mais

1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura:

1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura: 7. Considere um retângulo ABCD em que o comprimento do lado AB é o dobro do comprimento do lado BC. Sejam M o ponto médio de BC e N o ponto médio de CM. A tangente do ângulo MAN ˆ é igual a a) 5. b) 5.

Leia mais

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, = Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de

Leia mais

Funções Polinomiais com Coeficientes Complexos. Divisão de Funções Polinomiais. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Funções Polinomiais com Coeficientes Complexos. Divisão de Funções Polinomiais. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Divisão de Funções Polinomiais 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Divisão de Funções Polinomiais

Leia mais

MATEMÁTICA CADERNO 3 SEMIEXTENSIVO E FRENTE 1 ÁLGEBRA. n Módulo 9 Sistemas Lineares II

MATEMÁTICA CADERNO 3 SEMIEXTENSIVO E FRENTE 1 ÁLGEBRA. n Módulo 9 Sistemas Lineares II MATEMÁTICA CADERNO SEMIEXTENSIVO E Assim: A tem R$,, B tem R$ 8,, C tem R$ 9, e D tem R$ 6,. FRENTE ÁLGEBRA n Módulo 9 Sistemas Lineares II x + y + z = x + y + z = ) y + z = y + z = 6z = 8 z = ) x + y

Leia mais

O problema proposto possui alguma solução? Se sim, quantas e quais são elas?

O problema proposto possui alguma solução? Se sim, quantas e quais são elas? PROVA PARA OS ALUNOS DE 3º ANO DO ENSINO MÉDIO 1) Considere o seguinte problema: Vitor ganhou R$ 3,20 de seu pai em moedas de 5 centavos, 10 centavos e 25 centavos. Se recebeu um total de 50 moedas, quantas

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Funções polinomiais Logaritmo Aula 03 Funções Polinomiais Introdução: Polinômio Para a sucessão de termos comcom, um polinômio de grau n possui a seguinte forma : Ex : Funções

Leia mais

Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2

Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2 Polinômios. (ITA 2005) No desenvolvimento de (ax 2 2bx + c + ) 5 obtém-se um polinômio p(x) cujos coeficientes somam 32. Se 0 e são raízes de p(x), então a soma a + b + c é igual a (A) 2 (B) 4 (C) 2 (D)

Leia mais

Aula 13 de Bases Matemáticas

Aula 13 de Bases Matemáticas Aula 3 de Bases Matemáticas Rodrigo Hausen Versão: 8 de julho de 206 Catálogo de Funções Reais No estudo de unções é extremamente útil conhecer as propriedades e gráicos de algumas unções reais. Função

Leia mais

Matemática E Extensivo V. 5

Matemática E Extensivo V. 5 Extensivo V. Exercícios 0) Casos possíveis: {,,,,, } Casos favoráveis: {,, } Assim, a probabilidade é: 0) 70% P Casos possíveis: 7 + 0 possibilidades Casos favoráveis: 7 (7 bolas pretas) P 7 0,7 70% 0

Leia mais

Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa

Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa 1 1. (Fuvest 97) Suponha que o polinômio do 3 grau P(x) = x + x + mx + n, onde m e n são números reais, seja divisível por x - 1. a) Determine n em função de m. b) Determine m para que P(x) admita raiz

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES COLEÇÃO DARLAN MOUTINHO VOL. 0 RESOLUÇÕES Me ta PÁGINA 8 0 0 Havendo apenas bolas verdes e azuis na urna, segue que a resposta é dada por Basta dividirmos o número de ocorrências, pelo número total de

Leia mais

... Onde usar os conhecimentos os sobre...

... Onde usar os conhecimentos os sobre... IX NÚMEROS COMPLEXOS E POLINÔMIOS Por que aprender sobre Números Complexos?... Ao estudar os Números Complexos percebemos que sua ligação à geometria nos dá uma perspectiva mais rica dos métodos geométricos

Leia mais

Estatística: Probabilidade e Distribuições

Estatística: Probabilidade e Distribuições Estatística: Probabilidade e Distribuições Disciplina de Estatística 2012/2 Curso: Tecnólogo em Gestão Ambiental Profª. Ms. Valéria Espíndola Lessa 1 Aula de Hoje 23/11/2012 Estudo da Probabilidade Distribuição

Leia mais

1 0 para todo x, multiplicando-se os dois membros por. 2x 1 0 x 1 2. b a x. ba 2. e b 2 c

1 0 para todo x, multiplicando-se os dois membros por. 2x 1 0 x 1 2. b a x. ba 2. e b 2 c CAPÍTULO 1 Exercícios 1..n) Como x 0 para todo x, o sinal de x(x ) é o mesmo que o de x; logo, x(x ) 0 para x 0; x(x ) 0 para x 0; x(x ) 0 para x 0.. n) Como x 1 1 0 para todo x, multiplicando-se os dois

Leia mais

Visite : e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180

Visite :  e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180 ) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, então temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d) P(0) = e) N.D.A. ) (UFC) Seja P(x) um

Leia mais

Projeto Jovem Nota 10 Polinômios Lista A Professor Marco Costa

Projeto Jovem Nota 10 Polinômios Lista A Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufv 2000) Sabendo-se que o número complexo z=1+i é raiz do polinômio p(x)=2x +2x +x+a,calcule o valor de a. 2. (Ita 2003) Sejam a, b, c e d constantes reais. Sabendo que a divisão

Leia mais

= 3 modos de escolher duas pessoas 2

= 3 modos de escolher duas pessoas 2 01. x/(x+0) /3 ó x 40 Resposta: E 0. [E] RESOLUÇÃO REVENEM 3 De acordo com o gráfico, temos que o número total de filhos é dado por 71 + 6 + 3. Portanto, como sete mães tiveram um único filho, segue que

Leia mais

Colégio Naval 2003 (prova verde)

Colégio Naval 2003 (prova verde) Colégio Naval 00 (prova verde) 01) Analise as seguintes afirmativas sobre um sistema S se duas equações do primeiro grau com duas incógnitas X e Y. I - S sempre terá ao menos uma solução, se os seus termos

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Resoluções de Exercícios MATEMÁTICA V Capítulo 05 Noções de Probabilidade Parte II 3 o ) P(I B) = Observação: Diagrama de Árvore Considere as probabilidades seguintes a) P(I) = = P(II) b) P(B I) = e P(V

Leia mais

Funções Polinomiais com Coeficientes Complexos. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Funções Polinomiais com Coeficientes Complexos. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Definições Básicas de Funções Polinomiais Complexas 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Definições

Leia mais

Matemática. Questão 1. 3 a série do Ensino Médio Turma. 2 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO

Matemática. Questão 1. 3 a série do Ensino Médio Turma. 2 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO EM AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3 a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 2 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Dada a equação

Leia mais

ASSUNTO:POLINÔMIOS. a) Do 3º grau resp: m ±6 b) Do 2º grau resp: m=6 c) do 1 º grau m=-6

ASSUNTO:POLINÔMIOS. a) Do 3º grau resp: m ±6 b) Do 2º grau resp: m=6 c) do 1 º grau m=-6 ASSUNTO:POLINÔMIOS 1) Identifique as expressões abaixo que são polinômios: a) 3x 3-5x 2 +x-4 b) 5x -4 -x -2 +x-9 c) x 4-16 d)x 2 3 +2x+6 e) x 2 4 resp: a, c,d 2) Dado o polinômio P(x)= 2x 3-5x 2 +x-3.

Leia mais

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: EQUAÇÕES POLINOMIAIS. EQUAÇÃO POLINOMIAL OU ALGÉBRICA Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: p(x) = a n x n + a n x n +a n x n +... + a x + a 0 = 0 onde

Leia mais

2. (Ita 2002) Com base no gráfico da função polinomial y = f(x) esboçado a seguir, responda qual é o resto da divisão de f(x) por (x - 1/2) (x 1).

2. (Ita 2002) Com base no gráfico da função polinomial y = f(x) esboçado a seguir, responda qual é o resto da divisão de f(x) por (x - 1/2) (x 1). 1 Projeto Jovem Nota 10 Polinômios Lista B Professor Marco Costa 1. (Fuvest 2002) As raízes do polinômio p(x) = x - 3x + m, onde m é um número real, estão em progressão aritmética. Determine a) o valor

Leia mais

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C

Leia mais

Probabilidade Parte 1. Camyla Moreno

Probabilidade Parte 1. Camyla Moreno Probabilidade Parte 1 Camyla Moreno Probabilidade A teoria das probabilidades é um ramo da Matemática que cria, elabora e pesquisa modelos para estudar experimentos ou fenômenos aleatórios. Principais

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +

Leia mais

DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /.

DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /. DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /. 1. (Ufjf-pism 017) Qual é o polinômio que ao ser multiplicado por g(x) 3 x 2x 5x 4 tem como resultado o polinômio 6 5 4 h(x)

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução Exercícios de exames e testes intermédios 1. Como P (B) = 1 P ( B ) = P (B) P (A B) vem que P (B) = 1 0,7

Leia mais

FICHA DE TRABALHO DE MATEMÁTICA A 10.º ANO FUNÇÕES POLINOMIAIS

FICHA DE TRABALHO DE MATEMÁTICA A 10.º ANO FUNÇÕES POLINOMIAIS FICHA DE TRABALHO DE MATEMÁTICA A 10.º ANO FUNÇÕES POLINOMIAIS Conhece a Matemática e dominarás o Mundo. Galileu Galilei 1. Para que valores reais de m, GRUPO I ITENS DE ESCOLHA MÚLTIPLA p x x mx 0 dividido

Leia mais

UPE/VESTIBULAR/2002 MATEMÁTICA

UPE/VESTIBULAR/2002 MATEMÁTICA UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas

Leia mais

Tema I Introdução à lógica bivalente e à teoria de conjuntos

Tema I Introdução à lógica bivalente e à teoria de conjuntos Tema I Introdução à lógica bivalente e à teoria de conjuntos Unidade 1 Proposições Páginas 13 a 9 1. a) 3 é uma designação. b) 3 = 6 é uma proposição. c) é o único número primo par é uma proposição. d)

Leia mais

3ª série do Ensino Médio Turma. 2º Bimestre de 2018 Data / / Escola Aluno

3ª série do Ensino Médio Turma. 2º Bimestre de 2018 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª série do Ensino Médio Turma 2º Bimestre de 2018 Data / / Escola Aluno 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Avaliação da Aprendizagem em Processo

Leia mais

x Júnior lucrou R$ 4 900,00 e que o estoque por ele comprado tinha x metros, podemos afirmar que 50

x Júnior lucrou R$ 4 900,00 e que o estoque por ele comprado tinha x metros, podemos afirmar que 50 0. O Sr. Júnior, atacadista do ramo de tecidos, resolveu vender seu estoque de um determinado tecido. O estoque tinha sido comprado ao preço de R$,00 o metro. Esse tecido foi revendido no varejo às lojas

Leia mais

UFSC. Matemática (Violeta) 21) Resposta: 38. Comentário. 01. Incorreta. f(0, 3) = f(0, 4) = Correta. m < 0 m 1 2 < 0.

UFSC. Matemática (Violeta) 21) Resposta: 38. Comentário. 01. Incorreta. f(0, 3) = f(0, 4) = Correta. m < 0 m 1 2 < 0. UFSC Matemática (Violeta) 1) Resposta: 8 01. Incorreta. f(0, ) = f(0, ) = 0 0. Correta. m < 0 m 1 < 0 1 Logo, f m = m 1 m 1 < m 1 < m 0. Correta. Pela função f(x) = x x z 08. Incorreta. Im(f) = z 16. Incorreta.

Leia mais

MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00

MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00 MATEMÁTCA 0. Pedro devia a Paulo uma determinada importância. No dia do vencimento, Pedro pagou 30% da dívida e acertou para pagar o restante no final do mês. Sabendo que o valor de R$ 3 500,00 corresponde

Leia mais

Estatística. Disciplina de Estatística 2011/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa

Estatística. Disciplina de Estatística 2011/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa Estatística Disciplina de Estatística 20/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa Estatística Inferencial Estudos das Probabilidades (noção básica) Amostragens e Distribuição

Leia mais

Assunto: Conjuntos. Assunto: Funções DATA: 01/07/17

Assunto: Conjuntos. Assunto: Funções DATA: 01/07/17 DATA: 01/07/17 Assunto: Conjuntos 1) (UECE-2004.2) Das 1200 pessoas intrevistadas numa pesquisa eleitoral, 55% eram mulheres. Das mulheres, 35% eram casadas. O número de mulheres casadas participantes

Leia mais

FICHA DE TRABALHO N.º 4 MATEMÁTICA A - 10.º ANO POLINÓMIOS

FICHA DE TRABALHO N.º 4 MATEMÁTICA A - 10.º ANO POLINÓMIOS FICHA DE TRABALHO N.º 4 MATEMÁTICA A - 10.º ANO POLINÓMIOS Conhece a Matemática e dominarás o Mundo. Galileu Galilei GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Na figura está representado um paralelepípedo ABCDEFGH.

Leia mais

Funções Polinomiais com Coeficientes Complexos. Quantidade de Raízes e Consequências. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Funções Polinomiais com Coeficientes Complexos. Quantidade de Raízes e Consequências. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Quantidade de Raízes e Consequências 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Quantidade de Raízes

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Espaço Amostral Álgebra de Eventos Axiomas de Probabilidade Análise Aula de hoje Probabilidade Condicional Independência de Eventos Teorema

Leia mais

LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS 2º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS 2º TRIMESTRE LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS º TRIMESTRE ÁLGEBRA 1) O valor de z sabendo que 64 z é: z A) 64 B) 64 C) 8 + i D) 8 i E) 8 ) Considere as raízes complexas w 0, w, 1 w, w 3 e

Leia mais

Assinale as questões verdadeiras some os resultados obtidos e marque na Folha de Respostas:

Assinale as questões verdadeiras some os resultados obtidos e marque na Folha de Respostas: PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Assinale as questões

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

PROBABILIDADE. Luciana Santos da Silva Martino. PROFMAT - Colégio Pedro II. 01 de julho de 2017

PROBABILIDADE. Luciana Santos da Silva Martino. PROFMAT - Colégio Pedro II. 01 de julho de 2017 Sumário PROBABILIDADE Luciana Santos da Silva Martino PROFMAT - Colégio Pedro II 01 de julho de 2017 Sumário 1 Conceitos Básicos 2 Probabildade Condicional 3 Espaço Amostral Infinito Outline 1 Conceitos

Leia mais

Matemática E Extensivo V. 7

Matemática E Extensivo V. 7 Matemática E Etensivo V. 7 Eercícios ) B ) A P() = ³ + a² + b é divisivel por. Pelo teorema do resto, = é raiz de P(). P() = ³ + a. ² + b a + b = Da mesma maneira, P() é divisível por. Pelo teorema do

Leia mais

3 O ANO EM. Lista 19. Matemática II. f(x) g (x). g, 0,g 1 R R as seguintes funções: x 2 x 2 g 0(x) 2 g 0(4x 6) g 0(4x 6) g 1(x) 2 RAPHAEL LIMA

3 O ANO EM. Lista 19. Matemática II. f(x) g (x). g, 0,g 1 R R as seguintes funções: x 2 x 2 g 0(x) 2 g 0(4x 6) g 0(4x 6) g 1(x) 2 RAPHAEL LIMA 3 O ANO EM Matemática II RAPHAEL LIMA Lista 19 1. (Pucrj 017) Dadas as funções f,g R R definidas por f(x) x 13x 36 - e g(x) - x 1. a) Encontre os pontos de interseção dos gráficos das duas funções. b)

Leia mais

Álgebra Linear

Álgebra Linear Álgebra Linear - 0191 Lista 3 - Dependência e Independência Linear Bases e Soma Direta 1) Exiba três vetores u v w R 3 com as seguintes propriedades: nenhum deles é múltiplo do outro nenhuma das coordenadas

Leia mais

Teste de Matemática A 2017 / Teste N.º 4 Matemática A. Duração do Teste: 90 minutos NÃO É PERMITIDO O USO DE CALCULADORA

Teste de Matemática A 2017 / Teste N.º 4 Matemática A. Duração do Teste: 90 minutos NÃO É PERMITIDO O USO DE CALCULADORA Teste de Matemática A 017 / 018 Teste N.º 4 Matemática A Duração do Teste: 90 minutos NÃO É PERMITIDO O USO DE CALCULADORA 10.º Ano de Escolaridade Nome do aluno: N.º: Turma: Na resposta aos itens de escolha

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv O cursinho que mais aprova na fgv FGV economia a Fase 0/dezembro/00 MATEMÁTICA 0 Na parte sombreada da figura, as extremidades dos segmentos de reta paralelos ao eixo y são pontos das representações gráficas

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

UFSC. Matemática (Amarela) Resposta: = , se x < fx ( ) 2x 3, se 7 x < 8. x + 16x 51, se x. 01. Correta.

UFSC. Matemática (Amarela) Resposta: = , se x < fx ( ) 2x 3, se 7 x < 8. x + 16x 51, se x. 01. Correta. Resposta: 01 + 08 + 16 = 5 7 4, se x < fx ( ) x 3, se 7 x < 8 x + 16x 51, se x 8 01. Correta. 0. Incorreta. A imagem da função é Im = ( ; 13]. 3 04. Incorreta. f( 16) f( 6) 4 08. Correta. 16. Correta.

Leia mais

Prof.: Joni Fusinato

Prof.: Joni Fusinato Introdução a Teoria da Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso

Leia mais

AULÃO DE MATEMÁTICA

AULÃO DE MATEMÁTICA AULÃO DE MATEMÁTICA 2016-1 PREENCHIMENTO DA GRADE PROGRESSÃO ARITMÉTICA - PA PA PODE SER UMA SOMA OU SUBTRAÇÃO POR UMA RAZÃO. VEJA A SEQUÊNCIA: 1, 2, 3, 4, 5,..., 95, 96, 97, 98, 99, 100. HISTÓRIA SOBRE

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A 3.º Teste 0.º Ano de escolaridade Versão 5 Nome: N.º Turma: Professor: José Tinoco 0/0/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma

Leia mais

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5 Simulado ITA 1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C: I. Se A B e B C então A C. II. Se A B e B C então A C. III. Se A B e B C então

Leia mais

MATEMÁTICA CADERNO 6 CURSO E FRENTE 1 ÁLGEBRA. Módulo 24 Números Complexos. Módulo 25 Potências Naturais de i e Forma Algébrica

MATEMÁTICA CADERNO 6 CURSO E FRENTE 1 ÁLGEBRA. Módulo 24 Números Complexos. Módulo 25 Potências Naturais de i e Forma Algébrica MATEMÁTICA CADERNO 6 CURSO E FRENTE ÁLGEBRA Módulo 4 Números Complexos ) (5 + 7i) ( i) = 5 0i + i 4i = 5 + i + 4 = 9 + i ) f(z) = z z + f( i) = ( i) ( i) + = = i + i + i + = i ) x + (y )i = y 4 + xi, (x

Leia mais

Exercícios de Aprofundamento 2015 Mat - Polinômios

Exercícios de Aprofundamento 2015 Mat - Polinômios Exercícios de Aprofundamento 05 Mat - Polinômios. (Espcex (Aman) 05) O polinômio (x) x x deixa resto r(x). Sabendo disso, o valor numérico de r( ) é a) 0. b) 4. c) 0. d) 4. e) 0. 5 f(x) x x x, uando dividido

Leia mais

Equações Algébricas - Propriedades das Raízes. Teorema da Decomposição. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Equações Algébricas - Propriedades das Raízes. Teorema da Decomposição. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 3 ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 1 Exercícios

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM 05/junho/2016 Prova A MATEMÁTICA 01. Uma loja reajustou em 20% o preço de certo modelo de televisão. Todavia, diante da queda nas vendas, a loja pretende dar

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 13 EXERCÍCIOS 1) A representação cartesiana da função y = ax 2 + bx + c é a parábola abaixo. Tendo em vista

Leia mais

No lançamento de uma moeda, a probabilidade de ocorrer cara ou coroa é a mesma. Como se calcula a probabilidade de determinado evento?

No lançamento de uma moeda, a probabilidade de ocorrer cara ou coroa é a mesma. Como se calcula a probabilidade de determinado evento? Probabilidade Introdução Dentro de certas condições, é possível prever a que temperatura o leite ferve. Esse tipo de experimento, cujo resultado é previsível, recebe o nome de determinístico. No entanto,

Leia mais

1 Função Polinomial. INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA ICET Campinas Limeira Jundiaí. Ricardo F. Arantes

1 Função Polinomial. INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA ICET Campinas Limeira Jundiaí. Ricardo F. Arantes INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA ICET Campinas Limeira Jundiaí Módulo VIII - Tópicos de Informática 1 Função Polinomial Unip 2006 - Teoria VIII 1 1- FUNÇÃO POLINOMIAL Função Polinomial Raízes

Leia mais

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2} 1. A imagem da função real f definida por f(x) = é R {1} R {2} R {-1} R {-2} 2. Dadas f e g, duas funções reais definidas por f(x) = x 3 x e g(x) = sen x, pode-se afirmar que a expressão de (f o g)(x)

Leia mais

Polinômios. Acadêmica: Vanessa da Silva Pires

Polinômios. Acadêmica: Vanessa da Silva Pires Polinômios Acadêmica: Vanessa da Silva Pires Situação 01: Se você somar 1 ao produto de quatro inteiros consecutivos, o resultado sempre será um quadrado perfeito. Situação 02: Na resolução de problemas,

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Resoluções de Exercícios Conhecimentos Numéricos Capítulo 0 Análise Combinatória Parte II 0 E Colocando em cada mês crianças, teríamos 8 crianças distribuídas, e restariam crianças. Então, colocando as

Leia mais

n = S(n) + P(n) 10.a + b = (a+b) + (a.b) 10.a + b a b = a.b n = 10.a + b

n = S(n) + P(n) 10.a + b = (a+b) + (a.b) 10.a + b a b = a.b n = 10.a + b Erivaldo ACAFE Matemática Básica Chamaremos de S(n) a soma dos algarismos do número inteiro positivo n, e de P(n) o produto dos algarismos de n. Por exemplo, se n = 47 então S(n) = 11 e P(n) 28. Se n é

Leia mais