Matemática E Semiextensivo v. 3
|
|
|
- Silvana Bugalho Bardini
- 7 Há anos
- Visualizações:
Transcrição
1 Semiextensivo v. Exercícios 0) a) b) 7 c) d) 5 e) 56 a) 5 0 5! 0!. 5! 5!. 5! 05) S 4, 8 x 4 8 x 4 8 ou x x x + 4 x 4 x 8 b) 7 7!!. 6! 7. 6!. 6! c)!!. 7 06) S {5, } x x 8 d) 0 5 0! 5!. 5! ! ! e) 8 5 8! 5!.! ! 56 5!.! 0) C ) D 9 9, pois ) ! ! !.! 8!.! x + 8 x ou x x 0 x x x 5 x 5 07) x 6. a 4 (x² a) T 5 T (x²) 4. ( a) (x²) 8. ( a) x a x 6. a 4 08) 04 09) C 0) A (4x 6 6y 0 ) 0, então: ( ) 0 (4 6) 0 ( ) 0 04 T 5 T (x³)8 4. ( 4y) (x³) 4. ( 4y) x. 56. y x. y 4 T 7 T (x³)0 6. (y ) 6 0. (x³) 4. (y ) 6 0. x. y
2 ) 5 ) D ) T p + 6 p p. x6 p. 6 x p. x6 p. ( x) p 6 p. x6 p. x p. ( ) p 6 p. x6 p p. ( ) p Como o termo deve ser independente de x, então: 6 p p 0, logo p. T + 6. x6.. ( ). 6. x T p + p. (x) p. p x p. (x) p. (x) p p. (x) p p. p. x p Como o termo deve ser independente de x, então: p 0, logo p 6. T x n n, logo n 8 + n 8 4) 84 5) B T p + 9 p. (x²)9 p. p x 9 p. x8 p. x p 9 p. x8 p Como o termo deve ser independente de x, então: 8 p 0, logo p 6. T x x Primeiro vamos encontrar uma fórmula geral para encontrar os termos de grau e grau. T p + 4 p. ( )4 p. (x) p 4 p. ( )4 p. p. x p Para grau temos p, então: T + T 4. ( )4.. x 4... x T 6 x Para grau temos p, então: 4 T + T. ( )4.. x 6.. 4x² 48x² Somando os termos, temos : 6 x + 48x² 6x( + x) 6) Falso. (a b) 5 (.. ) 5 ( ) 5 ( ) 5 7) Verdadeiro. 8) D 9) 6 T p + 0 p. (x4 ) 0 p. p 0 x p. x40 4p. ( x) p 0 p. x40 4p. x p. ( ) p 0 p. x40 4p p. ( ) p Como o termo deve ser independente de x, então: 40 5p 0, logo p 8. T x0. ( ) T p + 5 p. ( x)5 p. ( x) p 5 p. x 5 p. x 5 p. x p 5 p. x 5 p p + 5 p p. x Como o expoente de x é 7, logo: 5 p p p+ p 7 45 p 4 6 p T + 5. x x 7 Evento de interesse: Eventos possíveis: 6 P 6
3 0) 6 ) D Evento de interesse: Eventos possíveis: P 6 Evento de interesse: 5 peixarias Eventos possíveis: peixaria dentro do ideal P 5 ) Falso. A probabilidade de sair o é: 6 A probabilidade de NÃO sair o é: 5 6 ) Verdadeiro. 4) D Probabilidade de ser O Probabilidade de ser rh % Probabilidade de ser borboleta: Total de espécies: 66 P 0, ,95% 66 5) Falso. Números de diagonais do hexágono regular: d 6.( 6 ) 6. 9 Número de retas que ligam dois vértices: Retas que passam pelo centro : P ) 5 PA ( ) + P ( A ) obter coroa obter cara P(A) + 4. P(A) 5. P(A) 7) 4 8) A P(A) 5 A Tirar um valete B Carta de copas P(A B) P(A) + P(B) P(A B) P(A B) P(A) + P(B) P(A B) x x x % 9) D 0) D ) E É fácil de observar que a probabilidade de obtermos um funcionário que calça 8, sabendo que calça mais que 6, é: P(A) 5 7 Probabilidade de A: 9 Probabilidade de germinação: 77 P 9 77 Pacientes doença de queimadas: 00 Crianças desse grupo: 50 P ,75
4 ) C ) B saudáveis saudáveis com resultado negativo com resultado negativo P A área do sinal das emissoras é um semicírculo de raio 0 km. Logo: A 0. 4, 57 km² Logo, P 57 0,5 5% 68 b) 8 A probabilidade de nascer menino ou menina é a mesma. Temos assim de nascer em 4 crianças, 6 mas a ordem do nascimento é essencial, pois podemos ter (H H M M) ou (H M H M). Logo, P 4 4!!.! 6 A probabilidade é c) 5 6 O cálculo da letra a apresentou a possibilidade 6 de se ter exclusivamente meninas. Logo: 4) 4 P. 6 moeda 5) a) 6% dado 4 P % 9) C P Chover Não chover Segunda 0% 70% Sexta 85% 5% 6) B 7) B b) P O tempo total é de 00 segundos. A razão do tempo que a luz verde fica acesa é de Logo, P P % 8) a) 6 P ) 7 8 4) E Note que a probabilidade de não chover na segunda (70%) é maior que a probabilidade de não chover na sexta (5%) Obter exclusivamente coroa:.. 8 Ao menos uma cara: , 4 Todas as possibilidades: P 8 8! 4!. 4! 70 Caso que queremos: H M H M H M H M ou M H M H M H M H. Logo, P
5 4) E 4) C Ordem do nascimento: P!! Probabilidade de nascer em dois meninos:.. 8 P. 8 0,75 7,5% 8 47) D Sexo feminino: x Sexo masculino: x + 0 Total: x + 0 x + 0 x (x + 0) 5. (x + 0) x 5 8 Logo, o total é de Para as questões 48 e 49: Linha : Linha : 4 Linha : Linha 4: 48) A TVE TEV ETV EVT VET VTE acertos acerto 0 acerto acerto 0 acerto acerto Espaço amostral: 6 elementos. 44) A 45) D Linha 5: P III. Verdadeiro. P(A ou B) % Terremoto ocorrendo no mar: 70% 60% de causar dano % Vale 4% do total. 40% de não causar dano % 46) 0 Vale 8% do total. Somente a 0 está correta. Relembrando a matéria de análise combinatória: 8, 4 P! 8!. 4! ) B Para ganhar exatamente 00 reais, ele deve obter acertos. No quadro acima não existe a possibilidade, logo a probabilidade é zero. Não ganhar qualquer prêmio: Total: 6 P 6 50) D Pela união de eventos temos: P(A B) P(A) + P(B) P(A B). Então calculando para cada caminho: a) A E e B E P(E E ) 0,8 + 0,5 (0,8. 0,5) P(E E ), 0,4 0,9 90% b) A E e B E 4 P(E E 4 ) 0,8 + 0, (0,8. 0,) P(E E 4 ), 0,4 0,86 86% c) A E e B E 4 Impossível pois esses caminhos não se cruzam. d) A E e B E 5 P(E E 5 ) 0,7 + 0,4 (0,7. 0,4) P(E E 5 ), 0,8 0,8 8% e) A E e B E 6 P(E E 6 ) 0,7 + 0,6 (0,7. 0,6) P(E E 6 ), 0,4 0,88 88% Com isso, podemos afirmar que o melhor caminho é E E 5. 5
6 5) 5 Q(4) 4³ Q(4) Q(4) 5 5) 4 P(). ³ 4. ² P() P() 4 5) P(x) x² x ) C 55) D P(x + ) (x + )² 5 (x + ) + 8 P(x + ) x² + x + 5x P(x + ) x² x + 4 Logo P(x) x² x + 4 Se gr(p) n e gr(q) N, com n > N, logo gr (P ± Q) n. [ P(x) ] + [ P(x) ] + P(x). [ P(x) ] + P(x) 58) m, n, p 59) E 60) A p m m p + 7 n m m p p p + 7 n m p 4p + 4 m p x + A.( x + ) + B.( x ) x x x + Ax + A+ Bx B x x x + ( A + B) x + ( A B) x x A+ B A B A e B P(x) x + a P() x + a 0, pois é raiz de P(x). gr 5 gr 0 gr 5 gr 5 gr 5 Logo + a 0 a gr 0 Então P(x) x ou P(x) x + Logo, como estamos falando da soma de polinômios em que o maior grau é 0, o grau da soma será 0. 56) a 7, b, c 5 e d 4 P(x) (a 7)x³ + (b 6)x² + (5 c)x + (d 8) 0 a 7 0 a 7 b 6 0 b 6 b 5 c 0 c 5 d 8 0 d 8 d 4 57) 4 b 0 b a b 5 a 5 a 7 c c 5 Logo, a + b + 5c Se P(x) x, logo P( ) 4 4 Se P(x) x +, então P( ) ( ) Logo P(x) x +. 6) A, B, C A Bx C x x + + x + x A x.( + x + ) + ( Bx + C ).( x ) ( x ).( x + x + ) Ax + Ax + A+ Bx B Cx C x x + x + x x x x ( A B) x + + ( A B + C) x + ( A C) x (A + B)x² + (A B + C)x + (A C) A+ B 0 A B+ C 0 A C A, B, C 6
7 6) C x 4 A + B x x + x x 4 x A.( x ) + B.( x + ) ( ).( x ) x 4 Ax A+ B B x x x 4 (A + B)x + (B A) A + B B A 4 6) 66 64) B A e B P (a )x² + (b + 4c)x + ( a + b + ) P 0x² + 58x + 9 a 0 a b + 4c 58 a + b c b + 9 4c 40 b 54 c 5 b 8 Soma: a + b + c P(x) + x + x x x 49 I. Verdadeiro. P() PAde. 50 termos S 50 ( + 50 ) II. Falsa. P( ) ( ) ( ) Logo, P( ) 5 III. Falsa. P(0) IV. Verdadeiro. Observando a questãoo II, os termos de grau ímpar são , ou seja, uma PA. Logo S 5 ( + 5 ) ) D 4 x + 0x + 0x x + 4x x 4x 8x x 4 8 4x 8x + 0x x + 6x + x 8x x x ) B x x + 4x 0 x 7x + 6 x + 7x 6x x 5 5x + 5x 0 5x 5 0 Logo Q(x) x 5. Temos Q() 5 67) D x x x + 0x 4 x + 0x + 4x x x x + 0x 8 4x 4 Logo r(x) 4x 4 68) E P (x) 6x x + 6x P( x) x x + 6x + 9x x x x + x + x 0 Veja que P é divisível por P. Logo, letra e é incorreta. 7
8 69) B 70) E 7) E 7) B P(x) (x² x + ). (x² + ) + ( x + ) P(x) 6x 4 9x + 5x x + x + P(x) 6x 4 9x + 5x 4x Q(x) 6x x + x e r(x) P(x) (x² + ). (x ) + P(x) x³ x² + x + P(x) x³ x² + x 4 x x + ax + bx + c x + 0x x + 0x + 4x x x x + ( a+ 4) x + ( b ) c + x + 0x x + 8 ( a+ 4) x + ( b ) ( c + 8) Q'(x) x e r(x) (a + 4)x² + (b )x + (c + 8) Como queremos que P(x) seja divisível por Q(x) então r(x) 0. Logo: a+ 4 0 a 4 b 0 b c c 8 4 x 4x 0x + a b x 5 4 x + x 5x x x 8 x 5x + ax + b + x x + 5x 8x + ( a+ 5) b + 8x 8 90 ( a ) ( 90 + b) 7) B 74) A x + x + px + q x + x + x x x x + ( p ) q x x ( p ) ( q ) Logo: p 0 p p + q q 0 q 4 x + x + x + a b x + 0x 4 x + 0x + x x + x + 4 x + 4x + ax + b x 0x + x 4 x + ( + a) b + + 4x 0x 4 Logo + a 0 a b b 4 75) D ( + ax ) + ( b + 4) Temos: a² + b² x x + mx n x + x x x + x x x + ( m+ ) x n x + x 4 ( m+ 4) ( n 4) Logo: m m 4 m n n 4 0 n 4 Como é divisível, logo r(x) 0. Temos: a 0 a a + b b 0 b 90 8
9 76) B x + 0x + ( 8+ mx ) n x x x + x + x x + ( 6 + m) x n x + ( 5 + m) ( n) Logo: 5 + m 0 m 5 m. n 5. 0 n 0 n 77) 65 4 x x ax + bx c x + 0x x + 0x + 4x x x x + ( 4 a) x + ( b ) x c x + 0x x + 8 ( 4 ax ) + ( b ) ( 8 c) 4 a 0 a 4 b 0 b 8 c 0 c 8 a + b + c
GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2).
01) a) P (1) = 1 + 7 1 17 1 P (1) = 1 + 7 17 P (1) = 11 P (1) é sempre igual a soma dos coeficientes de P (x) b) P (0) = 0 + 7 0 17 0 P (0) = 0 + 0 0 P (0) = P (0) é sempre igual ao termo independente
Matemática E Extensivo V. 5
Extensivo V Exercícios 0) a) / b) / c) / a) N(E) N(A), logo P(A) b) N(E) N(A), logo P(A) c) N(E) N(A), logo P(A) 0) a) 0 b) / % c) 9/0 90% d) /0 % 0) E a) N(E) 0 + + + 0 b) N(E) 0 N(A), logo P(A) 0, %
Matemática E Intensivo V. 2
Matemática E Intensivo V. Exercícios 0) a) b) c) 8 8 8 a) 8 = =!! C = = ( 8 )!!!! b) 0 0 0 0 = =!! C = = ( 0 )!! 8!! n 0 n n c) Cn 0 = =!! = = ( n 0)! 0! n! 0) 0x O terceiro termo é dado por: T r + = n
POLINÔMIOS. Nível Básico
POLINÔMIOS Nível Básico. (Eear 07) Considere P(x) x bx cx, tal que P() e P() 6. Assim, os valores de b e c são, respectivamente, a) e b) e c) e d) e. (Epcar (Afa) 05) Considere o polinômio a) x 0 não é
Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n
POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:
SE18 - Matemática. LMAT 6B2-1- Polinômios (Operações com polinômios) Questão 1
SE18 - Matemática LMAT 6B2-1- Polinômios (Operações com polinômios) Questão 1 (Eear 2017) Considere P(x) = 2x 3 + bx 2 + cx, tal que P(1) = -2 e P(2) = 6. Assim, os valores de b e c são, respectivamente,
Funções Polinomiais com Coeficientes Complexos. Teorema do Resto. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Teorema do Resto 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Teorema do Resto 1 Exercícios Introdutórios
Aula 16 - Erivaldo. Probabilidade
Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar
Erivaldo. Polinômios
Erivaldo Polinômios Polinômio ou Função Polinomial Definição: P(x) = a o + a 1.x + a 2.x 2 + a 3.x 3 +... + a n.x n a o, a 1, a 2, a 3,..., a n : Números complexos Exemplos: 1) f(x) = x 2 + 3x 7 2) P(x)
Matemática E Extensivo V. 8
Matemática E Extensivo V. 8 Resolva Aula 9 9.) D x + x 7x 6 = x = é raiz. Aula.) x + px + = Se + i é raiz, então i também é. 5 7 6 Soma = b a = p p = + i + i p = p = Q(x) = x + 5x + Resolvendo Q(x) =,
Fácil e Poderoso. Dinâmica 1. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Algébrico-Simbólico
Fácil e Reforço escolar M ate mática Poderoso Dinâmica 1 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 3ª do Ensino Médio Algébrico-Simbólico Polinômios e Equações Algébricas. Primeira
Matemática E Intensivo V. 2
Matemática E Intensivo V. Exercícios 0) E P 6 6! 70 0) motorista possibilidades p. p. p. p. p 8 possibilidades 0) motorista P 6. P 0 0) E P 0 68800 Então precisam de 68800 dias. Aproximadamente 99,9 anos
Matemática A - 10 o Ano Ficha de Trabalho
Matemática A - 10 o Ano Ficha de Trabalho Álgebra - Divisão Inteira de Polinómios Grupo I 1. Tendo em conta que n N; a n, a n 1,..., a 1, a 0 R e a n 0; b n, b n 1,..., b 1, b 0 R e b n 0, considere os
Matemática E Extensivo V. 6
Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. a) P() = ³ + 7. ² 7. P() = + 7 7
POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:
POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes
EXTENSIVO APOSTILA 11 EXERCÍCIOS DE SALA MATEMÁTICA A
EXTENSIVO APOSTILA EXERCÍCIOS DE SALA MATEMÁTICA A AULA 0 0) Sendo PC Preço de Custo PV Preço de Venda PP Preço de Venda Promocional temos: PV,50 PC PP 0,80 PV Substituindo: PP = 0,80,50 PC PP =,0 PC No
m 1 Grupo A é 3, então ( P + Q R) Como o maior expoente da variável x do polinômio P + Q R Analogamente ao item a, (PQ) = 3.
Grupo A. Seja x o grau do divisor, então p x + q x p q. Sendo r o grau do resto, então r
3 + =. resp: A=5/4 e B=11/4
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 3º ENSINO MÉDIO - PROF. CARLINHOS BONS ESTUDOS! ASSUNTO : POLINÔMIOS 1) Identifique as expressões abaixo que são
Funções Polinomiais com Coeficientes Complexos. Dispositivo de Briot-Ruffini. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini
QUESTÕES DE VESTIBULARES
QUESTÕES DE VESTIBULARES 01- (ACAFE) Dados os polinômios: p(x) = 5-2x + 3x 2, q(x) = 7 + x + x 2 - x 3 e r(x) = 1-3x + x 4. O valor de p(x) + r (x) - q(x) para x = 2 é: A) 5 B) 13 C) 11 D) 24 E) 19 02-
PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA
PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço
Matemática E Extensivo V. 5
Extensivo V. Exercícios 0) Casos possíveis: {,,,,, } Casos favoráveis: {,, } Assim, a probabilidade é: 0) 70% P Casos possíveis: 7 + 0 possibilidades Casos favoráveis: 7 (7 bolas pretas) P 7 0,7 70% 0
Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x
EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a
AULA 01 (A) 9. (B) 1. (C) 0. (D) 7. (E) 10. (E) Se k 5 então axterá ( ) grau 1. (D) d(3) 4. (E) d(4) 12.
AULA 01 Observe cada um dos polinômios a seguir: x p( x) x 9x 4x x x 7 3 (I) 7 6 5 3 x 3x (II) mx ( ) 5 4 3 (III) n( x) 8x 3x 10x 3 6 Se organizarmos estes polinômios em ordem crescente de grau teremos
Matemática A - 10 o Ano
Matemática A - 10 o Ano Resolução da Ficha de Trabalho Álgebra - Divisão Inteira de Polinómios Grupo I 1. Considerando os polinómios p e b no enunciado temos que o termo de maior grau de p b é a nx n b
PROBABILIDADES PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO
PROBABILIDADES Probabilidade é um conceito filosófico e matemático que permite a quantificação da incerteza, permitindo que ela seja aferida, analisada e usada para a realização de previsões ou para a
(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é:
APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado
1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura:
7. Considere um retângulo ABCD em que o comprimento do lado AB é o dobro do comprimento do lado BC. Sejam M o ponto médio de BC e N o ponto médio de CM. A tangente do ângulo MAN ˆ é igual a a) 5. b) 5.
Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =
Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de
Funções Polinomiais com Coeficientes Complexos. Divisão de Funções Polinomiais. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Divisão de Funções Polinomiais 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Divisão de Funções Polinomiais
MATEMÁTICA CADERNO 3 SEMIEXTENSIVO E FRENTE 1 ÁLGEBRA. n Módulo 9 Sistemas Lineares II
MATEMÁTICA CADERNO SEMIEXTENSIVO E Assim: A tem R$,, B tem R$ 8,, C tem R$ 9, e D tem R$ 6,. FRENTE ÁLGEBRA n Módulo 9 Sistemas Lineares II x + y + z = x + y + z = ) y + z = y + z = 6z = 8 z = ) x + y
O problema proposto possui alguma solução? Se sim, quantas e quais são elas?
PROVA PARA OS ALUNOS DE 3º ANO DO ENSINO MÉDIO 1) Considere o seguinte problema: Vitor ganhou R$ 3,20 de seu pai em moedas de 5 centavos, 10 centavos e 25 centavos. Se recebeu um total de 50 moedas, quantas
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Funções polinomiais Logaritmo Aula 03 Funções Polinomiais Introdução: Polinômio Para a sucessão de termos comcom, um polinômio de grau n possui a seguinte forma : Ex : Funções
Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2
Polinômios. (ITA 2005) No desenvolvimento de (ax 2 2bx + c + ) 5 obtém-se um polinômio p(x) cujos coeficientes somam 32. Se 0 e são raízes de p(x), então a soma a + b + c é igual a (A) 2 (B) 4 (C) 2 (D)
Aula 13 de Bases Matemáticas
Aula 3 de Bases Matemáticas Rodrigo Hausen Versão: 8 de julho de 206 Catálogo de Funções Reais No estudo de unções é extremamente útil conhecer as propriedades e gráicos de algumas unções reais. Função
Matemática E Extensivo V. 5
Extensivo V. Exercícios 0) Casos possíveis: {,,,,, } Casos favoráveis: {,, } Assim, a probabilidade é: 0) 70% P Casos possíveis: 7 + 0 possibilidades Casos favoráveis: 7 (7 bolas pretas) P 7 0,7 70% 0
Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa
1 1. (Fuvest 97) Suponha que o polinômio do 3 grau P(x) = x + x + mx + n, onde m e n são números reais, seja divisível por x - 1. a) Determine n em função de m. b) Determine m para que P(x) admita raiz
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES
COLEÇÃO DARLAN MOUTINHO VOL. 0 RESOLUÇÕES Me ta PÁGINA 8 0 0 Havendo apenas bolas verdes e azuis na urna, segue que a resposta é dada por Basta dividirmos o número de ocorrências, pelo número total de
... Onde usar os conhecimentos os sobre...
IX NÚMEROS COMPLEXOS E POLINÔMIOS Por que aprender sobre Números Complexos?... Ao estudar os Números Complexos percebemos que sua ligação à geometria nos dá uma perspectiva mais rica dos métodos geométricos
Estatística: Probabilidade e Distribuições
Estatística: Probabilidade e Distribuições Disciplina de Estatística 2012/2 Curso: Tecnólogo em Gestão Ambiental Profª. Ms. Valéria Espíndola Lessa 1 Aula de Hoje 23/11/2012 Estudo da Probabilidade Distribuição
1 0 para todo x, multiplicando-se os dois membros por. 2x 1 0 x 1 2. b a x. ba 2. e b 2 c
CAPÍTULO 1 Exercícios 1..n) Como x 0 para todo x, o sinal de x(x ) é o mesmo que o de x; logo, x(x ) 0 para x 0; x(x ) 0 para x 0; x(x ) 0 para x 0.. n) Como x 1 1 0 para todo x, multiplicando-se os dois
Visite : e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180
) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, então temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d) P(0) = e) N.D.A. ) (UFC) Seja P(x) um
Projeto Jovem Nota 10 Polinômios Lista A Professor Marco Costa
1 Projeto Jovem Nota 10 1. (Ufv 2000) Sabendo-se que o número complexo z=1+i é raiz do polinômio p(x)=2x +2x +x+a,calcule o valor de a. 2. (Ita 2003) Sejam a, b, c e d constantes reais. Sabendo que a divisão
= 3 modos de escolher duas pessoas 2
01. x/(x+0) /3 ó x 40 Resposta: E 0. [E] RESOLUÇÃO REVENEM 3 De acordo com o gráfico, temos que o número total de filhos é dado por 71 + 6 + 3. Portanto, como sete mães tiveram um único filho, segue que
Colégio Naval 2003 (prova verde)
Colégio Naval 00 (prova verde) 01) Analise as seguintes afirmativas sobre um sistema S se duas equações do primeiro grau com duas incógnitas X e Y. I - S sempre terá ao menos uma solução, se os seus termos
Resoluções de Exercícios
Resoluções de Exercícios MATEMÁTICA V Capítulo 05 Noções de Probabilidade Parte II 3 o ) P(I B) = Observação: Diagrama de Árvore Considere as probabilidades seguintes a) P(I) = = P(II) b) P(B I) = e P(V
Funções Polinomiais com Coeficientes Complexos. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Definições Básicas de Funções Polinomiais Complexas 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Definições
Matemática. Questão 1. 3 a série do Ensino Médio Turma. 2 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO
EM AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3 a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 2 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Dada a equação
ASSUNTO:POLINÔMIOS. a) Do 3º grau resp: m ±6 b) Do 2º grau resp: m=6 c) do 1 º grau m=-6
ASSUNTO:POLINÔMIOS 1) Identifique as expressões abaixo que são polinômios: a) 3x 3-5x 2 +x-4 b) 5x -4 -x -2 +x-9 c) x 4-16 d)x 2 3 +2x+6 e) x 2 4 resp: a, c,d 2) Dado o polinômio P(x)= 2x 3-5x 2 +x-3.
Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:
EQUAÇÕES POLINOMIAIS. EQUAÇÃO POLINOMIAL OU ALGÉBRICA Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: p(x) = a n x n + a n x n +a n x n +... + a x + a 0 = 0 onde
2. (Ita 2002) Com base no gráfico da função polinomial y = f(x) esboçado a seguir, responda qual é o resto da divisão de f(x) por (x - 1/2) (x 1).
1 Projeto Jovem Nota 10 Polinômios Lista B Professor Marco Costa 1. (Fuvest 2002) As raízes do polinômio p(x) = x - 3x + m, onde m é um número real, estão em progressão aritmética. Determine a) o valor
ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C
Probabilidade Parte 1. Camyla Moreno
Probabilidade Parte 1 Camyla Moreno Probabilidade A teoria das probabilidades é um ramo da Matemática que cria, elabora e pesquisa modelos para estudar experimentos ou fenômenos aleatórios. Principais
Matemática E Extensivo V. 6
Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +
DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /.
DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /. 1. (Ufjf-pism 017) Qual é o polinômio que ao ser multiplicado por g(x) 3 x 2x 5x 4 tem como resultado o polinômio 6 5 4 h(x)
MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução
MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução Exercícios de exames e testes intermédios 1. Como P (B) = 1 P ( B ) = P (B) P (A B) vem que P (B) = 1 0,7
FICHA DE TRABALHO DE MATEMÁTICA A 10.º ANO FUNÇÕES POLINOMIAIS
FICHA DE TRABALHO DE MATEMÁTICA A 10.º ANO FUNÇÕES POLINOMIAIS Conhece a Matemática e dominarás o Mundo. Galileu Galilei 1. Para que valores reais de m, GRUPO I ITENS DE ESCOLHA MÚLTIPLA p x x mx 0 dividido
UPE/VESTIBULAR/2002 MATEMÁTICA
UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas
Tema I Introdução à lógica bivalente e à teoria de conjuntos
Tema I Introdução à lógica bivalente e à teoria de conjuntos Unidade 1 Proposições Páginas 13 a 9 1. a) 3 é uma designação. b) 3 = 6 é uma proposição. c) é o único número primo par é uma proposição. d)
3ª série do Ensino Médio Turma. 2º Bimestre de 2018 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª série do Ensino Médio Turma 2º Bimestre de 2018 Data / / Escola Aluno 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Avaliação da Aprendizagem em Processo
x Júnior lucrou R$ 4 900,00 e que o estoque por ele comprado tinha x metros, podemos afirmar que 50
0. O Sr. Júnior, atacadista do ramo de tecidos, resolveu vender seu estoque de um determinado tecido. O estoque tinha sido comprado ao preço de R$,00 o metro. Esse tecido foi revendido no varejo às lojas
UFSC. Matemática (Violeta) 21) Resposta: 38. Comentário. 01. Incorreta. f(0, 3) = f(0, 4) = Correta. m < 0 m 1 2 < 0.
UFSC Matemática (Violeta) 1) Resposta: 8 01. Incorreta. f(0, ) = f(0, ) = 0 0. Correta. m < 0 m 1 < 0 1 Logo, f m = m 1 m 1 < m 1 < m 0. Correta. Pela função f(x) = x x z 08. Incorreta. Im(f) = z 16. Incorreta.
MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00
MATEMÁTCA 0. Pedro devia a Paulo uma determinada importância. No dia do vencimento, Pedro pagou 30% da dívida e acertou para pagar o restante no final do mês. Sabendo que o valor de R$ 3 500,00 corresponde
Estatística. Disciplina de Estatística 2011/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa
Estatística Disciplina de Estatística 20/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa Estatística Inferencial Estudos das Probabilidades (noção básica) Amostragens e Distribuição
Assunto: Conjuntos. Assunto: Funções DATA: 01/07/17
DATA: 01/07/17 Assunto: Conjuntos 1) (UECE-2004.2) Das 1200 pessoas intrevistadas numa pesquisa eleitoral, 55% eram mulheres. Das mulheres, 35% eram casadas. O número de mulheres casadas participantes
FICHA DE TRABALHO N.º 4 MATEMÁTICA A - 10.º ANO POLINÓMIOS
FICHA DE TRABALHO N.º 4 MATEMÁTICA A - 10.º ANO POLINÓMIOS Conhece a Matemática e dominarás o Mundo. Galileu Galilei GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Na figura está representado um paralelepípedo ABCDEFGH.
Funções Polinomiais com Coeficientes Complexos. Quantidade de Raízes e Consequências. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Quantidade de Raízes e Consequências 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Quantidade de Raízes
Estatística e Modelos Probabilísticos - COE241
Estatística e Modelos Probabilísticos - COE241 Aulas passadas Espaço Amostral Álgebra de Eventos Axiomas de Probabilidade Análise Aula de hoje Probabilidade Condicional Independência de Eventos Teorema
LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS 2º TRIMESTRE
LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS º TRIMESTRE ÁLGEBRA 1) O valor de z sabendo que 64 z é: z A) 64 B) 64 C) 8 + i D) 8 i E) 8 ) Considere as raízes complexas w 0, w, 1 w, w 3 e
Assinale as questões verdadeiras some os resultados obtidos e marque na Folha de Respostas:
PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Assinale as questões
T o e r o ia a da P oba ba i b lida d de
Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que
Noções sobre Probabilidade
Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de
PROBABILIDADE. Luciana Santos da Silva Martino. PROFMAT - Colégio Pedro II. 01 de julho de 2017
Sumário PROBABILIDADE Luciana Santos da Silva Martino PROFMAT - Colégio Pedro II 01 de julho de 2017 Sumário 1 Conceitos Básicos 2 Probabildade Condicional 3 Espaço Amostral Infinito Outline 1 Conceitos
Matemática E Extensivo V. 7
Matemática E Etensivo V. 7 Eercícios ) B ) A P() = ³ + a² + b é divisivel por. Pelo teorema do resto, = é raiz de P(). P() = ³ + a. ² + b a + b = Da mesma maneira, P() é divisível por. Pelo teorema do
3 O ANO EM. Lista 19. Matemática II. f(x) g (x). g, 0,g 1 R R as seguintes funções: x 2 x 2 g 0(x) 2 g 0(4x 6) g 0(4x 6) g 1(x) 2 RAPHAEL LIMA
3 O ANO EM Matemática II RAPHAEL LIMA Lista 19 1. (Pucrj 017) Dadas as funções f,g R R definidas por f(x) x 13x 36 - e g(x) - x 1. a) Encontre os pontos de interseção dos gráficos das duas funções. b)
Álgebra Linear
Álgebra Linear - 0191 Lista 3 - Dependência e Independência Linear Bases e Soma Direta 1) Exiba três vetores u v w R 3 com as seguintes propriedades: nenhum deles é múltiplo do outro nenhuma das coordenadas
Teste de Matemática A 2017 / Teste N.º 4 Matemática A. Duração do Teste: 90 minutos NÃO É PERMITIDO O USO DE CALCULADORA
Teste de Matemática A 017 / 018 Teste N.º 4 Matemática A Duração do Teste: 90 minutos NÃO É PERMITIDO O USO DE CALCULADORA 10.º Ano de Escolaridade Nome do aluno: N.º: Turma: Na resposta aos itens de escolha
CPV O cursinho que mais aprova na fgv
O cursinho que mais aprova na fgv FGV economia a Fase 0/dezembro/00 MATEMÁTICA 0 Na parte sombreada da figura, as extremidades dos segmentos de reta paralelos ao eixo y são pontos das representações gráficas
A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.
Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos
UFSC. Matemática (Amarela) Resposta: = , se x < fx ( ) 2x 3, se 7 x < 8. x + 16x 51, se x. 01. Correta.
Resposta: 01 + 08 + 16 = 5 7 4, se x < fx ( ) x 3, se 7 x < 8 x + 16x 51, se x 8 01. Correta. 0. Incorreta. A imagem da função é Im = ( ; 13]. 3 04. Incorreta. f( 16) f( 6) 4 08. Correta. 16. Correta.
Prof.: Joni Fusinato
Introdução a Teoria da Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso
AULÃO DE MATEMÁTICA
AULÃO DE MATEMÁTICA 2016-1 PREENCHIMENTO DA GRADE PROGRESSÃO ARITMÉTICA - PA PA PODE SER UMA SOMA OU SUBTRAÇÃO POR UMA RAZÃO. VEJA A SEQUÊNCIA: 1, 2, 3, 4, 5,..., 95, 96, 97, 98, 99, 100. HISTÓRIA SOBRE
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 5
FICHA de AVALIAÇÃO de MATEMÁTICA A 3.º Teste 0.º Ano de escolaridade Versão 5 Nome: N.º Turma: Professor: José Tinoco 0/0/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma
Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5
Simulado ITA 1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C: I. Se A B e B C então A C. II. Se A B e B C então A C. III. Se A B e B C então
MATEMÁTICA CADERNO 6 CURSO E FRENTE 1 ÁLGEBRA. Módulo 24 Números Complexos. Módulo 25 Potências Naturais de i e Forma Algébrica
MATEMÁTICA CADERNO 6 CURSO E FRENTE ÁLGEBRA Módulo 4 Números Complexos ) (5 + 7i) ( i) = 5 0i + i 4i = 5 + i + 4 = 9 + i ) f(z) = z z + f( i) = ( i) ( i) + = = i + i + i + = i ) x + (y )i = y 4 + xi, (x
Exercícios de Aprofundamento 2015 Mat - Polinômios
Exercícios de Aprofundamento 05 Mat - Polinômios. (Espcex (Aman) 05) O polinômio (x) x x deixa resto r(x). Sabendo disso, o valor numérico de r( ) é a) 0. b) 4. c) 0. d) 4. e) 0. 5 f(x) x x x, uando dividido
Equações Algébricas - Propriedades das Raízes. Teorema da Decomposição. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 3 ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 1 Exercícios
CPV O Cursinho que Mais Aprova na GV
CPV O Cursinho que Mais Aprova na GV FGV ADM 05/junho/2016 Prova A MATEMÁTICA 01. Uma loja reajustou em 20% o preço de certo modelo de televisão. Todavia, diante da queda nas vendas, a loja pretende dar
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 13 EXERCÍCIOS 1) A representação cartesiana da função y = ax 2 + bx + c é a parábola abaixo. Tendo em vista
No lançamento de uma moeda, a probabilidade de ocorrer cara ou coroa é a mesma. Como se calcula a probabilidade de determinado evento?
Probabilidade Introdução Dentro de certas condições, é possível prever a que temperatura o leite ferve. Esse tipo de experimento, cujo resultado é previsível, recebe o nome de determinístico. No entanto,
1 Função Polinomial. INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA ICET Campinas Limeira Jundiaí. Ricardo F. Arantes
INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA ICET Campinas Limeira Jundiaí Módulo VIII - Tópicos de Informática 1 Função Polinomial Unip 2006 - Teoria VIII 1 1- FUNÇÃO POLINOMIAL Função Polinomial Raízes
1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}
1. A imagem da função real f definida por f(x) = é R {1} R {2} R {-1} R {-2} 2. Dadas f e g, duas funções reais definidas por f(x) = x 3 x e g(x) = sen x, pode-se afirmar que a expressão de (f o g)(x)
Polinômios. Acadêmica: Vanessa da Silva Pires
Polinômios Acadêmica: Vanessa da Silva Pires Situação 01: Se você somar 1 ao produto de quatro inteiros consecutivos, o resultado sempre será um quadrado perfeito. Situação 02: Na resolução de problemas,
Resoluções de Exercícios
Resoluções de Exercícios Conhecimentos Numéricos Capítulo 0 Análise Combinatória Parte II 0 E Colocando em cada mês crianças, teríamos 8 crianças distribuídas, e restariam crianças. Então, colocando as
n = S(n) + P(n) 10.a + b = (a+b) + (a.b) 10.a + b a b = a.b n = 10.a + b
Erivaldo ACAFE Matemática Básica Chamaremos de S(n) a soma dos algarismos do número inteiro positivo n, e de P(n) o produto dos algarismos de n. Por exemplo, se n = 47 então S(n) = 11 e P(n) 28. Se n é
