Questão 01 - (FGV /2015)
|
|
|
- Luna Bayer Cerveira
- 9 Há anos
- Visualizações:
Transcrição
1 SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR SARGENTO NADER ALVES DOS SANTOS SÉRIE/ANO: ª Série TURMA(S): A, B,C e D DISCIPLINA: Matemática PROFESSOR (A): Me. José Roberto ALUNO (A): Nº A T I V I D A D E S DATA: / / 0 Questão 0 - (FGV /0) Dois dados convencionais e honestos são lançados simultaneamente. A probabilidade de que a soma dos números das faces seja maior que, ou igual a, é Questão 0 - (UNESP SP/0) Um dado viciado, que será lançado uma única vez, possui seis faces, numeradas de a 6. A tabela a seguir fornece a probabilidade de ocorrência de cada face. Sendo X o evento sair um número ímpar e Y um evento cuja probabilidade de ocorrência seja 90%, calcule a probabilidade de ocorrência de X e escreva uma possível descrição do evento Y. Questão 0 - (FATEC SP/0) Em toda produção industrial é comum que alguns itens fabricados estejam fora dos padrões estabelecidos e tenham que ser descartados. Uma fábrica de pregos e parafusos calcula que % dos pregos produzidos são menores que o tamanho padronizado e que % dos parafusos produzidos são mais finos que a espessura padronizada. O restante da produção atende aos padrões estabelecidos. Do total da produção, 60% são pregos e 0% são parafusos. Escolhe-se aleatoriamente um item produzido por essa fábrica. A probabilidade de ser um item de tamanho e espessura padronizados é de 9,%. 9,6%. 9,8%. 96,0%. 96,%. Questão 0 - (FPS PE/0)
2 Pesquisas médicas asseguram que: a probabilidade de se desenvolver câncer de pulmão se a pessoa fuma é de 0% e a probabilidade de um não fumante desenvolver câncer de pulmão é de %. Suponha que 0% da população é formada por fumantes. Se uma pessoa escolhida ao acaso tem câncer de pulmão, qual a probabilidade percentual de ela ter sido fumante? Indique o valor inteiro mais próximo. 8% 8% 8% 86% 87% Questão 0 - (MACK SP/0) Em uma secretaria, dois digitadores atendem departamentos. Se em cada dia útil um serviço de digitação é solicitado por departamento a um digitador escolhido ao acaso, a probabilidade de que, em um dia útil, nenhum digitador fique ocioso, é Questão 06 - (ESCS DF/0) Um hospital pediátrico atendeu 0 crianças doentes, cada uma delas estava apenas com sarampo, pneumonia ou dengue. A tabela acima apresenta a distribuição do número de prontuários desse atendimento, por sexo e por doença. Nessa situação hipotética, se um prontuário de atendimento for selecionado ao acaso, as chances de esse prontuário ser de uma criança do sexo masculino ou de uma que tenha sido atendida por causa de sarampo serão superiores a % e inferiores a 6%. superiores a 6%. inferiores a %. superiores a % e inferiores a %. Questão 07 - (UEPA/0)
3 Com as cidades imobilizadas por congestionamentos, os governos locais tomam medidas para evitar o colapso do sistema viário. Por exemplo, em Pequim, na China, serão sorteadas mensalmente 0 mil novas licenças de emplacamento para os 900 mil interessados. Para o sorteio, os 900 mil interessados foram divididos em 0 mil grupos com o mesmo número de integrantes. Texto adaptado da revista National Geographic Brasil, edição 9-A. Se num desses grupos estão presentes membros de uma mesma família, a probabilidade de essa família adquirir uma licença para emplacamento: é inferior a % está compreendida entre % e % está compreendida entre % e % está compreendida entre % e 6% é superior a 6% Questão 08 - (UNEB BA/0) De acordo com o texto, se Cebolinha lançar a sua moeda dez vezes, a probabilidade de a face voltada para cima sair cara, em pelo menos oito dos lançamentos, é igual a TEXTO: - Comum à questão: 9 Analise o artigo publicado no jornal Folha de S.Paulo, em de maio de 0.
4 Questão 09 - (Fac. de Ciências da Saúde de Barretos SP/0) Considerando o total de mortes atribuídas ao tabagismo, a probabilidade aproximada de que a morte de uma pessoa tenha sido causada por AVC ou câncer de pulmão, sabendo que cada morte ocorreu por uma só causa, será de 0%. 8%. 6%. %. %. Questão 0 - (Fac. Cultura Inglesa SP/0) Em uma lata há 6 balas de leite com recheio de chocolate, 9 balas de chocolate com recheio de menta, balas de chocolate com recheio de café e 8 balas de café com recheio de menta. Sabendo que todas as balas têm exatamente o mesmo formato, a probabilidade de uma pessoa retirar aleatoriamente uma bala dessa lata e ela ser de chocolate ou ter chocolate no recheio é 7 7 Questão - (FM Petrópolis RJ/0)
5 As esferas metálicas M, N, P e Q ilustradas a seguir são idênticas, mas possuem temperaturas diferentes. Duas dessas esferas serão escolhidas ao acaso e colocadas em contato até que o equilíbrio térmico seja atingido. A probabilidade de que a temperatura no equilíbrio não seja negativa é 6 Questão - (FAMERP SP/0) Um jogo de seis cartas possui três pares de cartas idênticas. Sabe-se que as seis cartas, juntas, possuem 0 círculos, 6 triângulos e nenhuma outra marcação. Em certo momento do jogo, três das seis cartas estão viradas para cima, com as figuras visíveis, e três estão viradas para baixo, conforme ilustrado a seguir. Virando para cima apenas duas das três cartas que estão voltadas para baixo, a probabilidade de que a última carta que restar virada para baixo tenha pelo menos dois círculos é igual a 9 6 Questão - (FUVEST SP/0)
6 De um baralho de 8 cartas, set de cada naipe, Luís recebe cinco cartas: duas de ouros, uma de espadas, uma de copas e uma de paus. Ele mantém consigo as duas cartas de ouros e troca as demais por três cartas escolhidas ao acaso dentre as cartas que tinham ficado no baralho. A probabilidade de, ao final, Luís conseguir cinco cartas de ouros é: Questão - (IFSP/0) Foi feita uma pesquisa sobre o estado onde nasceu cada professor de uma escola. Os resultados estão representados no gráfico abaixo. Analisando o gráfico, marque V para verdadeiro ou F para falso e, em seguida, assinale a alternativa que apresenta a sequência correta. ( ) A escola tem um total de 0 professores. ( ) Escolhendo ao acaso um desses professores, a probabilidade de ter nascido no Paraná é 0,. ( ) 0 professores não nasceram na Bahia. ( ) A probabilidade de escolher ao acaso um desses professores e ele ser da região Sul do Brasil é 0,. ( ) A porcentagem dos professores que nasceram em São Paulo é de 0%. V/ F/ V/ V/ F V/ V/ F/ F/ F F/ F/ V/ F/ V
7 V/ V/ V/ F/ F V/ F/ F/ V/ V Questão - (IFSP/0) O interesse do homem em estudar os fenômenos que envolviam determinadas possibilidades fez surgir a Probabilidade. Alguns indícios alegam que o surgimento da teoria das probabilidades teve início com os jogos de azar disseminados na Idade Média. Esse tipo de jogo é comumente praticado por meio de apostas. Na ocasião, também era utilizado no intuito de antecipar o futuro. Atualmente, os estudos relacionados às probabilidades são utilizados em diversas situações. Sua principal aplicação diz respeito ao estudo da equidade dos jogos e dos respectivos prêmios, sendo sua principal aplicação destinada à Estatística Indutiva, extensão dos resultados à população e na previsão de acontecimentos futuros. A Confederação Brasileira de Futebol (CBF), em respeito ao Estatuto do Torcedor, realiza um sorteio para definir os árbitros das partidas de cada rodada do Campeonato Brasileiro de Futebol. O quadro abaixo mostra a quantidade de árbitros por estado que entraram no sorteio para os jogos de uma determinada rodada do campeonato. Estado Quantidade de árbitros SP 6 RJ SC PR MG GO RS DF CE PA Para o jogo Flamengo(RJ) x Cruzeiro(MG), assinale a alternativa que apresenta a probabilidade de o árbitro sorteado ser um paulista.,%.,%. %. %. %. Questão 6 - (MACK SP/0) Em uma das provas de uma gincana, cada um dos membros de cada equipe deve retirar, ao acaso, uma bola de uma urna contendo bolas numeradas de a 0, que deve ser reposta após cada retirada. A pontuação de uma equipe nessa prova é igual ao número de bolas com números pares sorteadas pelos seus membros. Assim, a probabilidade de uma equipe conseguir pelo menos um ponto é Questão 7 - (ENEM/0)
8 O psicólogo de uma empresa aplica um teste para analisar a aptidão de um candidato a determinado cargo. O teste consiste em uma série de perguntas cujas respostas devem ser verdadeiro ou falso e termina quando o psicólogo fizer a décima pergunta ou quando o candidato der a segunda resposta errada. Com base em testes anteriores, o psicólogo sabe que a probabilidade de o candidato errar uma resposta é 0,0. A probabilidade de o teste terminar na quinta pergunta é 0,008. 0,089. 0,000. 0, ,9. Questão 8 - (ENEM/0) Rafael mora no Centro de uma cidade e decidiu se mudar, por recomendações médicas, para uma das regiões: Rural, Comercial, Residencial Urbano ou Residencial Suburbano. A principal recomendação médica foi com as temperaturas das "ilhas de calor" da região, que deveriam ser inferiores a ºC. Tais temperaturas são apresentadas no gráfico: Escolhendo, aleatoriamente, uma das outras regiões para morar, a probabilidade de ele escolher uma região que seja adequada às recomendações médicas é Questão 9 - (ENEM/0)
9 Em um jogo disputado em uma mesa de sinuca, há 6 bolas: branca e coloridas, as quais, de acordo com a coloração, valem de a pontos (um valor para cada bola colorid. O jogador acerta o taco na bola branca de forma que esta acerte as outras, com o objetivo de acertar duas das quinze bolas em quaisquer caçapas. Os valores dessas duas bolas são somados e devem resultar em um valor escolhido pelo jogador antes do início da jogada. Arthur, Bernardo e Caio escolhem os números, 7 e como sendo resultados de suas respectivas somas. Com essa escolha, quem tem a maior probabilidade de ganhar o jogo é Arthur, pois a soma que escolheu é a menor. Bernardo, pois há 7 possibilidades de compor a soma escolhida por ele, contra possibilidades para a escolha de Arthur e possibilidades para a escolha de Caio. Bernardo, pois há 7 possibilidades de compor a soma escolhida por ele, contra possibilidades para a escolha de Arthur e possibilidades para a escolha de Caio. Caio, pois há 0 possibilidades de compor a soma escolhida por ele, contra possibilidades para a escolha de Arthur e 8 possibilidades para a escolha de Bernardo. Caio, pois a soma que escolheu é a maior. Questão 0 - (ENEM/0) Todo o país passa pela primeira fase de campanha de vacinação contra a gripe suína (HN). Segundo um médico infectologista do Instituto Emílio Ribas, de São Paulo, a imunização "deve mudar", no país, a história da epidemia. Com a vacina, de acordo com ele, o Brasil tem a chance de barrar uma tendência do crescimento da doença, que já matou 7 mil no mundo. A tabela apresenta dados específicos de um único posto de vacinação. Disponível em: Acesso em: 6 abr. 00 (adaptado). Escolhendo-se aleatoriamente uma pessoa atendida nesse posto de vacinação, a probabilidade de ela ser portadora de doença crônica é 8%. 9%.
10 %. %. %. Questão - (ENEM/0) Em um jogo há duas urnas com 0 bolas de mesmo tamanho em cada urna. A tabela a seguir indica as quantidades de bolas de cada cor em cada urna. Cor Amarela Azul Branca Verde Vermelha Urna 0 Urna 0 Uma jogada consiste em: º) o jogador apresenta um palpite sobre a cor da bola que será retirada por ele da urna ; º) ele retira, aleatoriamente, uma bola da urna e a coloca na urna, misturandoa com as que lá estão; º) em seguida ele retira, também aleatoriamente, uma bola da urna ; º) se a cor da última bola retirada for a mesma do palpite inicial, ele ganha o jogo. Qual cor deve ser escolhida pelo jogador para que ele tenha a maior probabilidade de ganhar? Azul. Amarela. Branca. Verde. Vermelha. Questão - (ENEM/0) Em um blog de variedades, músicas, mantras e informações diversas, foram postados Contos de Halloween. Após a leitura, os visitantes poderiam opinar, assinalando suas reações em Divertido, Assustador ou Chato. Ao final de uma semana, o blog registrou que 00 visitantes distintos acessaram esta postagem. O gráfico a seguir apresenta o resultado da enquete.
11 O administrador do blog irá sortear um livro entre os visitantes que opinaram na postagem Contos de Halloween. Sabendo que nenhum visitante votou mais de uma vez, a probabilidade de uma pessoa escolhida ao acaso entre as que opinaram ter assinalado que o conto Contos de Halloween é Chato é mais aproximada por 0,09. 0,. 0,. 0,. 0,8. Questão - (ENEM/0) José, Paulo e Antônio estão jogando dados não viciados, nos quais, em cada uma das seis faces, há um número de a 6. Cada um deles jogará dois dados simultaneamente. José acredita que, após jogar seus dados, os números das faces voltadas para cima lhe darão uma soma igual a 7. Já Paulo acredita que sua soma será igual a e Antônio acredita que sua soma será igual a 8. Com essa escolha, quem tem a maior probabilidade de acertar sua respectiva soma é Antônio, já que sua soma é a maior de todas as escolhidas. José e Antônio, já que há 6 possibilidades tanto para a escolha de José quanto para a escolha de Antônio, e há apenas possibilidades para a escolha de Paulo. José e Antônio, já que há possibilidades tanto para a escolha de José quanto para a escolha de Antônio, e há apenas possibilidades para a escolha de Paulo. José, já que há 6 possibilidades para formar sua soma, possibilidades para formar a soma de Antônio e apenas possibilidades para formar a soma de Paulo. Paulo, já que sua soma é a menor de todas. GABARITO:
12 ) Gab: D ) Gab: % Sair um número menor ou igual a ) Gab: C ) Gab: C ) Gab: B 6) Gab: D 7) Gab: E 8) Gab: 0 9) Gab: B 0) Gab: D ) Gab: E ) Gab: C ) Gab: C ) Gab: E ) Gab: E 6) Gab: E 7) Gab: B 8) Gab: E 9) Gab: C 0) Gab: C ) Gab: E ) Gab: D ) Gab: D
avenida durante o período da pane, observando a cor da luz de cada um desses semáforos.
1. (Enem) Numa avenida existem 10 semáforos. Por causa de uma pane no sistema, os semáforos ficaram sem controle durante uma hora, e fixaram suas luzes unicamente em verde ou vermelho. Os semáforos funcionam
Colégio Nossa Senhora de Lourdes
Colégio Nossa Senhora de Lourdes Professor: Leonardo Maciel Matemática APOSTILA - PROBABILIDADE 1. (Pucrj 2015) Em uma urna existem 10 bolinhas de cores diferentes, das quais sete têm massa de 300 gramas
Combinatória e Probabilidade
Combinatória e Probabilidade 1. (Enem) Considere o seguinte jogo de apostas: Numa cartela com 60 números disponíveis, um apostador escolhe de 6 a 10 números. Dentre os números disponíveis, serão sorteados
Questão 1. Qual a probabilidade de que esta pessoa tenha observado exatamente um sinal na cor verde? Questão 2
SE18 - Matemática LMAT 6A2 - Introdução à teoria das probabilidades Questão 1 (Enem 2017) Numa avenida existem 10 semáforos. Por causa de uma pane no sistema, os semáforos ficaram sem controle durante
BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE
01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP
Resposta: Resposta: 4 ou seja, 1.
1. (Unicamp 2016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a a) 1. 4 b). 8 c) 1. 2 d). 4
Interbits SuperPro Web
MATEMÁTICA XXVII ENEM. (Enem 202) Certo vendedor tem seu salário mensal calculado da seguinte maneira: ele ganha um valor fixo de R$750,00, mais uma comissão de R$3,00 para cada produto vendido. Caso ele
PROBABILIDADE MÓDULO 7 PROBABILIDADE
PROBABILIDADE MÓDULO 7 PROBABILIDADE PROBABILIDADE Há certos fenômenos (ou experimentos) que, embora sejam repetidos muitas vezes e sob condições idênticas, não apresentam os mesmos resultados. Por exemplo,
Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução
Introdução PROBABILIDADE Há certos fenômenos (ou experimentos) que, embora sejam repetidos muitas vezes e sob condições idênticas, não apresentam os mesmos resultados. Por exemplo, no lançamento de uma
Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Roberta Teixeira) Este conteúdo pertence ao Descomplica.
16 PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter Semana (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia Probabilidade 01 jun Definição,união de eventos,evento complementar
Lista Extra:Probabilidade +10-Mat1-2 anos
Lista Extra:Probabilidade +10-Mat1-2 anos 1. (Upe 2014) Dois atiradores, André e Bruno, disparam simultaneamente sobre um alvo. - A probabilidade de André acertar no alvo é de 80%. - A probabilidade de
AULA 08 Probabilidade
Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral
GABARITO DAS ATIVIDADES
Seção 1 Lançando Moedas e Dados Título da Atividade: Jankenpon 1 GABARITO DAS ATIVIDADES Para cada par de dados, denotemos por (i, j) o resultado i obtido no primeiro dado e o resultado j obtido no segundo
Módulo de Fração como Porcentagem e Probabilidade. Fração como Probabilidade. 6 ano E.F.
Módulo de Fração como Porcentagem e Probabilidade Fração como Probabilidade. 6 ano E.F. Fração como Porcentagem e Probabilidade Fração como Probabilidade. 1 Exercícios Introdutórios Exercício 1. Um dado
Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Fernanda Aranzate) (Gabriella Teles)
14 PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter Semana (Fernanda Aranzate) (Gabriella Teles) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente
01 - (UEM PR) um resultado "cara sobre casa preta" é (MACK SP)
ALUNO(A): Nº TURMA: 2º ANO PROF: Claudio Saldan CONTATO: [email protected] LISTA DE EXERCÍCIOS PROBABILIDADE 0 - (UEM PR) Considere a situação ideal na qual uma moeda não-viciada, ao ser lançada sobre
MATEMÁTICA MÓDULO 4 PROBABILIDADE
PROBABILIDADE Consideremos um experimento com resultados imprevisíveis e mutuamente exclusivos, ou seja, cada repetição desse experimento é impossível prever com certeza qual o resultado que será obtido,
Lista de exercícios de Matemática Eventos, espaço amostral e definição de probabilidade. Probabilidade condicional. Exercícios gerais.
p: João Alvaro w: www.matemaniacos.com.br e: [email protected]. No lançamento de dois dados, D e D 2, tem-se o seguinte espaço amostral, dado em forma de tabela de dupla entrada. Lista de exercícios
Probabilidade Condicional (grupo 2)
page 39 Capítulo 5 Probabilidade Condicional (grupo 2) Veremos a seguir exemplos de situações onde a probabilidade de um evento émodificadapelainformação de que um outro evento ocorreu, levando-nos a definir
PROBABILIDADE. c) 1/4 d) 1/12 e) nda MATQUEST PROBABILIDADE PROF.: JOSÉ LUÍS
MATQUEST PROBABILIDADE PROF.: JOSÉ LUÍS PROBABILIDADE 1- (Osec-SP) Foram preparadas noventa empadinhas de camarão, sendo que, a pedido, sessenta delas deveriam ser bem mais apimentadas. Por pressa e confusão
Exercícios de Aprofundamento Mat. Combinação e Probabilidade
1. (Unifesp 2015) Um tabuleiro de xadrez possui 64 casas quadradas. Duas dessas casas formam uma dupla de casas contíguas se estão lado a lado, compartilhando exatamente um de seus lados. Veja dois exemplos
Probabilidade (ENEM)
1 Probabilidade (ENEM) 1 (ENEM 2015 2ª aplicação). Um bairro residencial tem cinco mil moradores, dos quais mil são classificados como vegetarianos. Entre os vegetarianos, 40% são esportistas, enquanto
Módulo de Introdução à Probabilidade. O que é Probabilidade? 2 a série E.M.
Módulo de Introdução à Probabilidade O que é Probabilidade? a série E.M. Probabilidade O que é Probabilidade? 1 Exercícios Introdutórios Exercício 1. Qual a probabilidade de, aleatoriamente, escolhermos
Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr.
1 Ciclo 3 Encontro 2 PROBABILIDADE Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. Probabilidade 2 Texto: Módulo Introdução à Probabilidade O que é probabilidade? parte 1 de Fabrício Siqueira
AULA 13 Probabilidades
AULA Probabilidades Espaço amostral e evento: Em um experimento (ou fenômeno) aleatório, o conjunto formado por todos os resultados possíveis é chamado espaço amostral (Ω) Qualquer subconjunto do espaço
a) 6,0% b) 6,4% c) 7,2% d) 7,8% e) 8,0% a) 7. d) 14. total de lançamentos c) 15
. (Ufsm 204) A tabela mostra o resultado de uma pesquisa sobre tipos sanguíneos em que foram testadas 600 pessoas. Qual é a probabilidade de uma pessoa escolhida ao acaso ter sangue do tipo A + ou A? 4.
Q05. Ainda sobre os eventos A, B, C e D do exercício 03, quais são mutuamente exclusivos?
LISTA BÁSICA POIA PROBABILIDADES A história da teoria das probabilidades teve início com os jogos de cartas, de dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo
Nome: nº Professor(a): Série: 3ª EM. Turma: Data: / /2014. Bateria de Exercícios Matemática II
Nome: nº Professor(a): Série: 3ª EM. Turma: Data: / /2014 Nota: Sem limite para crescer Bateria de Exercícios Matemática II 1º Trimestre 1. (Enem 2011) O número mensal de passageiros de uma determinada
LISTA 29 - PROBABILIDADE 1
LISTA 9 - PROBABILIDADE ) Um time de futebol amador ganhou uma taça ao vencer um campeonato. Os jogadores decidiram que o próprio seria guardado na casa de um deles. Todos quiseram guardar a taça em suas
SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO
SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO Título do Podcast Área Segmento Duração Probabilidade Matemática Ensino médio 4min32seg. Habilidades: H10. Utilizar os princípios probabilísticos
Matemática & Raciocínio Lógico
Matemática & Raciocínio Lógico para concursos Prof. Me. Jamur Silveira www.professorjamur.com.br facebook: Professor Jamur PROBABILIDADE No estudo das probabilidades estamos interessados em estudar o experimento
PROBABILIDADE PROPRIEDADES E AXIOMAS
PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por
b) 35 c) 14 d) 35 Gab: D
0 - (PUC SP/006) Em um ônibus há apenas bancos vazios, cada qual com lugares. Quatro rapazes e quatro moças entram nesse ônibus e devem ocupar os bancos vagos. Se os lugares forem escolhidos aleatoriamente,
1 Definição Clássica de Probabilidade
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica
Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema.
PROBABILIDADE CONDICIONAL E DISTRIBUIÇÃO BINOMINAL 1. PROBABILIDADE CONDICIONAL Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema. Suponha que um redator
d) c) b) e) 1. Lista Especial Matemática - Probabilidade Prof. Adriano Sales
Lista Especial Matemática - Probabilidade Prof. Adriano Sales TEXTO PARA AS PRÓXIMAS 2 QUESTÕES: Em um concurso de televisão, apresentam-se ao participante três fichas voltadas para baixo, estando representadas
PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA
PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço
1) Calcular a probabilidade de se obter 2 prêmios ao abrirem-se 2 círculos de uma mesa com 25 círculos dos quais 5 são premiados.
COLÉGIO SANTA MARIA Matemática I / II - Professor: Flávio Verdugo Ferreira Lista de exercícios: Probabilidades 1) Calcular a probabilidade de se obter 2 prêmios ao abrirem-se 2 círculos de uma mesa com
[AE-1 2] Assunto: Probabilidade
Data: 25/08/18 Assunto: Probabilidade Prof.: Adriano Sales TEXTO PARA AS PRÓXIMAS 2 QUESTÕES: Em um concurso de televisão, apresentam-se ao participante três fichas voltadas para baixo, estando representadas
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES
COLEÇÃO DARLAN MOUTINHO VOL. 0 RESOLUÇÕES Me ta PÁGINA 8 0 0 Havendo apenas bolas verdes e azuis na urna, segue que a resposta é dada por Basta dividirmos o número de ocorrências, pelo número total de
Análise Combinatória e Probabilidade. Exercícios Objetivos. (c) (d) 1 5
Exercícios Objetivos 1. (2009) O controle de qualidade de uma empresa fabricante de telefones celulares aponta que a probabilidade de um aparelho de determinado modelo apresentar defeito de fabricação
Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a
Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a probabilidade se sair bola: a. azul; b. vermelha; c. amarela. 2.
Noções sobre Probabilidade
Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de
Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística. Probabilidades
Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística Probabilidades Aluna(o): Aluna(o): Turma: Responsável: Prof. Silvano Cesar da Costa L O N D R I N A Estado do Paraná
Aula 10 - Erivaldo. Probabilidade
Aula 10 - Erivaldo Probabilidade Experimento determinístico Dizemos que um experimento é determinístico quando repetido em condições semelhantes conduz a resultados idênticos. Experimento aleatório Dizemos
A tabela abaixo apresenta a distribuição dos equipamentos de uma grande empresa.
A tabela abaixo apresenta a distribuição dos equipamentos de uma grande empresa. Qual é a probabilidade de que um equipamento selecionado aleatoriamente esteja inativo ou seja do tipo A? a) 6/27 b) 14/27
4. Seja A o acontecimento associado a uma experiência aleatória em que o espaço amostral é Quais as igualdades necessariamente falsas?
mata. Lançou-se 70 vezes um dado em forma de tetraedro com as faces numeradas de a e obteve-se vezes a face, 0 vezes a face, vezes a face e as restantes a face. Determine a frequência relativa dos acontecimentos:
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número
Aulas particulares. Conteúdo
Conteúdo Capítulo 6...2 Probabilidade...2 Exercícios...4 Restpostas...9 Capítulo 7... 12 Análise combinatória... 12 Fatorial... 12 Arranjo... 13 Combinação... 16 Exercícios... 17 Respostas... 22 1 Capítulo
A B e A. Calcule as suas respectivas probabilidades.
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 2-BIOESTATÍSTICA II (CE020) Prof. Benito Olivares Aguilera 1 o Sem./17 1. Expresse em termos de operações entre eventos:
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Considere um dado cúbico, com as faces numeradas de 1 a 6, e um saco que contém cinco bolas, indistinguíveis
De quantas formas distintas a estratégia desse cliente poderá ser posta em prática?
1. (Enem 014) Um cliente de uma videolocadora tem o hábito de alugar dois filmes por vez. Quando os devolve, sempre pega outros dois filmes e assim sucessivamente. Ele soube que a videolocadora recebeu
Aula 16 - Erivaldo. Probabilidade
Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar
MATEMÁTICA - 3 o ANO MÓDULO 17 PROBABILIDADE
MATEMÁTICA - 3 o ANO MÓDULO 7 PROBABILIDADE Como pode cair no enem (ENEM) Em um blog de variedades, músicas, mantras e informações diversas, foram postados Contos de Halloween. Após a leitura, os visitantes
Portal da OBMEP. Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE. Fração como Probabilidade. Sexto Ano do Ensino Fundamental
Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE Fração como Probabilidade Sexto Ano do Ensino Fundamental Prof. Francisco Bruno Holanda Prof. Antonio Caminha Muniz Neto 1 Introdução
Matemática. Alex Amaral (Allan Pinho) Probabilidade
Probabilidade Probabilidade 1. Observe a figura que mostra um desses baralhos, no qual as cartas representadas pelas letras A, J, Q e K são denominadas, respectivamente, ás, valete, dama e rei. Uma criança
Matemática Simulado IFENEM Professora: Juliana Schivani Estagiários Wellington e Heronilza. ALUNO(a): Data: / /.
Matemática Simulado IFENEM Professora: Juliana Schivani Estagiários Wellington e Heronilza ALUNO(a): Data: / /. 1. (ENEM-Adaptada) Uma pessoa comercializa picolés. No segundo dia de certo evento ela comprou
12.º Ano de Escolaridade
gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) (Dec.-Lei n.º 286/89, de 29 de Agosto, para alunos
Exercícios Obrigatórios
Exercícios Obrigatórios ) (UFRGS/20) Observe a figura abaixo. Na figura, um triângulo equilátero está inscrito em um círculo, e um hexágono regular está circunscrito ao mesmo círculo. Quando se lança um
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Uma pessoa lança um dado cúbico, com as faces numeradas de 1 a 6, e regista o número da face que ficou
Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 João queria sair de casa, mas não sabia qual era a previsão do tempo. Ao ligar a TV no canal do tempo, a jornalista anunciou que existia a possibilidade de chuva no fim da tarde
O conceito de probabilidade
A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de
PROVA DE MATEMÁTICA 3EM COLÉGIO ANCHIETA-BA 14/04/2018. Resolução por Profa. Maria Antônia C. Gouveia Pesquisa: Prof. Adriano Caribé e Walter Porto
PROVA DE MATEMÁTICA EM COLÉGIO ANCHIETA-BA /0/08 Resolução por Profa. Maria Antônia C. Gouveia Pesquisa: Prof. Adriano Caribé e Walter Porto QUESTÃO 0 (Bahiana 06./Modificada) Na figura, tem-se a reprodução
PROBABILIDADES PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO
PROBABILIDADES Probabilidade é um conceito filosófico e matemático que permite a quantificação da incerteza, permitindo que ela seja aferida, analisada e usada para a realização de previsões ou para a
= 3 modos de escolher duas pessoas 2
01. x/(x+0) /3 ó x 40 Resposta: E 0. [E] RESOLUÇÃO REVENEM 3 De acordo com o gráfico, temos que o número total de filhos é dado por 71 + 6 + 3. Portanto, como sete mães tiveram um único filho, segue que
Professor: Adriano Sales Matéria: Probabilidade
Professor: Adriano Sales Matéria: Probabilidade. (Enem 202) Em um blog de variedades, músicas, mantras e informações diversas, foram postados Contos de Halloween. Após a leitura, os visitantes poderiam
PLANO DE TRABALHO 2 1º BIMESTRE 2014
PLANO DE TRABALHO 2 1º BIMESTRE 2014 FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: CIEP 343 PROFª EMÍLIA DINIZ LIGIÉRO PROFESSOR: ANA CRISTINA PEREIRA COSTA MATRÍCULA:
Prof.: Joni Fusinato
Introdução a Teoria da Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso
Questão 1. Qual é a probabilidade de esse morador se atrasar para o serviço no dia para o qual foi dada a estimativa de chuva?
SE18 - Matemática LMAT 6A3 - Probabilidades condicionais Questão 1 (Enem 2017) Um morador de uma região metropolitana tem 50% de probabilidade de atrasar-se para o trabalho quando chove na região; caso
3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos
Primeira Lista de Exercícios Introdução à probabilidade e à estatística Prof Patrícia Lusié Assunto: Probabilidade. 1. (Apostila 1 - ex.1.1) Lançam-se três moedas. Enumerar o espaço amostral e os eventos
PROBABILIDADE - INTRODUÇÃO
E.E. Dona Antônia Valadares MATEMÁTICA 1º ANO ANÁLISE COMBINATÓRIA PROBABILIDADE - INTRODUÇÃO PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net TEORIA DAS PROBABILIDADES A teoria
MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos
MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Exercícios de exames e testes intermédios 1. Seja Ω o espaço amostral (espaço de resultados) associado a uma certa experiência
Exercícios de Revisão
Exercícios de Revisão Lista de Exercícios. Um artesão de joias tem a sua disposição pedras brasileiras de três cores: vermelhas, azuis e verdes. Ele pretende produzir joias constituídas por uma liga metálica,
3. Probabilidade P(A) =
7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de
Procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes.
1 Procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes. 2 EXEMPLOS Resultado no lançamento de um dado; Taxa de inflação do próximo mês; Resultados de loteria;
Estatística Aplicada. Prof. Carlos Alberto Stechhahn EXERCÍCIOS - REVISÃO ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE. Administração. p(a) = n(a) / n(u)
Estatística Aplicada Administração p(a) = n(a) / n(u) EXERCÍCIOS - REVISÃO ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE Prof. Carlos Alberto Stechhahn 2014 1. Tema: Noções de Probabilidade 1) Considere o lançamento
12.º Ano de Escolaridade
gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) (Dec.-Lei n.º 286/89, de 29 de Agosto, para alunos
Matemática E Extensivo V. 5
Extensivo V. Exercícios 0) Casos possíveis: {,,,,, } Casos favoráveis: {,, } Assim, a probabilidade é: 0) 70% P Casos possíveis: 7 + 0 possibilidades Casos favoráveis: 7 (7 bolas pretas) P 7 0,7 70% 0
Exercícios de Probabilidade - Lista 1. Profa. Ana Maria Farias
Exercícios de Probabilidade - Lista 1 Profa. Ana Maria Farias 1. Lançam-se três moedas. Enumere o espaço amostral e os eventos A = faces iguais ; B = cara na primeira moeda ; C = coroa na segunda e terceira
Mat Top. Tópico: Probabilidade. Professores: V) A probabilidade de esse número ser múltiplo de 6 é
Nome: Mat Top Professores: Fred Kennedy Sérgio Data: Tópico: Probabilidade QUESTÃO 0 Lançando-se dois dados honestos e verificando-se as faces superiores, qual é a probabilidade: a) de se obter soma igual
Professor Diego. O administrador do blog irá sortear um livro entre os visitantes que opinaram na postagem Contos de Halloween.
Professor Diego 0. (ENEM/0) Em um blog de variedades, músicas, mantras e informações diversas, foram postados Contos de Halloween. Após a leitura, os visitantes poderiam opinar, assinalando suas reações
TRABALHO DE RECUPERAÇÃO FINAL DE MATEMÁTICA. ( Segundos Técnicos ) NOME: TURMA: Nº PROFESSOR: Daniel Verotti_
TRABALHO DE RECUPERAÇÃO FINAL DE MATEMÁTICA ( Segundos Técnicos ) NOME: TURMA: Nº PROFESSOR: Daniel Verotti_ Análise Combinátoria, Probabilidade, Matrizes e Determinantes A resolução detalhada das questões
Teoria das Probabilidades
Teoria das Prof. Eduardo Bezerra (CEFET/RJ) 23 de fevereiro de 2018 Eduardo Bezerra (CEFET/RJ) Teoria das 2018.1 1 / 54 Roteiro Experimento aleatório, espaço amostral, evento 1 Experimento aleatório, espaço
MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução
MATEMÁTICA A - 1o Ano Probabilidades - Noções gerais Propostas de resolução Exercícios de exames e testes intermédios 1. Organizando todos os resultados possíveis para os dois números possíveis de observar,
REGRAS PARA CÁLCULO DE PROBABILIDADES
REGRAS PARA CÁLCULO DE PROBABILIDADES Prof. Dr. Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ 15 de abril de 2019 Londrina 1 / 17 As probabilidades sempre se referem a ocorrência de eventos
Lista 3 - Introdução à Probabilidade e Estatística
Lista - Introdução à Probabilidade e Estatística Probabilidade em Espaços Equiprováveis 1 Num evento científico temos 1 físicos e 11 matemáticos. Três deles serão escolhidos aleatoriamente para participar
TEORIA DAS PROBABILIDADES
TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da
Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Fernanda Aranzate) Este conteúdo pertence ao Descomplica.
17 PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter Semana (Fernanda Aranzate) Este conteúdo pertence ao Descomplica. Está vedada a cópia Probabilidade 08 jun Exercícios 01. Resumo 02. Exercícios de
b) Se entre as 7 empresas escolhidas devem figurar obrigatoriamente as empresas R e S, de quantas formas ele poderá escolher as empresas?
1 1. (Fgv 97) Um administrador de um fundo de ações dispõe de ações de 10 empresas para a compra, entre elas as da empresa R e as da empresa S. a) De quantas maneiras ele poderá escolher 7 empresas, entre
Agrupamento de Escolas de Diogo Cão, Vila Real
Agrupamento de Escolas de Diogo Cão, Vila Real 2015/2016 MATEMÁTICA FICHA DE TRABALHO 7 3º PERÍODO MAIO Nome: Nº Turma: 9º Data: CIRCUNFERÊNCIA 1. Relativamente à fig. 1 indica: 1.1 duas cordas; 1.2 a
2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2
GET00116 Fundamentos de Estatística Aplicada Lista de exercícios Probabilidade Profa. Ana Maria Lima de Farias Capítulo 1 Probabilidade: Conceitos Básicos 1. Lançam-se três moedas. Enumere o espaço amostral
Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.
Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com
PROBABILIDADES ENEM E VESTIBULARES PROFESSOR EDINEI REIS
PROBABILIDADES ENEM E VESTIBULARES PROFESSOR EDINEI REIS QUESTÃO 1 ADAPTADO (G. IEZZI) Um jogador clica 8 vezes sobre o campo minado, abrindo as casas apresentadas abaixo. Em que lugar do campo minado
RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS
CENTRO UNIVERSITÁRIO FRANCISCANO Curso de Administração Disciplina: Estatística I Professora: Stefane L. Gaffuri RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS Sessão 1 Experimentos Aleatórios e
Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ
Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ MATEMÁTICA 3ª SÉRE 2º BIMESTRE/2013 1º CAMPO CONCEITUAL PLANO DE TRABALHO CURSISTA: ELIANA CRUZ WERMELINGER TUTORA: SUSI CRISTIANE BRITTO
REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO ALUNO(A): Nº: MATEMÁTICA
REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul MATEMÁTICA 0. (UFRGS - VESTIBULAR 205) Escolhe-se
TEMA 1 COMBINATÓRIA E PROBABILIDADES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 COMBINATÓRIA E PROBABILIDADES
FICHAS DE TRABALHO.º ANO COMPILAÇÃO TEMA COMBINATÓRIA E PROBABILIDADES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA COMBINATÓRIA E PROBABILIDADES Matemática A.º Ano
