Curso de Análise Matricial de Estruturas 1 INTRODUÇÃO AOS MÉTODOS DA RIGIDEZ E DA FLEXIBILIDADE

Tamanho: px
Começar a partir da página:

Download "Curso de Análise Matricial de Estruturas 1 INTRODUÇÃO AOS MÉTODOS DA RIGIDEZ E DA FLEXIBILIDADE"

Transcrição

1 Cuso d Anális Mticil d Estutus III INRODUÇÃO AOS MÉODOS DA RIGIDEZ E DA FEXIBIIDADE III. Mtiz d Comptiilidd ou Incidênci Estátic Mtiz d Comptiilidd (ou Incidênci) Estátic é qul qu pmit xpimi os sfoços {} S (psntdos sgundo s m coodnds locis) m função ds çõs xtns { R }(disposts sgundo s n coodnds glois d stutu): {} S m [] B m,n {} R n A mtiz [ B ] pod s fomuld ditmnt, mdint simpls condiçõs d quilíio, s stutu fo stticmnt dtmind (isostátic). S houv indtminção (hipstticidd), só s chgá à mtiz [ B ] solvndo o polm hipstático, confom sá visto postiomnt. Exmplo: Ot Mtiz d Comptiilidd Estátic d stutu ixo: Estutu Intgd: Coodnds Glois Estutu Dsmmd: Coodnds ocis Aplicndo-s um foç xtn sgundo coodnd glol, ou sj, fzndo-s {} R otém-s { S }. Mticilmnt tímos: [] B

2 Nots d Aul - uiz A. C. Moniz d Agão Filho P { } R otém-s { } S, implicndo m: [] 3 3 B P {} otém-s { } S, ou sj: 3 3 [] B Po fim, pod-s osv qu s coluns d mtiz [ ] B constitum os vtos d sfoços locis, o s impo foçs xtns unitáis sgundo s coodnds glois.

3 Cuso d Anális Mticil d Estutus 3 III. Mtiz d Comptiilidd ou Incidênci Cinmátic (Mtiz opológic) Dfinição: Estutu cinmticmnt dtmind Não tm gu d lidd (dslocmnto nodl) liv qundo sumtid sus pópios vínculos dslocmntos pscitos (nulos) sgundo sus coodnds glois. Exmplo: Qunts coodnds são ncssáis n stutu ixo p qu msm sj cinmticmnt dtmind (no plno)? 4 coodnds (cso gl no plno) coodnds (sm s consid dslocmntos longitudinis) coodnd (considndo-s vig ígid inxtnsívl) Gu d indtminção cinmátic: é o mno númo d dslocmntos nodis cujo conhcimnto é ncssáio p qu s dtmin os dslocmntos m tod stutu (todos os lmntos). Um sistm stutul cinmticmnt dtmindo tvés do stlcimnto d um númo d gus d lidd igul o su gu d indtminção cinmátic, pod lcion ditmnt os dslocmntos {} s ds xtmidds dos lmntos (sgundo s m coodnds locis) m tmos dslocmntos nodis d stutu {} (xpssos sgundo s n coodnds glois): {} s m [ A] m,n {} n ond [ A ] é dfinid como Mtiz d Comptiilidd Cinmátic.

4 4 Nots d Aul - uiz A. C. Moniz d Agão Filho Exmplo: Ot Mtiz d Comptiilidd Cinmátic d stutu ixo: Coodnds Glois Coodnds ocis Fzndo-s {} otém-s {} s, ou sj: [ ] A P {} otém-s {} s, implicndo m: [ ] 3 3 A P {} otém-s {} s, ou sj: 3 3 [ ] A Pod-s osv qu s coluns d mtiz [ ] A constitum os vtos d dslocmntos locis, o s impo dslocmntos unitáios sgundo s coodnds glois.

5 Cuso d Anális Mticil d Estutus 5 III.3 Mtiz d Rigidz d Estutu Intgd Estutu Intgd (montd) Coodnds Glois: Rlçõs Açõs / Dslocmntos: ond {} R é o vto ds çõs xtns; {} [ ] {} R [ K] {} {} []{} F R é o vto dos dslocmntos d stutu sgundo s cood. gois; K é mtiz d igidz d stutu intgd (montd); F é mtiz d flxiilidd d stutu intgd (montd). [] Estutu Dsmmd (dsmontd): Coodnds ocis d stutu dsmmd sgundo os lmntos d vig pln ltivos à mtiz d flxiilidd (método d flxiilidd): Coodnds ocis d stutu dsmmd sgundo os lmntos d vig pln ltivos à mtiz d igidz (método d igidz): Rlçõs Açõs / Dslocmntos: {} S [ ] {} s {} s [ f ] {} S ond {} S m é o vto dos sfoços locis s é o vto dos dslocmntos dos lmntos (sgundo s cood. locis); {} m m [ ] m [ ] m m é mtiz d igidz d stutu dsmmd; f é mtiz d flxiilidd d stutu dsmmd; m é o númo d coodnds locis.

6 6 Nots d Aul - uiz A. C. Moniz d Agão Filho ([ ][, f ]) P stisfção d tis quçõs, s mtizs d stutu dsmmd dvm s fomulds ditmnt, colocndo-s m nd s mtizs d flxiilidd (ou d igidz) dos lmntos considdos isoldmnt, s quis funcionm como su-mtizs do conjunto. Dst fom, Mtiz d Rigidz d stutu dsmmd fici: [ ] [ ] 3 4 [ ] Ond stutu dsmmd podi t sus Gs locis psntdos po: () () Sndo Mtiz d Rigidz do lmnto d vig pln: EJ 6EJ EJ 6EJ 3 3 6EJ 4EJ 6EJ EJ [ ] EJ 6EJ EJ 6EJ 3 3 6EJ EJ 6EJ 4EJ D fom nálog, mtiz d flxiilidd d stutu dsmmd si: f f [ f ] f f [ f ] [ ] f f f34 f f44 Ond stutu dsmmd podi t sus Gs locis psntdos po: () ()

7 Cuso d Anális Mticil d Estutus 7 Sndo Mtiz d Flxiilidd do lmnto d vig pln: [ f ] 3 3EJ EJ EJ EJ Compnd-s potnto qu, s s mtizs d flxiilidd ou d igidz dos lmntos fom tlds é fácil compo mtiz totl [ f ] ou [ ] lmnto não intf nos outos., poqu cd O msmo não s pss com mtiz [ F ] ou [ K ] p stutu intgd, poqu os fitos são copldos, ou sj, os gus d lidd glois fm-s glmnt à mis d um gu d lidd locl. Ot sss mtizs é pticmnt qus solv stutu. Até go, fom nlisdos csos stutuis simpls m qu sss mtizs podim s otids ditmnt, sm o mpgo do dsmmmnto d stutu. A fom gl d dtminção ds mtizs d igidz flxiilidd d stutu intgd pod s dduzid pti d otnção d xpssão d ngi d dfomção: U S i si Colocndo-s so fom mticil, otém-s: Sndo { S} [ ] {} s {} s [ A] {} U {} S {} s {} s { S}, sustituindo-s n xpssão ntio otém-s: U {} s [ ] {} s {} [ A] [ ] [ A] {} () Enttnto, ngi pod tmém s psntd m função d mtiz d igidz d stutu complt (intgd): Sndo { R} [ R] {} U {} { R} sustituindo-s n xpssão ntio otém-s: U {} [ K] {} Igulndo-s à xpssão d ngi ncontd ntiomnt (qução ), otém-s: U {} [ K] {} {} [ A] [ ] [ A] {}

8 8 Nots d Aul - uiz A. C. Moniz d Agão Filho Implicndo m: [ K] [ A] [ ] [ A] D mni nálog, pod-s most qu: [] F [] B [ f ][] B Dst fom, ton-s possívl otnção ds mtizs d igidz flxiilidd d stutus mis complxs, pti do dsmmmnto do sistm stutul.

9 Cuso d Anális Mticil d Estutus 9 III.4 Cgmnto Nodl Equivlnt Sj um stutu gnéic sumtid um cgmnto distiuído. Dsj-s s os sfoços xistnts m nós disctos do sistm stutul, dconts d plicção d tl cgmnto. S-s ind qu s çõs d fixção no ngstmnto (psntds ixo) são quls qu gntm condição d dslocmntos otçõs nulos ns xtmidds d cd lmnto: Potnto, o s stlc um cgmnto distiuído num ptição d stutu (lmnto), simultnmnt s plic çõs d fixção d ngstmnto m sus xtmidds, o stnt do sistm stutul não sntiá xistênci do cgmnto distiuído plicdo. Enttnto, loclmnt, sugião sfoços dconts ds çõs d fixção imposts. Pod-s ntnd o cgmnto cim como um supposição d cg distiuíd ds cgs nodis plicds: + Os sfoços locis xistnts do cgmnto distiuído podm ntão s clculdos pl supposição d dus situçõs conhcids d cgmnto: -

10 Nots d Aul - uiz A. C. Moniz d Agão Filho A sgund pcl, po stmos no gim lástico lin, pod s sustituíd po um cgmnto nodl d sntido invso àquls ds çõs d fixção: + ogo, os sfoços finis nos lmntos podm s otidos plo cálculo d stutu (glol) tvés d plicção d um cgmnto nodl quivlnt (CNE), otndo-s pimi pcl dos sfoços, somndo-s à l (loclmnt) os sfoços gdos pls çõs d fixção: {} S { S } + [ ] {} s { S } + { S} ond {} S m {} s m [ ] m m {} S m { S } m é o vto dos sfoços locis é o vto dos dslocmntos dos lmntos (sgundo s cood. locis); é mtiz d igidz d stutu dsmmd; é o vto dos sfoços locis sugidos pl plicção do CNE; é o vto ds çõs d fixção no fncil locl; m é o númo d coodnds locis.

11 Cuso d Anális Mticil d Estutus III.5 Apsntção dos Métodos d Rigidz d Flxiilidd Exmplo: Buscndo-s solv vig contínu psntd ixo, são oddos os pincípios dos métodos d igidz flxiilidd: Coodnds Glois: Coodnds ocis: O cgmnto contínuo pod s disctizdo sgundo um cgmnto nodl quivlnt (CNE), confom ilust figu: Cgmnto plicdo nos nós d stutu

12 Nots d Aul - uiz A. C. Moniz d Agão Filho Método d Flxiilidd Gu d indtminção státic: Método d Rigidz Gu d indtminção cinmátic: 3 Sistm Pincipl: Equçõs d coênci (hipstático): δ vt B δq + δb RB Mtiz d comptiilidd státic do sistm pincipl (isostático): [] B / / / / / / Mtiz d comptiilidd státic d stutu complt (com hipstático): [ B] / / / / / / Mtiz d flxiilidd lmnt: [ f ] 3EJ 6EJ 6EJ 3EJ / / Mtiz d flxiilidd d stutu dsmmd: [ f ] [ f ] [ f ] Mtiz d flxiilidd do SP intgdo: [] F [ B] [ f ] [ B] [] F 4x4 7 4EJ EJ 4EJ 3EJ EJ 6EJ EJ EJ 4EJ EJ 7 4EJ 3EJ 3EJ EJ 3EJ 3 3EJ Mtiz d comptiilidd cinmátic: [ ] A Mtiz d igidz lmnt: 4EJ EJ [ ] EJ 4EJ Mtiz d igidz d stutu dsmmd: [ ] [ ] [ ] Mtiz d igidz d stutu intgd: [ K] [ A] [ ] [ A] 3x3 4EJ EJ EJ 8EJ EJ EJ 4EJ

13 Cuso d Anális Mticil d Estutus 3 Método d Flxiilidd Cálculo dos Hipstáticos dslocmntos: [ ] X R F Cálculo dos Esfoços: {} { } [ ] + X R B S S Método d Rigidz Cálculo dos dslocmntos: {} [ ] {} K R {} [ ] {} A s Cálculo dos Esfoços: {} { } [ ] {} { } { } S S s S S + +

14 4 Nots d Aul - uiz A. C. Moniz d Agão Filho III.6 Compção dos Métodos Os métodos d flxiilidd igidz são idênticos n su fomulção mtmátic, mos qundo o pincípio d supposição p ot s quçõs fundmntis. As smlhnçs nt os dois pocdimntos, m como s difnçs podm s vists pidmnt qundo s compm m pllo, como fito ntiomnt. As coluns cim mostm tods s tps pincipis n solução d um stutu po mos os métodos. No método d flxiilidd, scolh d dundnts hipstáticos pod t um fito significtivo n quntidd d tlho d cálculo quido. Po xmplo, m vigs contínus os momntos fltos nos poios são scolhidos como hipstáticos, poqu stutu lid consist num séi d vigs simplsmnt poids. Est stutu lid é fácil d nlis tnto p os fitos ds cgs, como p os fitos dos vlos unitáios ds dundnts. A plicção d um vlo unitáio d cd dundnt influi unicmnt nos vãos djcnts d vig. Outs scolhs p s dundnts não dão st vntjos loclizção d fitos -, plo contáio, os fitos d um dundnt unitái podm-s popg po tod stutu. No cso d stutus qu não sjm vigs contínus, nomlmnt não é possívl locliz os fitos qundo s utiliz o método d flxiilidd. No método d igidz nunc xist qulqu qustão cc d scolh d stutu stingid, visto qu só há um possiilidd. A nális d stutu stingid usulmnt não é difícil, poqu todos os fitos stão loclizdos. Po xmplo, o fito d um dslocmnto unitáio num só stá limitdo os mmos qu chgm st nó. Em gl, mos os métodos d nális são útis p cálculos mnuis. O método d solução pfido comumnt sá o qu nvolv mno númo d incógnits. P pogmção computcionl, o método d igidz é nomlmnt muito mis dqudo qu o método d flxiilidd. A vntgm do método d igidz sult d dtminção utomátic d stutu stingid do fto d qu todos os fitos stão loclizdos. A convniênci d um ou outo método stá indicd m tmos gis n l psntd sgui. Ntulmnt, dv-s dmiti qu um vz ou out são ncontds xcçõs à g gl. Gu d Indtminção Método popido Estátic Cinmátic Cálculo mnul Cálc. Aux. Computdo Bixo Bixo Qulqu Rigidz Bixo Alto Flxiilidd Rigidz Alto Bixo Rigidz Rigidz Alto Alto Nnhum Rigidz

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0.

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0. LTROMAGNTIMO TT 7 d Ail d 00 ROLUÇÕ Ao longo do io dos yy, o vcto cmpo léctico é pllo o io dos pont p squd Isto dv-s o fcto qu qulqu ponto no io dos yy stá quidistnt d dus ptículs cujs cgs são iguis m

Leia mais

Matemática A RESOLUÇÃO GRUPO I. 1 c + m= + = 2+ 0= Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1

Matemática A RESOLUÇÃO GRUPO I. 1 c + m= + = 2+ 0= Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1 Tst Intmédio d Mtmátic A Vsão Tst Intmédio Mtmátic A Vsão Dução do Tst: 9 minutos.5..º Ano d Escolidd Dcto-Li n.º 7/ d d mço????????????? RESOLUÇÃO GRUPO I. Rspost (B) A função f é contínu logo é contínu

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano AGUPAMENO DE EOLA DE MOÁGUA Gomti Fih lho Nº 0 0º Ano Osv igu o lo... Ini so istm: ois plnos ppniuls us ts plls um t post um plno um t snt o plno FIH us ts não omplns. s oons os vétis... Qul posição ltiv

Leia mais

O dipolo infinitesimal (Hertziano) é um elemento de corrente de comprimento l tal que l << λ (critério usual: l < λ/50).

O dipolo infinitesimal (Hertziano) é um elemento de corrente de comprimento l tal que l << λ (critério usual: l < λ/50). Cpítuo : O dipoo infinitsim O dipoo infinitsim (tzino) é um mnto d cont d compimnto t qu

Leia mais

arctg x y F q E q v B d F d q E q v B se y r sen sen

arctg x y F q E q v B d F d q E q v B se y r sen sen List Gomti Anlític Cálculo Vtoil Pof. D. Cláudio S. Stoi Poduto misto, Plnos ts, Mtis, Dtminnts Sistms Lins, Coodnds cilíndics sféics, Cônics Poduto misto, Plnos ts. Ach qução do plno contndo o ponto P

Leia mais

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente:

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente: 86 VARIÁVIS ALATÓRIAS CONTÍNUAS Vmos gor studr lgums vriávis ltóris contínus rspctivs propridds, nomdmnt: uniform ponncil norml qui-qudrdo t-studnt F DISTRIBUIÇÃO UNIFORM Considr-s qu função dnsidd d proilidd

Leia mais

10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções.

10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções. 0.7 Ár d Rgião Limitd por dus Funçõs Nst sção, considrrmos rgião qu stá ntr os gráficos d dus funçõs. S f g são contínus f () g() 0 pr todo m [,], ntão ár A d rgião R, limitd plos gráficos d f, g, = =,

Leia mais

SOLUÇÃO DA EQUAÇÃO DE LAPLACE PARA O POTENCIAL DE LIGAÇÃO IÔNICA

SOLUÇÃO DA EQUAÇÃO DE LAPLACE PARA O POTENCIAL DE LIGAÇÃO IÔNICA SOLUÇÃO D EQUÇÃO DE LPLCE PR O POTENCIL DE LIGÇÃO IÔNIC Bathista,. L. B. S., Ramos, R. J., Noguia, J. S. Dpatamnto d Física - ICET - UFMT, MT, v. Fnando Coa S/N CEP 786-9 Basil, -mail: andlbbs@hotmail.com

Leia mais

Ano lectivo de 2008/2009-2º Semestre MECÂNICA I PROGRAMA

Ano lectivo de 2008/2009-2º Semestre MECÂNICA I PROGRAMA DEPRTMENTO DE ENGENHRI CIVIL E RQUITECTUR SECÇÃO DE MECÂNIC ESTRUTURL E ESTRUTURS no lctivo d 28/29-2º Smst MECÂNIC I PROGRM 1. INTRODUÇÃO [1] Dfiniçõs Lis Fundmntis. Gnds físics sus dimnsõs. 2. ESTÁTIC

Leia mais

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático.

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático. Not m: litur dsts pontmntos não dispns d modo lgum litur tnt d iliogrfi principl d cdir Chm-s tnção pr importânci do trlho pssol rlizr plo luno rsolvndo os prolms prsntdos n iliogrfi, sm consult prévi

Leia mais

Experiência 6 - Oscilações harmônicas amortecidas

Experiência 6 - Oscilações harmônicas amortecidas Rotio d Físic Expimntl II 6 Expiênci 6 - Oscilçõs hmônics motcids 1 OBJETIVO O objtivo dst ul é discuti liz xpimntos nvolvndo um conjunto mss-mol no qul o fito d motcimnto sob o movimnto do conjunto não

Leia mais

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica

03-05-2015. Sumário. Campo e potencial elétrico. Energia potencial elétrica Sumáio Unidad II Elticidad Magntismo 1- - Engia potncial lética. - Potncial lético. - Supfícis quipotnciais. Movimnto d cagas léticas num campo lético unifom. PS 22 Engia potncial lética potncial lético.

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

UM ALGORITMO PRÁTICO PARA DETERMINAÇÃO DA VARIÂNCIA DO ESTIMADOR DE UM CONTRASTE DE PARÂMETROS 1

UM ALGORITMO PRÁTICO PARA DETERMINAÇÃO DA VARIÂNCIA DO ESTIMADOR DE UM CONTRASTE DE PARÂMETROS 1 UM ALGOÍTMO PÁTICO PAA DTMINAÇÃO DA VAIÂNCIA 5 UM ALGOITMO PÁTICO PAA DTMINAÇÃO DA VAIÂNCIA DO STIMADO D UM CONTAST D PAÂMTOS ÉLIO PAULO ZONTA JOÃO GILBTO COÊA DA SILVA 3 SUMO - Tsts d significânci d contsts

Leia mais

Física IV Poli Engenharia Elétrica: 16ª Aula (09/10/2014)

Física IV Poli Engenharia Elétrica: 16ª Aula (09/10/2014) Fíic IV Poi Engnhi Eétic: 16ª Au (9/1/14) Pof. Avo Vnnucci N útim u vimo: Poço d potnci finito U d gu L ptícu com ngi E U. Foi pcio ov qução d Schöding p gião II ( U ) p giõ I III ( U U ), pdmnt. Enqunto

Leia mais

Aulas práticas: Introdução à álgebra geométrica

Aulas práticas: Introdução à álgebra geométrica Auls prátics: Introdução à álgr gométric Prolm Mostr qu ár A do prllogrmo d figur nx é dd por A= = αβ αβ y β α α β β A = αβ αβ α x α β = α + α, = β + β = = αβ + αβ = = ( αβ αβ)( ) = + = = 0 = = = 0 = Prolm

Leia mais

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS 4 CPÍTULO 5 CINEMÁTIC DO MOVIMENTO PLNO DE CORPOS RÍGIDOS O estudo d dinâmic do copo ígido pode se feito inicilmente tomndo plicções de engenhi onde o moimento é plno. Neste cpítulo mos nlis s equções

Leia mais

Aula 8. Nesta aula, iniciaremos o capítulo 4 do livro texto, onde iremos analisar vários fenômenos ondulatórios em plasma.

Aula 8. Nesta aula, iniciaremos o capítulo 4 do livro texto, onde iremos analisar vários fenômenos ondulatórios em plasma. Aula 8 Nsta aula, iniciamos o capítulo 4 do livo txto, ond imos analisa váios fnômnos ondulatóios m plasma. 4.Ondas m Plasma 4. Rpsntação das Ondas Qualqu movimnto piódico num fluido, pod s dcomposto atavés

Leia mais

Instituto de Física USP. Física Moderna I. Aula 29. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna I. Aula 29. Professora: Mazé Bechara Institut d Físic USP Físic Mdn I Aul 9 Pfss: Mzé Bch Aul 9 O átm d hidgêni n ti d Schding 1. A sluçã d átm d H n ti d Schding. Cmpçã cm s sultds d Bh.. Os stds dgnds m ngi: stds d msm ngi divss móduls

Leia mais

Geometria Espacial (Exercícios de Fixação)

Geometria Espacial (Exercícios de Fixação) Gomtri Espcil Prof. Pdro Flipp 1 Gomtri Espcil (Exrcícios d Fixção) Polidros 01. Um polidro convxo é formdo por 0 fcs tringulrs. O númro d vértics dss polidro ) 1 b) 15 c) 18 d) 0 ) 4 0. Um polidro convxo

Leia mais

5- Método de Elementos Finitos Aplicado às Equações Diferenciais Parciais.

5- Método de Elementos Finitos Aplicado às Equações Diferenciais Parciais. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 5- Método d Elmntos Finitos Aplicado às Equaçõs Difnciais Paciais. 5.- Bv Intodução Históica. 5.- Solução d Equaçõs Difnciais Odináias: 5.3- Solução

Leia mais

Sinais e Sistemas Mecatrónicos

Sinais e Sistemas Mecatrónicos Sinis Sistms Mctrónicos Anális d Sistms no Domínio do Tmpo José Sá d Cost José Sá d Cost T11 - Anális d Sistms no Tmpo - Rsp. stcionári 1 Crctrizção d rspost stcionário A crctrizção d rspost stcionári

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução MATEMÁTICA A - o Ano Funçõs - Torm d Bolzno Proposts d rsolução Exrcícios d xms tsts intrmédios. Dtrminndo s coordnds dos pontos P Q, m função d são, rsptivmnt P (,h() ) = P Q (,h() ) ( = Q, ln() ), tmos

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo.

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo. Mtril Tórico - Módulo Triângulo Rtângulo, Li dos Snos ossnos, Poĺıgonos Rgulrs Rzõs Trigonométrics no Triângulo Rtângulo Nono no utor: Prof Ulisss Lim Prnt Rvisor: Prof ntonio min M Nto Portl d OMEP 1

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Adição dos antecedentes com os consequentes das duas razões

Adição dos antecedentes com os consequentes das duas razões Adição dos ntcdnts com os consqunts ds dus rzõs Osrv: 0 0 0 0, ou sj,, ou sj, 0 Otnh s trnsformds por mio d dição dos ntcdnts com os consqünts: ) ) ) 0 0 0 0 0 0 0 0 ) 0 0 0 0 ) 0 0 0 0 ) Osrv gor como

Leia mais

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os.

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os. GN7 Introução à Álgr Linr Prof n Mri Luz List - Rsolução Vrifiqu s os proutos ixo stão m finios, m so firmtivo, lul-os ) [ / ] / ) / [ / ] ) ) Solução ) orm primir mtriz é x sgun é x, logo o prouto stá

Leia mais

Cálculo Diferencial II Lista de Exercícios 1

Cálculo Diferencial II Lista de Exercícios 1 Cálculo Difrncil II List d Ercícios 1 CONJUNTO ABERTO E PONTOS DE ACUMULAÇÃO 1 Vrifiqu quis dos conjuntos sguir são brtos m (, ) 1 (, ) 0 (, ) 0 (, ) 0 1 Dtrmin o conjunto d pontos d cumulção do conjunto

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A Eam Final Nacional do Ensino Scundáio Pova Escita d Matmática A 1.º Ano d Escolaidad Dcto-Li n.º 139/01, d 5 d julho Pova 635/1.ª Fas Citéios d Classificação 1 Páginas 014 Pova 635/1.ª F. CC Página 1/

Leia mais

O E stado o d o o Solo

O E stado o d o o Solo O Etdo do Solo Índic Fíico Elmnto Contituint d um olo O oloéummtril contituídoporum conjunto d prtícul ólid, dixndo ntr i vzio qu podrão tr prcil ou totlmnt prnchido pl águ. É poi no co mi grl, um itm

Leia mais

Oitavo Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto. Portal da OBMEP

Oitavo Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto. Portal da OBMEP Mtril Tórico - Módulo Frçõs Algébrics Oprçõs Básics Oitvo Ano Autor: rof. Ulisss Lim rnt Rvisor: rof. Antonio Cminh M. Nto ortl d OBME Simplificção d frçõs lgébrics Um frção lgébric é um xprssão lgébric

Leia mais

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Aplicações do Teorema de Pitágoras. Nono Ano

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Aplicações do Teorema de Pitágoras. Nono Ano Mtril Tórico - Módulo Torm d Pitágors plicçõs plicçõs do Torm d Pitágors Nono no utor: Prof. Ulisss Lim Prnt Rvisor: Prof. ntonio min M. Nto d mio d 019 1 lgums plicçõs simpls Nsst ul, prsntrmos mis lgums

Leia mais

Problemas de Electromagnetismo e Óptica LEAN + MEAer. 1.3 Electrostática: Momento dipolar; Energia de um dipolo

Problemas de Electromagnetismo e Óptica LEAN + MEAer. 1.3 Electrostática: Momento dipolar; Energia de um dipolo Poblmas d Elctomagntismo Óptica LEAN + MEA.3 Elctostática: Momnto dipola; Engia d um dipolo P-.3. Most u o campo lctostático o potncial d um dipolo léctico num ponto a uma distância do cnto do dipolo,

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

Fluido Perfeito/Ideal Potencial Complexo Exemplos de aplicação

Fluido Perfeito/Ideal Potencial Complexo Exemplos de aplicação Exmplos d plicção W z com R W x + i y Fução potcil d vlocidd φ ( x, y x, φ costt x costt - Equipotciis são cts vticis Fução d cot ψ ( x, y y, ψ costt y costt - Lihs d cot são cts hoizotis Exmplos d plicção

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

9. Fontes do Campo Magnético

9. Fontes do Campo Magnético 9. Fontes do Cmpo Mgnético 9.1. A Lei de iot-svt 9.. A Foç Mgnétic ente dois Condutoes Plelos. 9.3. A Lei de Ampèe 9.4. O Fluxo Mgnético 9.5. A Lei de Guss do Mgnetismo. 9.6. O Cmpo Mgnético dum Solenóide.

Leia mais

Capítulo 3 CCN e Equação de Kohler

Capítulo 3 CCN e Equação de Kohler Cpítulo 3 CCN Equção d Kohl N tmosf, s gotículs d nuvm s fomm m ossóis chmdos d núclos d condnsção ou núclos higoscópicos (CCN). A tx d fomção d gotículs é dtmindo plo númo dsts núclos psnts n tmosf não

Leia mais

Problemas de Electromagnetismo e Óptica LEAN + MEAer

Problemas de Electromagnetismo e Óptica LEAN + MEAer Pobls d logniso Ópi AN MA 7 Ópi P 7 (Pobl 3 do píulo do livo nodução à Físi d Dis d Dus l) O spo d opinos d ond p luz visívl vi n d 4x -9 (viol) 75x -9 (vlho) n qu vlos vi fquêni d luz visívl? n 75x 4

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO Instituto de Ciências Exatas e Biológicas. Mestrado Profissional em Ensino de Ciências

UNIVERSIDADE FEDERAL DE OURO PRETO Instituto de Ciências Exatas e Biológicas. Mestrado Profissional em Ensino de Ciências UNIERSIDADE FEDERAL DE OURO PRETO Instituto d Ciências Exatas Biológicas Mstado Pofissional m Ensino d Ciências Slção da pimia tapa d avaliação m Física Instuçõs paa a alização da pova Nst cadno sponda

Leia mais

x podem ser reais ou complexos. Nós estamos interessados apenas nas raízes reais. O exemplo mais simples de raiz é da equação linear.

x podem ser reais ou complexos. Nós estamos interessados apenas nas raízes reais. O exemplo mais simples de raiz é da equação linear. CAPÍTULO ZEROS DE FUNÇÕES. INTRODUÇÃO Neste cpítulo pocumos esolve polems que fequentemente ocoem n áe de engenhi e ciêncis ets, que consiste n esolução de divesos tipos de equções. Sendo esss equções

Leia mais

CAPÍTULO 9 COORDENADAS POLARES

CAPÍTULO 9 COORDENADAS POLARES Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Dprtnto Mtátic Disciplin Anális Mtátic II Curso Engnhri do Abint º Sstr º Fich nº 6: Equçõs difrnciis d vriávis sprds správis, totis cts, co fctor intgrnt hoogéns d ª ord. Coptição ntr spécis E hbitts

Leia mais

Aula 11 Mais Ondas de Matéria II

Aula 11 Mais Ondas de Matéria II http://www.bugman3.com/physics/ Aula Mais Ondas d Matéia II Física Gal F-8 O átomo d hidogênio sgundo a Mcânica Quântica Rcodando: O modlo atômico d Boh (93) Motivação xpimntal: Nils H. D. Boh (885-96)

Leia mais

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO INTEGRAÇÃO MÉTODO DA UBTITUIÇÃO o MUDANÇA DE VARIAVEL PARA INTEGRAÇÃO Emplos Ercícios MÉTODO DA INTEGRAÇÃO POR PARTE Emplos Ercícios7 INTEGRAL DEFINIDA8 Emplos Ercícios REFERÊNCIA BIBLIOGRÁFICA INTRODUÇÃO:

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Cludi gin Cmpos d Crvlho Módulo sistors Circuitos sistênci Elétric () sistors: sistor é o condutor qu trnsform nrgi létric m clor. Como o rsistor é um condutor d létrons, xistm quls qu fcilitm ou

Leia mais

Mecânica dos Materiais. Instabilidade de Colunas. Tradução e adaptação: Victor Franco

Mecânica dos Materiais. Instabilidade de Colunas. Tradução e adaptação: Victor Franco Mcânica dos Matiais Instabilidad d Colunas 10 Tadução adaptação: Victo Fanco Rf.: Mchanics of Matials, B, Johnston & DWolf McGaw-Hill. Mchanics of Matials, R. Hibbl, asons Education. Estabilidad d Estutuas

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SOL OLITÉNI UNIVSI SÃO ULO venid ofesso Mello Moes, nº 3 008-900, São ulo, S Telefone: (0xx) 309 337 x: (0xx) 383 886 eptmento de ngenhi Mecânic M 00 MÂNI de setembo de 009 QUSTÃO (3 pontos): figu most

Leia mais

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades:

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades: Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj um vriávl ltóri com conjunto d vlors (S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. É função qu ssoci

Leia mais

Características construtivas

Características construtivas Acionmntos Eléticos Máquins d Cont Contínu Cctístics constutivs Cmpo Amdu Enolmnto d cmpo: podução d fluxo (nolmnto concntdo ou imãs pmnnts); Enolmnto d mdu: convsão d ngi (nolmnto distibuído) Acionmntos

Leia mais

Capítulo 3 CCN e Equação de Kohler

Capítulo 3 CCN e Equação de Kohler Cpítulo 3 CCN Equção d Kohl N tmof, gotícul d nuvm fomm m oói chmdo d núclo d condnção ou núclo higocópico (CCN). A tx d fomção d gotícul é dtmind plo númo dt núclo pnt n tmof não pl colião ttític. Em

Leia mais

2º Exame de Análise de Estruturas I Mestrado Integrado em Engenharia Civil Responsável: Prof. J.A. Teixeira de Freitas 28 de Junho de 2013

2º Exame de Análise de Estruturas I Mestrado Integrado em Engenharia Civil Responsável: Prof. J.A. Teixeira de Freitas 28 de Junho de 2013 Consult pens do fomuláio. Desligue o telemóvel. Dução: hos. º Eme de nálise de Estutus I estdo Integdo em Engenhi Civil Responsável: of. J.. eiei de Feits de Junho de Identifique tods s folhs. Inicie cd

Leia mais

Aula 9. Vimos que a freqüência natural de oscilação dos elétrons em torno das suas respectivas posições de equilíbrio, é dada pela expressão 4.2.

Aula 9. Vimos que a freqüência natural de oscilação dos elétrons em torno das suas respectivas posições de equilíbrio, é dada pela expressão 4.2. Aula 9 Nsta aula, continuamos o capítulo 4 do livo txto, ond agoa invstigamos as fitos do movimnto témico, qu oa dsconsidamos, nas oscilaçõs natuais d létons. 4.3 Ondas Eltônicas d Plasma Vimos qu a fqüência

Leia mais

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos.

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos. Not m: litur dsts potmtos ão disps d modo lgum litur tt d iliogrfi pricipl d cdir Chm-s tção pr importâci do trlho pssol rlir plo luo rsolvdo os prolms prstdos iliogrfi, sm cosult prévi ds soluçõs proposts,

Leia mais

3 Freqüências Naturais e Modos de Vibração

3 Freqüências Naturais e Modos de Vibração 3 Frqüêncis Nturis Modos d Vibrção Aprsnt-s nst cpítulo ddução ds quçõs difrnciis prciis d movimnto com s rspctivs condiçõs d contorno prtir do funcionl d nrgi.3. Tm-s ssim um problm d vlor d contorno

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 4

Métodos Computacionais em Engenharia DCA0304 Capítulo 4 Métodos Computciois m Eghri DCA34 Cpítulo 4 4 Solução d Equçõs Não-lirs 4 Técic d isolmto d rízs ris m poliômios Cosidrdo um poliômio d orm: P L Dsj-s cotrr os limits ds rízs ris dst poliômio Chmrmos d

Leia mais

Expressão Semi-Empírica da Energia de Ligação

Expressão Semi-Empírica da Energia de Ligação Exprssão Smi-Empíric d Enrgi d Ligção om o pssr do tmpo n usênci d um tori dtlhd pr dscrvr strutur nuclr, vários modlos form dsnvolvidos, cd qul corrlcionndo os ddos xprimntis d um conjunto mis ou mnos

Leia mais

Notação. Se u = u(x, y) é uma função de duas variáveis, representamos por u, ou ainda, por 2 u a expressão

Notação. Se u = u(x, y) é uma função de duas variáveis, representamos por u, ou ainda, por 2 u a expressão Seção 20: Equção de Lplce Notção. Se u = u(x, y) é um função de dus vriáveis, representmos por u, ou ind, por 2 u expressão u = 2 u = u xx + u yy, chmd de lplcino de u. No cso de função de três vriáveis,

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

Estes resultados podem ser obtidos através da regra da mão direita.

Estes resultados podem ser obtidos através da regra da mão direita. Produto toril ou produto trno Notção: Propridds Intnsidd: Sntido: ntiomuttiidd: Distriutio m rlção à dição: Não é ssoitios pois, m grl, Cso prtiulr: Pr tors dfinidos m oordnds rtsins: Ests rsultdos podm

Leia mais

Electromagnetismo e Óptica

Electromagnetismo e Óptica Elctromgntismo Óptic Lbortório 1 Expriênci d Thomson OBJECTIVOS Obsrvr o fito d forç d Lorntz. Mdir o cmpo d indução mgnétic produzido por bobins d Hlmholtz. Dtrminr xprimntlmnt o vlor d rlção crg/mss

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

Associação de Resistores e Resistência Equivalente

Associação de Resistores e Resistência Equivalente Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos

Leia mais

ELECTROMAGNETISMO. EXAME 2ª Época 6 de Julho de 2009 RESOLUÇÕES

ELECTROMAGNETISMO. EXAME 2ª Época 6 de Julho de 2009 RESOLUÇÕES ELECTROMAGNETISMO EXAME ª Época d Julho d 009 RESOLUÇÕES As spostas a algumas das pguntas dvm s acompanhada d sumas ilustativos, u não são poduzidos aui ) a D modo gal F k Nst caso, a foça cida pla caga

Leia mais

4.21 EXERCÍCIOS pg. 176

4.21 EXERCÍCIOS pg. 176 78 EXERCÍCIOS pg 7 Nos rcícios d clculr s drivds sucssivs t ordm idicd, 5 7 IV V 7 c d c, 5, 8 IV V VI 8 8 ( 7) ( 8), ( ) ( ) '' ( ) ( ) ( ) ( ) 79 5, 5 8 IV, 8 7, IV 8 l, 9 s, 7 8 cos IV V VI VII 5 s

Leia mais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ES PITÉI UIVESIE E SÃ PU pamnto d Ennhaia Mcânica Mcânica I PME 100 Pova n o a 05 / 1 / 017 uação da Pova: hoas ão é pmitido o uso d calculadoas, "tablts", clulas dispositivos similas. pós o início da

Leia mais

TECNOLOGIA MECÂNICA Mestrado Integrado em Engenharia Mecânica 20 de Junho de 2016

TECNOLOGIA MECÂNICA Mestrado Integrado em Engenharia Mecânica 20 de Junho de 2016 TECNOLOGIA MECÂNICA Msto Intgo m Engni Mcânic Juno 6 Númo: Nom:. A fomção lástic os mtiis mtálicos o s lic tvés os mcnismos movimnto slocçõs fomção mcls. Iniqu qul os squms ou b figu snt o mcnismo fomção

Leia mais

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas

Modelagem Matemática de Sistemas Elétricos. Analogias Eletromecânicas 08 Modlagm Matmática d Sistmas Elétricos nalogias Eltromcânicas INTODUÇÃO Os sistmas létricos são componnts ssnciais d muitos sistmas dinâmicos complxos Por xmplo, um controlador d um drivr d disco d um

Leia mais

TIPOS DE GRANDEZAS. Grandeza escalar necessita apenas de uma. Grandeza vetorial Além do MÓDULO, ela

TIPOS DE GRANDEZAS. Grandeza escalar necessita apenas de uma. Grandeza vetorial Além do MÓDULO, ela TIPO DE GRANDEZA Gndez escl necessit pens de um infomção p se compeendid. Nesse cso, qundo citmos pens o MÓDULO d gndez (intensidde unidde) el fic definid. Exemplo: tempetu(30ºc), mss(00kg), volume(3400

Leia mais

PROPRIEDADES DO ELIPSÓIDE

PROPRIEDADES DO ELIPSÓIDE . Elis grdor N Godsi é o lisóid d rvolução (ª roximção) qu srv como rfrênci no osicionmnto godésico; N mior rt dos cálculos d Godsi Gométric é usd gomtri do Elisóid d volução; O Elisóid é formdo l rvolução

Leia mais

Sala: Rúbrica do Docente: Registo:

Sala: Rúbrica do Docente: Registo: Instituto Suprior Técnico Dpartamnto d Matmática Scção d Àlgbra Anális o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I (MEFT, LMAC, MEBiom) o Sm. 0/ 4/Jan/0 Duração: h30mn Instruçõs Prncha os sus dados na

Leia mais

PME 3200 MECÂNICA II Primeira Prova 31 de março de 2016 Duração da Prova: 120 minutos (não é permitido uso de calculadoras)

PME 3200 MECÂNICA II Primeira Prova 31 de março de 2016 Duração da Prova: 120 minutos (não é permitido uso de calculadoras) PME 3 MECÂNICA II Piei Pov 31 de ço de 16 Dução d Pov: 1 inutos (não é peitido uso de clculdos) A B g 1ª Questão (3, pontos). Dois discos A e B, de sss, ios R e espessus despeíveis, estão fidos o eio de

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 0 Fs Prof. Mri Antôni Gouvi. CONHECIMENTOS GERAIS QUESTÃO 0 ) Quntos são os númros intiros positivos d qutro grismos, scohidos sm rptição, ntr,, 5, 6, 8, 9? b)

Leia mais

Soluções das Fichas de trabalho. FICHA DE TRABALHO 1 Propriedades das operações sobre conjuntos

Soluções das Fichas de trabalho. FICHA DE TRABALHO 1 Propriedades das operações sobre conjuntos Soluçõs das FICHA DE TRABALHO Popidads das opaçõs sob conjuntos a) {,, 5} {,,, 5} {,, } {,, 5} ) {} f) {} g) {, 5} h) {,,, 5} i) Q j) {} k) {} l) Q m) {,, 5} a) {, 5,, 7, 8, 9, } {, 8, } {, 5} {, 7, 9}

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

XIV SEMINÁRIO NACIONAL DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA MÉTODO CROSS SECTION UMA ALTERNATIVA AO CÁLCULO DOS CUSTOS MARGINAIS DE DISTRIBUIÇÃO

XIV SEMINÁRIO NACIONAL DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA MÉTODO CROSS SECTION UMA ALTERNATIVA AO CÁLCULO DOS CUSTOS MARGINAIS DE DISTRIBUIÇÃO XIV EINÁIO NACIONAL DE DITIBUIÇÃO DE ENEGIA ELÉTICA ÉTODO CO ECTION UA ALTENATIVA AO CÁLCULO DO CUTO AGINAI DE DITIBUIÇÃO ALEXANDE GOE AENDOLA AUO CEA DA OCHA CENTAI ELETICA BAILEIA A - ELETOBÁ Plv-chv:

Leia mais

A Função Densidade de Probabilidade

A Função Densidade de Probabilidade Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj X um vriávl ltóri com conjunto d vlors X(S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. A Função Dnsidd

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica D x E RESOLUÇÃO i z k j 1ª Questão (3,5 pontos). O qudo, com fom de um tiângulo etângulo isósceles, é constituído po tês bs ticulds ente si e de peso despezível. O qudo é ticuldo em e ligdo em dois cbos

Leia mais

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a.

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a. O segundo, o sétimo e o vigésimo sétimo termos de um Progressão Aritmétic (PA) de números inteiros, de rzão r, formm, nest ordem, um Progressão Geométric (PG), de rzão q, com qer ~ (nturl diferente de

Leia mais

ELECTROMAGNETISMO. TESTE 1 4 de Abril de 2009 RESOLUÇÕES

ELECTROMAGNETISMO. TESTE 1 4 de Abril de 2009 RESOLUÇÕES LTROMAGNTIMO TT 4 d Abil d 009 ROLUÇÕ a Dvido à simtia das cagas, o campo léctico m qualqu ponto no io dos é paallo a ss io, ou sja a componnt é smp nula Paa > 0, o sntido do y campo léctico é o sntido

Leia mais

Convenção: O momento fletor é positivo quando tende a retificar a. Hipótese Básica: As seções permanecem planas após a deformação (seções cheias).

Convenção: O momento fletor é positivo quando tende a retificar a. Hipótese Básica: As seções permanecem planas após a deformação (seções cheias). C Í T U L O 3 Flxão d ças Cuvas 3.1. Gnaldads No studo qu s sgu, admt-s qu a lna qu un os cntos d gavdad das sçõs tansvsas da aa, camada lna dos cntos, sja uma cuva plana qu as sçõs tansvsas tnam um xo

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Gomtria Analítica - Aula 0 60 K. Frnsl - J. Dlgado Aula 1 1. Rotação dos ixos coordnados Sja OXY um sistma d ixos ortogonais no plano sja O X Y o sistma d ixos obtido girando os ixos OX OY d um ângulo

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE ENTRE

Leia mais

Ondas Eletromagnéticas Interferência

Ondas Eletromagnéticas Interferência Onds Eletomgnétics Intefeênci Luz como ond A luz é um ond eletomgnétic (Mxwell, 1855). Ess ond é fomd po dois cmpos, E (cmpo elético) e B (cmpo mgnético). Esses cmpos estão colocdos de um fom pependicul

Leia mais

faculdade de tecnologia de são paulo PARTE INTEGRANTE DA DISCIPLINA MÉTODOS DE CÁLCULO I PARA MECÂNICA E CIVIL

faculdade de tecnologia de são paulo PARTE INTEGRANTE DA DISCIPLINA MÉTODOS DE CÁLCULO I PARA MECÂNICA E CIVIL FTECSP fuldd d tnologi d são pulo VETORES VETORES VETORES VETORES VETORES VETORES VETORES VETORES VETORES VETORES VETORES VETORES VETORES VETORES VETORES PRTE INTEGRNTE D DISCIPLIN MÉTODOS DE CÁLCULO I

Leia mais

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal EA6 Circuits FEEC UNCAMP Aul 6 Est ul:! Sistms Trifásics quilibrds cm Trnsfrmdr idl Nst ul nlisrms um sistm trifásic quilibrd cm trnsfrmdr Cm sistm é quilibrd, pdms nlisr circuit trifásic trtnd pns d um

Leia mais

ELECTROTECNIA TEÓRICA. Transparências das aulas teóricas. Maria Inês Barbosa de Carvalho

ELECTROTECNIA TEÓRICA. Transparências das aulas teóricas. Maria Inês Barbosa de Carvalho LCTROTCNI TÓRIC Tspêis ds uls tóis Mi Iês os d Cvlo 4/5 LCTROTCNI TÓRIC Ods ltomgétis Lis d tsmissão Guis d od ilídios o Guis mtálios Pls plls Rtguls Ciuls o Guis dilétios Pls Fis Óptis GUIS D OND CILÍNDRICOS

Leia mais

Lista de Matemática ITA 2012 Trigonometria

Lista de Matemática ITA 2012 Trigonometria List d Mtmátic ITA 0 Trigonomtri 0 - (UERJ/00) Obsrv bixo ilustrção d um pistão su squm no plno. Um condição ncssári suficint pr qu s dus árs sombrds n figur sjm iguis é t =. tg =. tg =. tg =. tg. O pistão

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

Apresenta-se em primeiro lugar a simbologia adoptada na descrição da assemblagem de elementos finitos.

Apresenta-se em primeiro lugar a simbologia adoptada na descrição da assemblagem de elementos finitos. PÍTULO 8 SSEMLGEM DE ELEMENTOS INITOS No pítulo, foi presentdo com detlhe o cso d ssemblgem de brrs em problems unidimensionis. Neste cpítulo present-se de um modo sucinto dptção d técnic já descrit o

Leia mais

MECÂNICA VETORES AULA 3 1- INTRODUÇÃO

MECÂNICA VETORES AULA 3 1- INTRODUÇÃO AULA 3 MECÂNICA VETOES - INTODUÇÃO N Físic usmos dois gupos de gndezs: s gndezs escles e s gndezs vetoiis. São escles s gndezs que ficm ccteizds com os seus vloes numéicos e sus espectivs uniddes. São

Leia mais

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados.

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados. Luís Antuns Grfos Grfo: G=(V,E): onjunto vértis/nós V um onjunto rmos/ros E VxV. Rprsntção visul: Grfos não irigios Dfinição: Um grfo m qu os rmos não são irionos. Grfos irigios Dfinição: Um grfo m qu

Leia mais

TC 071 PONTES E ESTRUTURAS ESPECIAIS II

TC 071 PONTES E ESTRUTURAS ESPECIAIS II TC 071 PONTES E ESTRUTURAS ESPECIAIS II 7ª AULA (09/09/2.010) Vmos nlisr o comportmento ds longrin e o cminhmento ds crgs trvés d estrutur em grelh, pr: ) crgs plicds n longrin em estudo, b) crgs plicds

Leia mais

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações Escola Politécnica da Univrsidad d São Paulo Dpartamnto d Engnharia d Estruturas Fundaçõs Laboratório d Estruturas Matriais Estruturais Extnsomtria létrica III Notas d aula Dr. Pdro Afonso d Olivira Almida

Leia mais

6 Resultados e Discussão I - Obtenção do pk a a partir da fluorescência estacionária e resolvida no tempo

6 Resultados e Discussão I - Obtenção do pk a a partir da fluorescência estacionária e resolvida no tempo 6 Resultdos e Discussão I - Obtenção do K ti d luoescênci estcionái e esolvid no temo 6.1 Equilíbio de ionizção O H de um solução é um medid de su concentção de H, o qul ode se deinido como: 1 H log1 log1[

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2

FILTROS. Assim, para a frequência de corte ω c temos que quando g=1/2 ( )= 1 2 ( ) = 1 2 ( ) e quando = 1 2 FILTROS Como tmos visto, quando tmos lmntos rativos nos circuitos, as tnsõs sobr os lmntos d um circuitos m CA são dpndnts da frquência. Est comportamnto m circuitos montados como divisors d tnsão prmit

Leia mais