OSCILAÇÃO E VELOCIDADE DO PÊNDULO SIMPLES NA MODELAGEM MATEMÁTICA. Swing speed and the pendulum simple mathematical modeling

Tamanho: px
Começar a partir da página:

Download "OSCILAÇÃO E VELOCIDADE DO PÊNDULO SIMPLES NA MODELAGEM MATEMÁTICA. Swing speed and the pendulum simple mathematical modeling"

Transcrição

1 OSCIAÇÃO E VEOCIDADE DO PÊNDUO SIMPES NA MODEAGEM MATEMÁTICA Swing speed and the pendulum simple mathematical modeling Janine da Rosa ABAREO 1 Kelly Pereira DUARTE Vanessa FAORO 3 RESUMO Em diversos problemas práticos de mecânica, as equações matemáticas que descrevem o seu comportamento são equações diferenciais ordinárias não lineares. Naturalmente, quando são consideradas pequenas amplitudes das oscilações envolvidas, estas equações podem ser aproximadas por outras que são lineares. Este artigo discute um exemplo desse caso, o Pêndulo Simples, objetivando o estudo e a simulação de oscilações de graus (ângulos) e velocidade com relação ao tempo. Trata-se da modelagem matemática, da simulação computacional e da validação experimental de um sistema mecânico do tipo Pêndulo Simples. O objetivo é descrever a sequência de passos utilizados na formulação matemática do Pêndulo Simples. Utilizou-se o software Matab/Simulink instalado em um microcomputador para as simulações computacionais. Os parâmetros utilizados para modelar o movimento do pêndulo são determinados por meio da balança, da plataforma de teste (software utilizado pelo professor no dia do experimento) e são consideradas as constantes, servindo para a validação experimental realizada. Como resultados, teve-se a identificação experimental, as modificações do modelo para a sua simulação computacional (com atrito) e a sua validação. Conclui-se que o presente trabalho pode servir didaticamente como exemplo das etapas fundamentais de modelagem matemática de problemas reais nas mais diversas áreas do conhecimento. Palavras chave: Pêndulo Simples, Modelagem Matemática, Simulação Computacional, Validação Experimental. ABSTRACT In many practical problems in mechanics, mathematical equations that describe their behavior are nonlinear ordinary differential equations. Of course, when considering small amplitude oscillations involved, these equations can be approximated by other than linear. This paper discusses an example of this case, the Simple Pendulum, aiming to study and simulation of fluctuations in degrees (angles) and velocity with respect to time. This is the mathematical modeling, computer simulation and experimental validation of a mechanical system of type Simple Pendulum. The aim is to describe the sequence of steps used in the mathematical formulation of the Simple Pendulum. We used the Matab/Simulink installed on a personal computer for the computer simulations. The parameters used to model the motion of the pendulum is determined by the balance of the test platform (software used by the teacher on the day of the experiment) and are considered constants, serving for the experimental validation performed. As a result, there was the experimental identification, the modifications of the model to its computer simulation (friction) and their Vivências. Vol. 9, N.17: p , Outubro/013 83

2 validation. We conclude that this study can serve as a didactic example of the fundamental steps of mathematical modeling of real problems in several areas of knowledge. Keywords: Simple Pendulum, Mathematical Modeling, Computer Simulation, Experimental Validation Símbologia M Massa do pêndulo [kg] Comprimento do pêndulo [m] I o Momento de inércia do pêndulo [m kg] G Gravidade [m/s ] 1. INTRODUÇÃO O estudo da natureza das oscilações e a descoberta da periodicidade do movimento pendular foi desenvolvido por Galileu Galilei. O movimento de um Pêndulo Simples envolve basicamente uma grandeza chamada período (simbolizada por T): é o intervalo de tempo que o objeto leva para percorrer toda a trajetória (ou seja, retornar a sua posição original de lançamento, uma vez que o movimento pendular é periódico). Em mecânica, um Pêndulo Simples é um instrumento ou uma montagem que consiste num objeto que oscila em torno de um ponto fixo. O braço executa movimentos alternados em torno da posição central, chamada posição de equilíbrio. O Pêndulo é muito utilizado em estudos da força peso e do movimento oscilatório. Atualmente busca-se utilizar o Pêndulo Simples para determinar a aceleração da gravidade da Terra. Apesar de todos os cuidados adotados, há habilidades das interferências de erros nos resultados que podem até torná-los sem valor. A atualização do Pêndulo Simples permite identificar a possibilidade de observar a influência das fases da ua sobre a variação do campo gravitacional da Terra e, consequentemente, nas marés terrestres. O atual artigo apresenta um estudo teórico sobre um Pêndulo Simples, seguido de equações que representam o modelo matemático, levando em consideração um Pêndulo sem atrito e por fim representação através de simulações e conclusões sobre o mesmo. Este trabalho tem por objetivo não só aprofundar os conhecimentos sobre o modelo matemático em questão, como também avaliar os resultados obtidos na prática em relação aos computacionais, comparando ambos os gráficos. Como metas, pretende-se desenvolver o modelo matemático do Pêndulo Simples, bem como a construção do diagrama de blocos no Matab/Simulink para realização das simulações a fim de obter resultados aceitáveis aos do experimento real.. MATERIAIS E MÉTODOS O modelo matemático foi apresentado a partir do estudo e busca em referenciais teóricos, fazendo um levantamento e seleção do material encontrado. A partir do experimento, será obtida a solução utilizando os ferramentais no laboratório em Panambi, com uma plataforma de teste utilizada pelo professor, balança para medir o peso da massa e também uma fita métrica. Posteriormente, foi realizada a simulação no Matab/simulink, utilizando o conhecimento e as dicas fornecidas durante as aulas, pelo professor e também pelos colegas, a partir dos comandos e Vivências. Vol. 9, N.17: p , Outubro/013 84

3 o recurso computacional do Matab/simulink..1 Modelagem Matemática O Pêndulo Simples é um sistema mecânico ideal constituído de uma partícula de massa m suspensa e raio r, ligada por um fio de comprimento a um ponto fixo. [4] Quando o Pêndulo está em posição de equilíbrio, as duas forças que agem sobre a partícula, o seu peso (m g) tensão aplicada pelo fio, se equilibram. Porém, se o Pêndulo for afastado de sua posição de equilíbrio, de modo que a direção do fio faça um ângulo Ө com a vertical, o componente do peso perpendicular ao fio, de intensidade (-m g sin ) no sentido de restaurar o equilíbrio, fazendo o Pêndulo oscilar com um movimento periódico T. Em uma primeira aproximação (desprezando o efeito da resistência do ar e atrito) consideramos que as forças que atuam são: peso P = m g e a tensão no fio, T [4] F = m g <==> m g + T = m a. (1) Decompondo segundo as direções normal e tangencial à trajetória tem-se: - Direção normal ao movimento: T + P cos = ma normal. - Direção tangencial ao movimento: P sin = ma tangencial () Figura1: Pêndulo Simples A Figura 1 mostra o Pêndulo simples e as forças que atuam sobre a esfera de massa m, onde é o comprimento do fio, é o ângulo formado entre a posição de equilíbrio e o ponto de máxima extensão medida em radianos, x é a projeção do movimento da massa sobre o eixo horizontal, T é a força de tração do fio, p é a força peso da esfera, P x = m.g.sen e P y = m.g.cos. d s Assim, a aceleração tangencial é a derivada segunda da posição, então substituindo a tang = Vivências. Vol. 9, N.17: p , Outubro/013 85

4 na equação (). d s - m.g.sin = m. (3) A esfera descreve um arco de circunferência de comprimento s ao realizar o seu movimento. A posição em cada instante pode ser escrita em função do raio da trajetória,, e da posição angular. s = sendo: = 0 + r (4) da mesma forma, a aceleração tangencial pode ser expressa em função de e a tang = d s = d (5) d a tang = (6) Substituindo na equação (3) d - mg sin - m = 0 (7) Dividindo a equação (7) por - m d g + sin = 0 (8) Considerando que o ângulo é suficientemente pequeno, sin 0 ( 5 0 < < 10 0 ), a equação anterior representa a equação de um Movimento Harmônico Simples. d g + = 0 (9) A solução desta Equação Diferencial Ordinária (EDO) é dada pela equação (10): (t) = c 1 e wi + c e - wi. (10) Aplicando as propriedades dos números de Euler na equação (10), (t) = c 1 (cos wt + i sin wt) + c (cos wt i sin wt) (11) (t) = (c 1 + c ) cos wt + i(c 1 c ) sin wt (1) onde C 1 = (c 1 + c ) e C = i(c 1 - c ). ogo: (t) = C 1 cos wt + C sin wt (13) Considerando w = g, temos finalmente que: (t) = C 1 cos ( g t) + C sin ( g t) (14) d = 0, a solução da equação (14) é Complementado com as condições iniciais (0) = 0 e dada por: g (t) = 0 cos( t) (15) onde 0 é o ângulo máximo que o Pêndulo atinge. Vivências. Vol. 9, N.17: p , Outubro/013 86

5 = amplitude do movimento no instante 0 = amplitude inicial do movimento (amplitude máxima) g = frequência angular do movimento, t = instante do movimento oscilatório. A equação (15) evidencia que o ângulo é uma função periódica do tempo e que varia g com freqüência natural f nat =. Então, o período da oscilação é: T 0 = π. (16) g Sendo assim, uma função exclusiva do comprimento do Pêndulo e da aceleração da gravidade no local. O conhecimento do período e do comprimento do Pêndulo permite calcular o valor da aceleração da gravidade, na medida em que sejam válidas as aproximações assumidas na dedução dessa equação. No momento da realização do movimento oscilatório do pêndulo, há atrito, onde se opõe à tendência de movimento do corpo sobre a superfície e é decorrente, entre outros fatores, da existência de pequenas irregularidades das superfícies em contato. Para a implementação em diagrama de blocos (Figura 3) no Matab/Simulink usa-se a equação do atrito: (17) Onde T C representa o torque devido à característica de atrito Coulomb, T S torque de atrito estático. 3. RESUTADOS E DISCUSSÕES Nesta etapa, foi abordada grande parte do processo, desde a experimentação no laboratório até a pesagem da massa, medição de altura e regulagem de ângulo. Foi apresentado também o diagrama de blocos feito a partir do Matab/Simulink, sendo que o mesmo foi desenvolvido junto à disciplina. A definição dos parâmetros utilizados na simulação foi exposta em uma tabela para a melhor visualização dos dados, para posteriormente, ser apresentado o resultado dessa simulação e a validação do experimento. 3.1 Diagrama de blocos A construção do diagrama de blocos em que foi baseada através do Matab/Simulink ibrary Browser(Figura 4), onde foi baseada na equação Equação Diferencial Ordinária não linear, levando em conta o atrito. θ ''+ ßθ' /m + g.sen( θ)/=0 (17) θ ''= - ßθ' /m - g.sen( θ)/ (18) Sabendo que as condições iniciais: θ (t=0)= θ 0 θ(t=0)= θ 0 =0 Vivências. Vol. 9, N.17: p , Outubro/013 87

6 Figura : Diagrama de blocos do modelo matemático do pêndulo simples. Para a construção foram utilizados dois integradores, pois a equação (17) é de segunda ordem, através dos integradores, tem-se então o dteta e Teta. Observou-se que esses estão sendo multiplicados pelos seus respectivos coeficiente e funções, conforme a equação (18). O bloco To workspace, serve para exportar dados do Simulink para o Matab (área de comando). O bloco torque de atrito está encapsulado em subsistemas e em variáveis, que descrevem a força de atrito que está presente no problema, conforme a Figura 3: Figura 3: Diagrama de blocos do modelo matemático do pêndulo simples. Vivências. Vol. 9, N.17: p , Outubro/013 88

7 3. Definição dos parâmetros do sistema Para adquirir os parâmetros, pega-se pelo menos duas amplitudes do gráfico gerado: X1=85; X=77; Sabe-se que o valor de delta é: X1 ln X (19) Fazendo aproximação, chega-se: ξ =1/(((*pi)/delta)^+1)^0.5 (0) Sabendo que: gravidade é: g=9.81; massa=0.83 kg; =0.7 (comprimento); θ = - 90; Calcula-se então o valor de ß ß=*m*^*(g/)^0.5*qsi (1) Descrição do parâmetro Notação Valores Observações: Massa do pêndulo M kg Determinada a partir da medição com uma balança. Comprimento do pêndulo 0.7 m Medido com uma régua. Aceleração da gravidade g 9.81 m/s Coeficiente amortecimento viscoso de B N.s/ m Tabela 1: Valores adotados para os parâmetros do modelo matemático do pêndulo simples. 3.3 Resultados de simulação computacional Para a verificação dos resultados, foram gerados gráficos no Malab, observando a oscilação em relação ao tempo, graus, velocidade e comparando o gráfico experimental com o computacional (através de dados coletados). Para a execução foi construído um M-File no Matlab. No carregamento desses dados, foi construído outro M-File, capaz de plotar gráficos, visualizando o movimento oscilatório do Pêndulo. Com isso é possível observar o ângulo, o tempo, a velocidade e também, comparar o gráfico gerado computacionalmente com a simulação experimental. A Figura 4 demonstra o movimento oscilatório do pêndulo em relação ao grau (-90) e ao tempo (segundos). Percebeu-se que inicialmente o movimento é transitório, conforme aumenta o tempo, diminui a inclinação do ângulo, até chegar a um determinado momento, que tanto o tempo quanto o grau serão próximos de zero, entrando em um movimento permanente até sua parada, que ocorre após 30 segundos. Vivências. Vol. 9, N.17: p , Outubro/013 89

8 Figura 4: Simulação Computacional, θ= -90, com tempo de atraso. A Figura 4, foi simulada computacionalmente com um pequeno tempo de atraso real entre: 0.15 e 0.16 segundos iniciais, como percebeu-se no círculo vermelho. Após identificar esse tempo de atraso, observando exatamente os segundos de diferença de quando começou o movimento de oscilação, foi gerado o gráfico sem o tempo de atraso, conforme a Figura 5, para a melhor visualização do referido gráfico. Vivências. Vol. 9, N.17: p , Outubro/013 90

9 Figura 5: Simulação Computacional, θ= -90, sem o tempo de atraso. Para o movimento do pêndulo, passar de oscilatório para permanente, ocorreu uma força, em que sua velocidade muda conforme o tempo (Figura 6): Figura 6: Simulação Computacional, θ= -90, velocidade sem o tempo de atraso. Vivências. Vol. 9, N.17: p , Outubro/013 91

10 3.4 Descrição da bancada experimental Para o experimento realizado com o pêndulo simples, utilizou-se uma bancada experimental, composta por: um pêndulo composto por um corpo, de determinada massa, preso a uma barra de ferro, de comprimento ; um leitor de movimento que capta a oscilação do pêndulo ao decorrer do tempo; um microcomputador onde esta está ligada e no qual são gravados os dados do movimento do pêndulo, retirados pelo leitor; o Matab é software utilizado para se obter os dados e acoplá-los ao microcomputador, podendo-se, assim, expressar estes dados através de gráficos ou tabelas. Figura 7: Imagem da bancada experimental. Vivências. Vol. 9, N.17: p , Outubro/013 9

11 Figura 8: Imagem do software. 3.5 Resultados de validação experimental O gráfico gerado foi comparado computacional e experimentalmente (modelo físico). Percebeu-se que a equação do modelo matemático correspondeu ao fenômeno do modelo físico, conforme a Figura 9. Isso comprova a validação dos dados coletados na plataforma de teste, simulação experimental, com a simulação computacionalmente, feita através da equação diferencial ordinária não linear, atrito e condições iniciais. Figura 9: θ= -90, comparação da simulação computacional com a experimental Vivências. Vol. 9, N.17: p , Outubro/013 93

12 4. CONCUSÃO Através deste trabalho foram demonstradas as etapas de modelagem matemática de um pêndulo simples, em que a partir da utilização de algumas leis e conceitos físicos e matemáticos, foi possível desenvolver a equação que rege este sistema. O processo no laboratório foi muito importante, não só para a construção e a experiência prática do conhecimento, mas também para a integração e cooperação entre os colegas de experimento. Com a prática realizada e com a posterior simulação computacional, foi possível visualizar o movimento oscilatório do pêndulo. Percebeu-se a semelhança entre os gráficos resultantes gerados com os dados obtidos na prática e computacional. Assim foi possível analisar o comportamento do sistema, e validar o experimento. 5. AGRADECIMENTOS Aos financiadores UNIJUÍ pelo oferecimento da bolsa e sua estrutura, ao professor Dr Antonio Carlos Valdiero, pela oportunidade de realizar os ensaios no laboratório de Engenharia Mecânica do Campus Panambi e ao professor Dr Daniel Curvello de Mendonça Muller pela orientação. 6. REFERÊNCIAS BIBIOGRÁFICAS Acesso em 4/07/013. Acesso em 4/07/013. Acesso em 4/07/013. Acesso em 4/07/01. Acesso em 4/07/013. Acesso em 5/07/013. Acesso em 5/07/013. Monteiro,. H. (00). Sistemas Dinâmicos. São Paulo: Editora ivraria da Física. Zill, D. G. (003). Equações Diferenciais com Aplicações em Modelagem. São Paulo: Editora Pioneira Thomson earning. Vivências. Vol. 9, N.17: p , Outubro/013 94

Laboratório de Física Básica 2

Laboratório de Física Básica 2 Objetivo Geral: Determinar a aceleração da gravidade local a partir de medidas de periodo de oscilação de um pêndulo simples. Objetivos específicos: Teoria 1. Obter experimentalmente a equação geral para

Leia mais

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes Pêndulo Simples 6.1 Introdução: Capítulo 6 Um pêndulo simples se define como uma massa m suspensa por um fio inextensível, de comprimento com massa desprezível em relação ao valor de m. Se a massa se desloca

Leia mais

Como escrever um bom RELATÓRIO

Como escrever um bom RELATÓRIO Como escrever um bom RELATÓRIO Mas o que é uma EXPERIÊNCIA? e um RELATÓRIO? Profa. Ewa W. Cybulska Profa. Márcia R. D. Rodrigues Experiência Relatório Pergunta à Natureza e a procura da Resposta Divulgação

Leia mais

FÍSICA. Questões de 01 a 04

FÍSICA. Questões de 01 a 04 GRUPO 1 TIPO A FÍS. 1 FÍSICA Questões de 01 a 04 01. Considere uma partícula presa a uma mola ideal de constante elástica k = 420 N / m e mergulhada em um reservatório térmico, isolado termicamente, com

Leia mais

OSCILAÇÕES: Movimento Harmônico Simples - M. H. S.

OSCILAÇÕES: Movimento Harmônico Simples - M. H. S. Por Prof. Alberto Ricardo Präss Adaptado de Física de Carlos Alberto Gianotti e Maria Emília Baltar OSCILAÇÕES: Movimento Harmônico Simples - M. H. S. Todo movimento que se repete em intervelos de tempo

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa de Física 12.º ano homologado em 21/10/2004 ENSINO SECUNDÁRIO FÍSICA 12.º ANO TEMAS/DOMÍNIOS

Leia mais

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar)

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) 1. OBJETIVOS DA EXPERIÊNCIA 1) Esta aula experimental tem como objetivo o estudo do movimento retilíneo uniforme

Leia mais

O ESTUDO DA CONSERVAÇÃO DA ENERGIA MECÂNICA ATRAVÉS DE ATIVIDADES EXPERIMENTAIS COM MATERIAIS DE BAIXO CUSTO

O ESTUDO DA CONSERVAÇÃO DA ENERGIA MECÂNICA ATRAVÉS DE ATIVIDADES EXPERIMENTAIS COM MATERIAIS DE BAIXO CUSTO O ESTUDO DA CONSERVAÇÃO DA ENERGIA MECÂNICA ATRAVÉS DE ATIVIDADES EXPERIMENTAIS COM MATERIAIS DE BAIXO CUSTO Jorge Alberto Lenz lenz@utfpr.edu.br Marcos Antonio Florczak florczak@utfpr.edu.br Universidade

Leia mais

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA Leis de Newton INTRODUÇÃO Isaac Newton foi um revolucionário na ciência. Teve grandes contribuições na Física, Astronomia, Matemática, Cálculo etc. Mas com certeza, uma das suas maiores contribuições são

Leia mais

PL3a - Queda livre. Estudar o movimento de um corpo em queda livre. Determinar a aceleração gravítica.

PL3a - Queda livre. Estudar o movimento de um corpo em queda livre. Determinar a aceleração gravítica. Física para a Biologia PL3 Queda livre; Pêndulo simples PL3a - Queda livre 1. 2. Objetivos Estudar o movimento de um corpo em queda livre. Determinar a aceleração gravítica. Introdução O exemplo mais comum

Leia mais

Cap. 4 - Princípios da Dinâmica

Cap. 4 - Princípios da Dinâmica Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 4 - Princípios da Dinâmica e suas Aplicações Prof. Elvis Soares 1 Leis de Newton Primeira Lei de Newton: Um corpo permanece

Leia mais

As leis de Newton e suas aplicações

As leis de Newton e suas aplicações As leis de Newton e suas aplicações Disciplina: Física Geral e Experimental Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa o conceito de força

Leia mais

Tópico 8. Aula Prática: Sistema Massa-Mola

Tópico 8. Aula Prática: Sistema Massa-Mola Tópico 8. Aula Prática: Sistema Massa-Mola. INTRODUÇÃO No experimento anterior foi verificado, teoricamente e experimentalmente, que o período de oscilação de um pêndulo simples é determinado pelo seu

Leia mais

GABARITO DO SIMULADO DISCURSIVO

GABARITO DO SIMULADO DISCURSIVO GABARITO DO SIMULADO DISCURSIVO 1. (Unifesp 013) O atleta húngaro Krisztian Pars conquistou medalha de ouro na olimpíada de Londres no lançamento de martelo. Após girar sobre si próprio, o atleta lança

Leia mais

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo.

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo. DINÂMICA Quando se fala em dinâmica de corpos, a imagem que vem à cabeça é a clássica e mitológica de Isaac Newton, lendo seu livro sob uma macieira. Repentinamente, uma maçã cai sobre a sua cabeça. Segundo

Leia mais

QUEDA LIVRE. Permitindo, então, a expressão (1), relacionar o tempo de queda (t), com o espaço percorrido (s) e a aceleração gravítica (g).

QUEDA LIVRE. Permitindo, então, a expressão (1), relacionar o tempo de queda (t), com o espaço percorrido (s) e a aceleração gravítica (g). Protocolos das Aulas Práticas 3 / 4 QUEDA LIVRE. Resumo Uma esfera metálica é largada de uma altura fixa, medindo-se o tempo de queda. Este procedimento é repetido para diferentes alturas. Os dados assim

Leia mais

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA DEPARTAMENTO DE ENGENHARIA F Í S I C A II - DINÂMICA ALUNO: RA: 1 - OS PRINCÍPIOS FUNDAMENTAIS DINÂMICA A Dinâmica é a parte da Mecânica que estuda os movimentos e as causas que os produzem ou os modificam.

Leia mais

Plano Inclinado com e sem atrito

Plano Inclinado com e sem atrito Plano Inclinado com e sem atrito 1. (Uerj 2013) Um bloco de madeira encontra-se em equilíbrio sobre um plano inclinado de 45º em relação ao solo. A intensidade da força que o bloco exerce perpendicularmente

Leia mais

Movimento Harmônico Simples: Exemplos (continuação)

Movimento Harmônico Simples: Exemplos (continuação) Movimento Harmônico Simples: Exemplos (continuação) O Pêndulo Físico O chamado pêndulo físico é qualquer pêndulo real. Ele consiste de um corpo rígido (com qualquer forma) suspenso por um ponto O e que

Leia mais

Exercícios 6 Aplicações das Leis de Newton

Exercícios 6 Aplicações das Leis de Newton Exercícios 6 plicações das Leis de Newton Primeira Lei de Newton: Partículas em Equilíbrio 1. Determine a intensidade e o sentido de F de modo que o ponto material esteja em equilíbrio. Resp: = 31,8 0,

Leia mais

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo.

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo. (MECÂNICA, ÓPTICA, ONDULATÓRIA E MECÂNICA DOS FLUIDOS) 01) Um paraquedista salta de um avião e cai livremente por uma distância vertical de 80 m, antes de abrir o paraquedas. Quando este se abre, ele passa

Leia mais

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples.

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples. Eercícios Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o período, em unidades

Leia mais

Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação

Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação Laboratório da Disciplina CTA-147 Controle I Análise da Resposta Transitória (Este laboratório foi uma adaptação

Leia mais

PRATICA EXPERIMENTAL. Introdução:

PRATICA EXPERIMENTAL. Introdução: PRATICA 2: Corpos em queda livre PRATICA EXPERIMENTAL Introdução: Ao deixar um corpo cair próximo da terra, este corpo será atraído verticalmente para baixo. Desprezando-se se a resistência do ar, todos

Leia mais

Curso de Engenharia Civil. Física Geral e Experimental I Movimento Prof.a: Msd. Érica Muniz 1 Período

Curso de Engenharia Civil. Física Geral e Experimental I Movimento Prof.a: Msd. Érica Muniz 1 Período Curso de Engenharia Civil Física Geral e Experimental I Movimento Prof.a: Msd. Érica Muniz 1 Período Posição e Coordenada de Referência Posição é o lugar no espaço onde se situa o corpo. Imagine três pontos

Leia mais

Mecânica 2007/2008. 6ª Série

Mecânica 2007/2008. 6ª Série Mecânica 2007/2008 6ª Série Questões: 1. Suponha a=b e M>m no sistema de partículas representado na figura 6.1. Em torno de que eixo (x, y ou z) é que o momento de inércia tem o menor valor? e o maior

Leia mais

Licenciatura em Engenharia de Telecomunicações e Informática. 1ª Parte Frequência

Licenciatura em Engenharia de Telecomunicações e Informática. 1ª Parte Frequência ISCTE Ano Lectivo 2005/2006 Licenciatura em Engenharia de Telecomunicações e Informática Física Frequência / 2º Teste Duração: Frequência 3h, Teste 1h 30min. Não é permitido o uso de telemóveis durante

Leia mais

Resolução Comentada CEFET/MG - 2 semestre 2014

Resolução Comentada CEFET/MG - 2 semestre 2014 Resolução Comentada CEFET/MG - 2 semestre 2014 01 - A figura mostra um sistema massa-mola que pode oscilar livremente, sem atrito, sobre a superfície horizontal e com resistência do ar desprezível. Nesse

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

DESENVOLVIMENTO DE UMA PLATAFORMA PARA SIMULAÇÃO DE SATÉLITES. Angelo dos Santos Lunardi 1 ; Rodrigo Alvite Romano 2.

DESENVOLVIMENTO DE UMA PLATAFORMA PARA SIMULAÇÃO DE SATÉLITES. Angelo dos Santos Lunardi 1 ; Rodrigo Alvite Romano 2. DESENVOLVIMENTO DE UMA PLATAFORMA PARA SIMULAÇÃO DE SATÉLITES Angelo dos Santos Lunardi 1 ; Rodrigo Alvite Romano 2. 1 Aluno de Iniciação Científica da Escola de Engenharia Mauá (EEM/CEUN-IMT); 2 Professor

Leia mais

INFORMAÇÃO -PROVA DE EQUIVALÊNCIA À FREQUÊNCIA

INFORMAÇÃO -PROVA DE EQUIVALÊNCIA À FREQUÊNCIA PROVA 315 Física 1. INTRODUÇÃO O presente documento visa divulgar as características da prova de equivalência à frequência do ensino secundário da disciplina de Física, a realizar em 2012 pelos alunos

Leia mais

2 LISTA DE FÍSICA SÉRIE: 1º ANO TURMA: 2º BIMESTRE NOTA: DATA: / / 2011 PROFESSOR:

2 LISTA DE FÍSICA SÉRIE: 1º ANO TURMA: 2º BIMESTRE NOTA: DATA: / / 2011 PROFESSOR: 2 LISTA DE FÍSICA SÉRIE: 1º ANO TURMA: 2º BIMESTRE DATA: / / 2011 PROFESSOR: ALUNO(A): Nº: NOTA: Questão 1 - A cidade de São Paulo tem cerca de 23 km de raio. Numa certa madrugada, parte-se de carro, inicialmente

Leia mais

UNIDADE III Energia: Conservação e transformação. Aula 10.2 Conteúdo:

UNIDADE III Energia: Conservação e transformação. Aula 10.2 Conteúdo: UNIDADE III Energia: Conservação e transformação. Aula 10.2 Conteúdo: Estudo das forças: aplicação da leis de Newton. Habilidades: Utilizar as leis de Newton para resolver situações problemas. REVISÃO

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE NOME Nº SÉRIE : 1º EM DATA : / / BIMESTRE 3º PROFESSOR: Renato DISCIPLINA: Física 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feito em papel

Leia mais

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está

Leia mais

ROTEIRO 20 PÊNDULO SIMPLES E PÊNDULO FÍSICO

ROTEIRO 20 PÊNDULO SIMPLES E PÊNDULO FÍSICO ROTEIRO 20 PÊNDULO SIMPLES E PÊNDULO FÍSICO INTRODUÇÃO Estamos cercados de oscilações, movimentos que se repetem. Neste roteiro vamos abordar oscilações mecânicas para uma classe de osciladores harmônicos

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações 1. Movimento Oscilatório. Cinemática do Movimento Harmônico Simples (MHS) 3. MHS e Movimento

Leia mais

XII SIMPÓSIO DE RECURSOS HIDRÍCOS DO NORDESTE

XII SIMPÓSIO DE RECURSOS HIDRÍCOS DO NORDESTE XII SIMPÓSIO DE RECURSOS HIDRÍCOS DO NORDESTE ESTUDO DO COMPORTAMENTO DA LINHA D ÁGUA EM UMA SEÇÃO DE TRANSIÇÃO DE UM CANAL COM MOVIMENTO GRADUALMENTE VARIADO, EM FUNÇÃO DA DECLIVIDADE DOS TALUDES. Rejane

Leia mais

Problemas de Mecânica e Ondas 11

Problemas de Mecânica e Ondas 11 Problemas de Mecânica e Ondas 11 P. 11.1 ( Exercícios de Física, A. Noronha, P. Brogueira) Dois carros com igual massa movem-se sem atrito sobre uma mesa horizontal (ver figura). Estão ligados por uma

Leia mais

Lista de Exercícios de Física

Lista de Exercícios de Física Lista de Exercícios de Física Assunto: Dinâmica do Movimento Circular, Trabalho e Potência Prof. Allan 1- Um estudante, indo para a faculdade, em seu carro, desloca-se num plano horizontal, no qual descreve

Leia mais

EXPERIMENTOS ENVOLVENDO A SEGUNDA LEI DE NEWTON

EXPERIMENTOS ENVOLVENDO A SEGUNDA LEI DE NEWTON EXPERIMENTOS ENVOLVENDO A SEGUNDA LEI DE NEWTON Helena Libardi hlibardi@ucs.br Véra L. F. Mossmann vlfmossm@ucs.br Cristiane Conte Paim de Andrade ccpandra@ucs.br Universidade de Caxias do Sul - UCS Rua

Leia mais

TIPO-A FÍSICA. x v média. t t. x x

TIPO-A FÍSICA. x v média. t t. x x 12 FÍSICA Aceleração da gravidade, g = 10 m/s 2 Constante gravitacional, G = 7 x 10-11 N.m 2 /kg 2 Massa da Terra, M = 6 x 10 24 kg Velocidade da luz no vácuo, c = 300.000 km/s 01. Em 2013, os experimentos

Leia mais

Física e Química A. Teste Intermédio de Física e Química A. Teste B. Teste Intermédio. Versão 1

Física e Química A. Teste Intermédio de Física e Química A. Teste B. Teste Intermédio. Versão 1 Teste Intermédio de Física e Química A Teste B Teste Intermédio Física e Química A Versão 1 Duração do Teste: 90 minutos 17.03.2009 11.º ou 12.º Anos de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março

Leia mais

LISTA UERJ 2014 LEIS DE NEWTON

LISTA UERJ 2014 LEIS DE NEWTON 1. (Pucrj 2013) Sobre uma superfície sem atrito, há um bloco de massa m 1 = 4,0 kg sobre o qual está apoiado um bloco menor de massa m 2 = 1,0 kg. Uma corda puxa o bloco menor com uma força horizontal

Leia mais

4. Princípios matemáticos da dinâmica

4. Princípios matemáticos da dinâmica 4. Princípios matemáticos da dinâmica Aos 23 anos Isaac Newton teve uma ideia inovadora que foi a inspiração para a sua teoria da gravitação e da mecânica em geral. Newton pensou que assim como uma maçã

Leia mais

F809 Instrumentação para o Ensino

F809 Instrumentação para o Ensino F809 Instrumentação para o Ensino Coordenador: Prof. José J. Junazzi Relatório Final Projeto: Aplicação de Simulador Didático de Equilíbrio Mecânico Estático Aplicado ao Ensino Médio Data de finalização:

Leia mais

Unidade VIII: Estática e Equilíbrio de um corpo rígido

Unidade VIII: Estática e Equilíbrio de um corpo rígido Página 1 de 10 Unidade VIII: Estática e Equilíbrio de um corpo rígido 8.1 - Equilíbrio: Um corpo pode estar em equilíbrio das seguintes formas: a) Equilíbrio estático - É aquele no qual o corpo está em

Leia mais

O tornado de projeto é admitido, para fins quantitativos, com as seguintes características [15]:

O tornado de projeto é admitido, para fins quantitativos, com as seguintes características [15]: 4 Tornado de Projeto O tornado de projeto é admitido, para fins quantitativos, com as seguintes características [15]: Tornado do tipo F3-médio; Velocidade máxima de 233km/h = 64,72m/s; Velocidade translacional

Leia mais

Curso de Introdução ao SIMULINK

Curso de Introdução ao SIMULINK 4.3 - Modelando Sistemas Não Lineares O SIMULINK fornece uma variedade de blocos para a modelagem de sistemas não lineares. Esses blocos estão na biblioteca Nonlinear. O comportamento destes blocos não

Leia mais

Mecânica e FÍSICA Ondas

Mecânica e FÍSICA Ondas Mecânica e FÍSICA Ondas Energia e Trabalho; Princípios de conservação; Uma bala de massa m = 0.500 kg, viajando com velocidade 100 m/s atinge e fica incrustada num bloco de um pêndulo de massa M = 9.50

Leia mais

Física Experimental - Mecânica - EQ005H.

Física Experimental - Mecânica - EQ005H. Índice Remissivo... 4 Abertura... 6 Guarantee / Garantia... 7 Certificado de Garantia Internacional... 7 As instruções identificadas no canto superior direito da página pelos números que se iniciam pelos

Leia mais

Unidade VIII: Estática e Equilíbrio de um corpo rígido

Unidade VIII: Estática e Equilíbrio de um corpo rígido 132Colégio Santa Catarina Unidade VIII: Estática e Equilíbrio de um corpo rígido 132 Unidade VIII: Estática e Equilíbrio de um corpo rígido 8.1 - Equilíbrio: Um corpo pode estar em equilíbrio das seguintes

Leia mais

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções 1. INTRODUÇÃO Ao se obter uma sucessão de pontos experimentais que representados em um gráfico apresentam comportamento

Leia mais

No ano de 1687 foi publicado -com o imprimatur de S. Pepys- a Philosophiae naturalis principia mathematica de Isaac Newton (1643-1727).

No ano de 1687 foi publicado -com o imprimatur de S. Pepys- a Philosophiae naturalis principia mathematica de Isaac Newton (1643-1727). 2.1-1 2 As Leis de Newton 2.1 Massa e Força No ano de 1687 foi publicado -com o imprimatur de S. Pepys- a Philosophiae naturalis principia mathematica de Isaac Newton (1643-1727). As três Leis (leges)

Leia mais

MODELAGEM COMPUTACIONAL DE MECANISMOS CLÁSSICOS

MODELAGEM COMPUTACIONAL DE MECANISMOS CLÁSSICOS MODELAGEM COMPUTACIONAL DE MECANISMOS CLÁSSICOS Lucas F. Cóser, Diego L. Souza, Ricardo F. Morais e Franco G. Dedini Universidade Estadual de Campinas Faculdade de Engenharia Mecânica Departamento de Projeto

Leia mais

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de? Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução

Leia mais

Validação Experimental do Modelo Matemático de 3ª. Ordem para um Atuador Pneumático

Validação Experimental do Modelo Matemático de 3ª. Ordem para um Atuador Pneumático Trabalho apresentado no CMAC-Sul, Curitiba-PR, 2014. Validação Experimental do Modelo Matemático de 3ª. Ordem para um Atuador Pneumático Claudio da S. dos Santos, Sandra E. B. Viecelli, Antonio C. Valdiero,

Leia mais

LOGO FQA. Da Terra à Lua. Leis de Newton. Prof.ª Marília Peres. Adaptado de Serway & Jewett

LOGO FQA. Da Terra à Lua. Leis de Newton. Prof.ª Marília Peres. Adaptado de Serway & Jewett LOGO Da Terra à Lua Leis de Newton Prof.ª Marília Peres Adaptado de Serway & Jewett Isaac Newton (1642-1727) Físico e Matemático inglês Isaac Newton foi um dos mais brilhantes cientistas da história. Antes

Leia mais

Física Experimental - Mecânica - Conjunto Arete - EQ005.

Física Experimental - Mecânica - Conjunto Arete - EQ005. Índice Remissivo... 4 Abertura... 6 Guarantee / Garantia... 7 Certificado de Garantia Internacional... 7 As instruções identificadas no canto superior direito da página pelos números que se iniciam pelos

Leia mais

Física Geral. Série de problemas. Unidade II Mecânica Aplicada. Departamento Engenharia Marítima

Física Geral. Série de problemas. Unidade II Mecânica Aplicada. Departamento Engenharia Marítima Física Geral Série de problemas Unidade II Mecânica Aplicada Departamento Engenharia Marítima 2009/2010 Módulo I As Leis de movimento. I.1 Uma esfera com uma massa de 2,8 10 4 kg está pendurada no tecto

Leia mais

Miguel C. Branchtein, Delegacia Regional do Trabalho no Rio Grande do Sul

Miguel C. Branchtein, Delegacia Regional do Trabalho no Rio Grande do Sul DETERMINAÇÃO DE CONDIÇÃO DE ACIONAMENTO DE FREIO DE EMERGÊNCIA TIPO "VIGA FLUTUANTE" DE ELEVADOR DE OBRAS EM CASO DE QUEDA DA CABINE SEM RUPTURA DO CABO Miguel C. Branchtein, Delegacia Regional do Trabalho

Leia mais

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida.

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida. Exercícios: Energia 01. (UEPI) Assinale a alternativa que preenche corretamente as lacunas das frases abaixo. O trabalho realizado por uma força conservativa, ao deslocar um corpo entre dois pontos é da

Leia mais

NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO ALUNO(A): Nº TURMA: TURNO: DATA: / /

NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO ALUNO(A): Nº TURMA: TURNO: DATA: / / NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO Professor: Rodrigo Lins ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1) Na situação esquematizada na f igura, a mesa é plana, horizontal e perfeitamente polida. A

Leia mais

ANÁLISE DA QUALIDADE DA ENERGIA ELÉTRICA EM CONVERSORES DE FREQUENCIA

ANÁLISE DA QUALIDADE DA ENERGIA ELÉTRICA EM CONVERSORES DE FREQUENCIA ANÁLISE DA QUALIDADE DA ENERGIA ELÉTRICA EM CONVERSORES DE FREQUENCIA Nome dos autores: Halison Helder Falcão Lopes 1 ; Sergio Manuel Rivera Sanhueza 2 ; 1 Aluno do Curso de Engenharia Elétrica; Campus

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15 Ondas (continuação) Ondas propagando-se em uma dimensão Vamos agora estudar propagação de ondas. Vamos considerar o caso simples de ondas transversais propagando-se ao longo da direção x, como o caso de

Leia mais

= R. Sendo m = 3,3. 10 27 kg, V = 3,0. 10 7 m/s e R = 0,45m, calcula-se a intensidade da força magnética. 3,3. 10 27. (3,0. 10 7 ) 2 = (N) 0,45

= R. Sendo m = 3,3. 10 27 kg, V = 3,0. 10 7 m/s e R = 0,45m, calcula-se a intensidade da força magnética. 3,3. 10 27. (3,0. 10 7 ) 2 = (N) 0,45 37 a FÍSICA Em um cíclotron tipo de acelerador de partículas um deutério alcança velocidade final de 3,0 x 10 7 m/s, enquanto se move em um caminho circular de raio 0,45m, mantido nesse caminho por uma

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais

Colégio Estadual Dr. Xavier da Silva EF e EM. PIBID - FÍSICA Disciplina: Física 1º Ano EM Turma:A Atividade Experimental Conteúdo: Colisões

Colégio Estadual Dr. Xavier da Silva EF e EM. PIBID - FÍSICA Disciplina: Física 1º Ano EM Turma:A Atividade Experimental Conteúdo: Colisões Colégio Estadual Dr. Xavier da Silva EF e EM. PIBID - FÍSICA Disciplina: Física 1º Ano EM Turma:A Atividade Experimental Conteúdo: Colisões Aluno(a): Nº: Data: / /2014 INTRODUÇÃO: a) Se você pudesse escolher

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra.

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. FÍSIC 1 nalise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. Esse circuito é composto por condutores ideais (sem

Leia mais

Física Geral I F -128

Física Geral I F -128 Física Geral I F -18 Aula 5 Força e movimento I: Leis de Newton 0 semestre, 01 Leis de Newton (Isaac Newton, 164-177) Até agora apenas descrevemos os movimentos cinemática. É impossível, no entanto, prever

Leia mais

1 Descrição do Trabalho

1 Descrição do Trabalho Departamento de Informática - UFES 1 o Trabalho Computacional de Algoritmos Numéricos - 13/2 Métodos de Runge-Kutta e Diferenças Finitas Prof. Andréa Maria Pedrosa Valli Data de entrega: Dia 23 de janeiro

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 1 a QUESTÃO Valor: 1,00 A L 0 H mola apoio sem atrito B A figura acima mostra um sistema composto por uma parede vertical

Leia mais

Organizador: Prof. Valmir Heckler Disponível em: http://profvalmir.blogspot.com/

Organizador: Prof. Valmir Heckler Disponível em: http://profvalmir.blogspot.com/ Organizador: Prof. Valmir Heckler Disponível em: http://profvalmir.blogspot.com/ Integrantes do Projeto desenvolvido e implementado em 2002 - Paulo Eliseu Weber (estudante), Valmir Heckler (orientador)

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE ESCOLA DE CIÊNCIAS E TECNOLOGIA Princípios e Fenômenos da Mecânica Professor: Humberto

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE ESCOLA DE CIÊNCIAS E TECNOLOGIA Princípios e Fenômenos da Mecânica Professor: Humberto UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE ESCOLA DE CIÊNCIAS E TECNOLOGIA Princípios e Fenômenos da Mecânica Professor: Humberto EXPERIMENTO Nº 6 LANÇAMENTO HORIZONTAL DE PROJÉTIL Discentes: Camila de

Leia mais

Guia de Trabalhos Laboratoriais UNIVERSIDADE DA BEIRA INTERIOR

Guia de Trabalhos Laboratoriais UNIVERSIDADE DA BEIRA INTERIOR Guia de Trabalhos Laboratoriais UNIVERSIDADE DA BEIRA INTERIOR Conteúdo 1 Estudo do Movimento Uniformemente Acelerado: Velocidade Média - Velocidade Instantânea 1 1.1 Introdução..........................................

Leia mais

Física e Química A. Actividade Prático-Laboratorial 1.3 Salto para a piscina

Física e Química A. Actividade Prático-Laboratorial 1.3 Salto para a piscina Física e Química A Actividade Prático-Laboratorial 1.3 Salto para a piscina Ano lectivo de 2009/2010 Índice Sumário 3 I Relatório 1.1. Objectivos.. 4 1.2. Planeamento 5 1.3. Execução. 6 1.4. Resultados

Leia mais

Você acha que o rapaz da figura abaixo está fazendo força?

Você acha que o rapaz da figura abaixo está fazendo força? Aula 04: Leis de Newton e Gravitação Tópico 02: Segunda Lei de Newton Como você acaba de ver no Tópico 1, a Primeira Lei de Newton ou Princípio da Inércia diz que todo corpo livre da ação de forças ou

Leia mais

Olimpíada Brasileira de Física 2001 2ª Fase

Olimpíada Brasileira de Física 2001 2ª Fase Olimpíada Brasileira de Física 2001 2ª Fase Gabarito dos Exames para o 1º e 2º Anos 1ª QUESTÃO Movimento Retilíneo Uniforme Em um MRU a posição s(t) do móvel é dada por s(t) = s 0 + vt, onde s 0 é a posição

Leia mais

E irr = P irr T. F = m p a, F = ee, = 2 10 19 14 10 19 2 10 27 C N. C kg = 14 1027 m/s 2.

E irr = P irr T. F = m p a, F = ee, = 2 10 19 14 10 19 2 10 27 C N. C kg = 14 1027 m/s 2. FÍSICA 1 É conhecido e experimentalmente comprovado que cargas elétricas aceleradas emitem radiação eletromagnética. Este efeito é utilizado na geração de ondas de rádio, telefonia celular, nas transmissões

Leia mais

1 m 2. Substituindo os valores numéricos dados para a análise do movimento do centro de massa, vem: Resposta: D. V = 2 10 3,2 V = 8 m/s

1 m 2. Substituindo os valores numéricos dados para a análise do movimento do centro de massa, vem: Resposta: D. V = 2 10 3,2 V = 8 m/s 01 De acordo com o enunciado, não há dissipação ou acréscimo de energia. Considerando que a energia citada seja a mecânica e que, no ponto de altura máxima, a velocidade seja nula, tem-se: ε ε = ' + 0

Leia mais

TIPO-A FÍSICA. r 1200 v média. Dado: Aceleração da gravidade: 10 m/s 2. Resposta: 27

TIPO-A FÍSICA. r 1200 v média. Dado: Aceleração da gravidade: 10 m/s 2. Resposta: 27 1 FÍSICA Dado: Aceleração da gravidade: 10 m/s 01. Considere que cerca de 70% da massa do corpo humano é constituída de água. Seja 10 N, a ordem de grandeza do número de moléculas de água no corpo de um

Leia mais

Módulo 06 - VISCOSÍMETRO DE STOKES

Módulo 06 - VISCOSÍMETRO DE STOKES Módulo 06 - VISCOSÍMETRO DE STOKES Viscosímetros são instrumentos utilizados para medir a viscosidade de líquidos. Eles podem ser classificados em dois grupos: primário e secundário. No grupo primário

Leia mais

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará.

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará. TC 3 UECE 01 FASE POF.: Célio Normando Conteúdo: Lâmpadas Incandescentes 1. A lâmpada incandescente é um dispositivo elétrico que transforma energia elétrica em energia luminosa e energia térmica. Uma

Leia mais

s t 2) V m s = V m . t = 35. 2240 (km) s 7,9. 10 5 km

s t 2) V m s = V m . t = 35. 2240 (km) s 7,9. 10 5 km 14 A foto, tirada da Terra, mostra uma seqüência de 12 instantâneos do trânsito de Vênus em frente ao Sol, ocorrido no dia 8 de junho de 2004. O intervalo entre esses instantâneos foi, aproximadamente,

Leia mais

UNIDADE NO SI: F Newton (N) 1 N = 1 kg. m/s² F R = 6N + 8N = 14 N F R = 7N + 3N = 4 N F 2 = 7N

UNIDADE NO SI: F Newton (N) 1 N = 1 kg. m/s² F R = 6N + 8N = 14 N F R = 7N + 3N = 4 N F 2 = 7N Disciplina de Física Aplicada A 2012/2 Curso de Tecnólogo em Gestão Ambiental Professora Ms. Valéria Espíndola Lessa DINÂMICA FORÇA: LEIS DE NEWTON A partir de agora passaremos a estudar a Dinâmica, parte

Leia mais

6. Aplicações da Derivada

6. Aplicações da Derivada 6 Aplicações da Derivada 6 Retas tangentes e normais - eemplos Encontre a equação da reta tangente e da normal ao gráfico de f () e, em 0 Represente geometricamente Solução: Sabemos que a equação da reta

Leia mais

IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Um pequeno refrigerador para estocar vacinas está inicialmente desconectado da rede elétrica e o ar em seu interior encontra-se

Leia mais

Velocidade à saída do escorrega, v 0. Altura de lançamento, H. Alcance, d

Velocidade à saída do escorrega, v 0. Altura de lançamento, H. Alcance, d SALTO PARA A PISCINA O que se pretende Projetar um escorrega para um aquaparque, cuja rampa termina num troço horizontal a uma altura apreciável da superfície da água, de modo a que os utentes caiam em

Leia mais

Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos

Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos Prof. Daniel Coutinho coutinho@das.ufsc.br Departamento de Automação e Sistemas DAS Universidade Federal de Santa Catarina UFSC DAS 5101

Leia mais

Física Fácil prof. Erval Oliveira. Aluno:

Física Fácil prof. Erval Oliveira. Aluno: Física Fácil prof. Erval Oliveira Aluno: O termo trabalho utilizado na Física difere em significado do mesmo termo usado no cotidiano. Fisicamente, um trabalho só é realizado por forças aplicadas em corpos

Leia mais

( ) ( ) ( ( ) ( )) ( )

( ) ( ) ( ( ) ( )) ( ) Física 0 Duas partículas A e, de massa m, executam movimentos circulares uniormes sobre o plano x (x e representam eixos perpendiculares) com equações horárias dadas por xa ( t ) = a+acos ( ωt ), ( t )

Leia mais

1ª LISTA DE REVISÃO SOBRE ESTÁTICA DO CORPO EXTENSO Professor Alexandre Miranda Ferreira

1ª LISTA DE REVISÃO SOBRE ESTÁTICA DO CORPO EXTENSO Professor Alexandre Miranda Ferreira 1ª LISTA DE REVISÃO SOBRE ESTÁTICA DO CORPO EXTENSO Professor Alexandre Miranda Ferreira www.proamfer.com.br amfer@uol.com.br 1 Em uma experiência, a barra homogênea, de secção reta constante e peso 100

Leia mais

www.aliancaprevestibular.com

www.aliancaprevestibular.com Professor Gleytton Figueiredo Disciplina Física I Lista nº 02 Assuntos EQUILÍBRIO E LEIS DE NEWTON 01- (UERJ- 2001) As figuras abaixo mostram dois tipos de alavanca: a alavanca interfixa (I) e a alavanca

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

Pelo princípio da independência dos movimentos, na horizontal, temos: V. = 0, o corpo se comporta como em queda livre, por isso: F g.

Pelo princípio da independência dos movimentos, na horizontal, temos: V. = 0, o corpo se comporta como em queda livre, por isso: F g. Questão 01 008 Um astronauta, de pé sobre a superfície da Lua, arremessa uma pedra, horizontalmente, a partir de uma altura de 1,5 m, e verifica que ela atinge o solo a uma distância de 15 m. Considere

Leia mais

IME - 2006 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME - 2006 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2006 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 O ciclo Diesel, representado na figura seguinte, corresponde ao que ocorre num motor Diesel de quatro tempos: o trecho AB representa

Leia mais

TC 3 UECE - 2013 FASE 2 MEDICINA e REGULAR

TC 3 UECE - 2013 FASE 2 MEDICINA e REGULAR TC 3 UECE - 03 FASE MEICINA e EGULA SEMANA 0 a 5 de dezembro POF.: Célio Normando. A figura a seguir mostra um escorregador na forma de um semicírculo de raio = 5,0 m. Um garoto escorrega do topo (ponto

Leia mais

Física Unidade IV Balística Série 1 - Queda livre e lançamento vertical

Física Unidade IV Balística Série 1 - Queda livre e lançamento vertical 01 Em uma queda livre, a resultante das forças é o peso; assim: R = P m a = m g a = g = constante Então, se há um movimento uniformemente variado (MUV), os itens b, d, e, g e h estão corretos, e os itens

Leia mais

Prof. Rogério Porto. Assunto: Eletrostática

Prof. Rogério Porto. Assunto: Eletrostática Questões COVEST Física Elétrica Prof. Rogério Porto Assunto: Eletrostática 1. Duas esferas condutoras A e B possuem a mesma carga Q. Uma terceira esfera C, inicialmente descarregada e idêntica às esferas

Leia mais