Ref: H.Gould e J. Tobochnik. Para integrais em uma dimensão as regras do trapezóide e de Simpson são

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Ref: H.Gould e J. Tobochnik. Para integrais em uma dimensão as regras do trapezóide e de Simpson são"

Transcrição

1 Método de Monte Carlo Resolução de Integrais Ref: H.Gould e J. Tobochnik Para integrais em uma dimensão as regras do trapezóide e de Simpson são melhores, mais rápidas. A técnica de resolução de integrais por Monte Carlo é superior para integrais multidimensionais. Vamos estudar dois métodos: Hit or Miss Método da média - simples e com importance sampling Page 1

2 Hit or Miss Como usar um monte de pequenas pedras para medir a área de um lago? Suponha que o lago esteja dentro de um campo de área A conhecida. Se jogarmos as pedras uma a uma aleatoriamente de forma a caírem sempre dentro do campo, podemos contar quantas caem dentro do lago. Assim temos a relação: A lago A = n splash N Page 2

3 Temos uma função f(x) e queremos calcular a integral definida = área entre a e b. Escolhemos um retângulo de altura H e largura (b a). Sorteamos N vezes dois números aleatórios uniformemente distribuídos: a x i b y i H Contamos quantas vezes y i f(x i ) n s e temos então que H I = A n s N y f(x) a x b Page 3

4 Primeira Tarefa de Hoje Escreva um programa que calcule a integral I = usando o método Hit or Miss Utilize um retângulo de altura H = x2 dx O número de pontos sorteados deve ser lido do teclado o valor exato da integral é π/4. imprima: o número de sorteios a diferença entre o resultado obtido com o método e o valor exato Rode o programa algumas vezes modificando o número de sorteios e observe como muda o valor da diferença Page 4

5 Método da Média Uma maneira de se calcular uma integral é usar um teorema do cálculo que diz: b f(x)dx = (b a) f a Como calcular a média? Se tivermos uma lista de números aleatórios uniformemente distribuídos entre a e b podemos obter a média através de: f = 1 N N f(x i ) i=1 e então: b a f(x)dx (b a) 1 N N f(x i ) i=1 Quanto maior N melhor a aproximação. Page 5

6 Erro no Método de Monte Carlo No exemplo dado, calculei I = x 2 dx para N = 1. e obtive I N = O resultado exato é I = π = Portanto para este N, ɛ =.73. A pergunta é: Como saberemos se n = 1. atingirá a precisão desejada? Veremos que o melhor que podemos fazer é calcular a probabilidade de que o valor verdadeiro I esteja num certo intervalo centrado em I N Queremos achar σ m tal que I N tem 68% de chance de estar entre I σ m e I + σ m Page 6

7 Um possível chute para a estimativa do erro é o desvio padrão σ : onde f = 1 N σ 2 = f 2 f 2 N i=1 f(x i ) e f 2 = 1 N N i=1 f(x i ) 2 Repare que se f não depende de x, isto é, se a distribuição for uniforme, σ seria. Para o nosso exemplo obtemos σ =.885 que é muito diferente do valor.73 o desvio padrão não é uma boa estimativa. Já era de se esperar pois o erro deve diminuir com N e o desvio padrão não diminui. Page 7

8 Outra tentativa Uma maneira de se obter uma estimativa do erro é rodar algumas m vezes (experimento), cada vez com o mesmo número N de pontos. Para cada experimento obtemos o valor da média M e calculamos o desvio padrão da média com M = 1 m σ 2 m = M 2 M 2 m M j e M 2 = 1 m j=1 Como a sequência de números aleatórios é diferente, M varia para cada experimento. m j=1 M 2 j Vamos fazer 1 experimentos com N = 1. cada: Page 8

9 j M σ Com estes valores obtemos σ m =.68 que é consistente com.73 Portanto σ m é a medida do erro O resultado fica escrito como: I n = ±.7 para n = 1 Page 9

10 Este método de gerar vários experimentos para determinar σ m não é nada útil, mas pode-se mostrar que σ m σ N que se torna exato quando N Note que σ m decresce com N. Para o primeiro valor que obtivemos σ =.885 σ m =.885/ 1 =.9 que é da mesma ordem de.7 Page 1

11 Segunda Tarefa de Hoje Escreva um programa que calcule a integral I = 4 1 método da média. 1 x2 dx usando o Rode duas vezes o programa: 5 experimentos com N = 1 e 5 experimentos com N = 1. o valor exato da integral é π. imprima em um arquivo (tudo na mesma linha): o índice do experimento o valor da integral calculado com o método o desvio padrão da função σ = f 2 f 2 a diferenç a entre o resultado obtido com o método e o valor exato σ m = σ/ N Observe através do gnuplot se as afirmativas que fizemos sobre o erro do método se comprovam Page 11

12 Cria uma funcao que dado x retorna 4*sqrt(1-x*x) loop no numero de experimentos inicializa a semente loop no numero de pontos gera um numero aleatorio x entre a e b calcula f(x) calcula soma f(x) calcula soma f(x)ˆ2 fim loop calcula integral calcula sigma calcula erro da media imprime fim do loop Page 12

13 Importance Sampling Vimos que o erro da integral pelo método de Monte Carlo é proporcional à variância do integrando, isto é, ao quanto f(x) varia. Vamor ver uma forma de diminuir esta variância, ou em outras palavras, transformar o integrando em algo mais uniforme. Queremos calcular I = b a f(x)dx Vamos multiplicar e dividir o integrando por uma função p(x) tal que b a p(x)dx = 1 Page 13

14 I = b a f(x) p(x) p(x)dx Fazemos agora uma mudança de variável de x para y de forma que I = b a f(x) p(x) dy com p(x)dx = dy = y(x) = p(x)dx Se p(x) for escolhida como uma que se comporta como f(x), o integrando vai ser cte. O que estamos fazendo aqui é gerar uma distribuição de acordo com p(x). Se p(x) f(x) vamos gerar mais pontos onde f(x) é grande e pouco recurso é gasto gerando pontos onde f(x) é pequeno. Page 14

15 Queremos resolver I = 1 ex dx Exemplo Uma função parecida é a sua própria expansão em série de Taylor em torno de : p(x) = 1 + x I = 1 e x (1 + x) dx com dy = (1 + x)dx 1 + x y = x (1 + x )dx = x + x2 2 x x y = = x = 1± y 2 1/2 = 1 ± 1 + 2y para x = = y = para x = 1 = y = 1 + 1/2 = 3/2 para que y 3/2 o sinal positivo deve ser escolhido. Então geramos um número aleatório y entre e 3/2 e calculamos I = 3/2 e 1+2y y dy Page 15

16 Terceira Tarefa de Hoje Escreva um programa que calcule a integral I = método da média. 1 e x2 dx usando o Use N = 1 imprima o valor da integral e o erro. Use a função peso p(x) = Ae x onde A é escolhido de forma a satisfazer 1 será p(x)dx = 1. Quando você fizer as contas verá que a integral a resolver com x = ln( y/a) 1 A A/e A e x2 +x dy Use N = 1 imprima o valor da integral e o erro. Compare com o resultado anterior. Page 16

Me todos Computacionais em Fı sica

Me todos Computacionais em Fı sica Me todos Computacionais em Fı sica Sandra Amato Instituto de Fı sica Universidade Federal do Rio de Janeiro Primeiro Semestre de 2011 Me todos Computacionais em Fı sica 1 2 Ca lculo de Me todo da Estimativa

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Análise de dados em Fisica de Particulas

Análise de dados em Fisica de Particulas Análise de dados em Fisica de Particulas Magno V.T. Machado Instituto de Fisica - UFRGS Escola de Fisica de Particulas e Campos. Agosto 05-09, 2013 Números aleatórios e Monte Carlo Muitas aplicações computacionais

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real. Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,

Leia mais

Distribuição Gaussiana

Distribuição Gaussiana Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas

( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas Probabilidade e Estatística I Antonio Roque Aula Algumas Distribuições de Probabilidade Contínuas Vamos agora estudar algumas importantes distribuições de probabilidades para variáveis contínuas. Distribuição

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Distribuição Normal Motivação: Distribuição

Leia mais

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23 Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração

Leia mais

Métodos Quantitativos

Métodos Quantitativos Métodos Quantitativos Unidade 3 Estatística inferencial parte I Prof. Me. Diego Fernandes 1 Sumário Seção Slides 3.1 Noções de probabilidade 03 21 3.2 Distribuição dos estimadores 22 41 3.3 e 3.4 - Testes

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

Equações diferenciais ordinárias

Equações diferenciais ordinárias Departamento de Física Universidade Federal da Paraíba 24 de Junho de 2009 Motivação Problemas envolvendo equações diferenciais são muito comuns em física Exceto pelos mais simples, que podemos resolver

Leia mais

Aplicações de. Integração

Aplicações de. Integração Aplicações de Capítulo 6 Integração APLICAÇÕES DE INTEGRAÇÃO Neste capítulo exploraremos algumas das aplicações da integral definida, utilizando-a para calcular áreas entre curvas, volumes de sólidos e

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais

Momentos: Esperança e Variância. Introdução

Momentos: Esperança e Variância. Introdução Momentos: Esperança e Variância. Introdução Em uma relação determinística pode-se ter a seguinte relação: " + " = 0 Assim, m =, é a declividade e a e b são parâmetros. Sabendo os valores dos parâmetros

Leia mais

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte I 2012/02 1 Variáveis Aleatórias Contínuas 2 Distribuições de Probabilidade e Funções Densidades de Probabil 3 4 Objetivos Ao final

Leia mais

Modelagem Computacional. Parte 3 2

Modelagem Computacional. Parte 3 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 3 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 4] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

2.1 Variáveis Aleatórias Discretas

2.1 Variáveis Aleatórias Discretas 4CCENDMMT02-P PROBABILIDADE E CÁLCULO DIFERENCIAL E INTEGRAL Girlan de Lira e Silva (1),José Gomes de Assis (3) Centro de Ciências Exatas e da Natureza /Departamento de Matemática /MONITORIA Resumo: Utilizamos

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Integrais. ( e 12/ )

Integrais. ( e 12/ ) Integrais (21-04-2009 e 12/19-05-2009) Já estudámos a determinação da derivada de uma função. Revertamos agora o processo de derivação, isto é, suponhamos que nos é dada uma função F e que pretendemos

Leia mais

Neste capítulo estamos interessados em resolver numericamente a equação

Neste capítulo estamos interessados em resolver numericamente a equação CAPÍTULO1 EQUAÇÕES NÃO-LINEARES 1.1 Introdução Neste capítulo estamos interessados em resolver numericamente a equação f(x) = 0, onde f é uma função arbitrária. Quando escrevemos resolver numericamente,

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Geradora de Momentos 10/13 1 / 19 Calculamos algumas características da

Leia mais

Distribuição Normal. Estatística Aplicada I DISTRIBUIÇÃO NORMAL. Algumas característica importantes. 2πσ

Distribuição Normal. Estatística Aplicada I DISTRIBUIÇÃO NORMAL. Algumas característica importantes. 2πσ Estatística Aplicada I DISTRIBUIÇÃO NORMAL Prof a Lilian M. Lima Cunha AULA 5 09/05/017 Maio de 017 Distribuição Normal Algumas característica importantes Definida pela média e desvio padrão Media=mediana=moda

Leia mais

Integração por partes

Integração por partes Universidade de Brasília Departamento de Matemática Cálculo 1 Integração por partes Vimos nos textos anteriores que a técnica de mudança de variáveis é muito útil no cálculo de algumas primitivas. Porém,

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte II 29 de Março de 2011 Distribuição Uniforme Discreta Média Propriedade da falta de memória Objetivos Ao final deste capítulo você

Leia mais

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula Prof.: Patricia Maria Bortolon, D. Sc. Distribuições Amostrais ... vocês lembram que: Antes de tudo... Estatística Parâmetro Amostra População E usamos estatíticas das amostras para

Leia mais

Interpolação polinomial: Polinômio de Lagrange

Interpolação polinomial: Polinômio de Lagrange Interpolação polinomial: Polinômio de Lagrange Marina Andretta ICMC-USP 09 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500 - cálculo

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

Fundamentos de Estatística

Fundamentos de Estatística Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA mrborges@lncc.br Petrópolis, 9 de Fevereiro

Leia mais

Renato Martins Assunção

Renato Martins Assunção Análise Numérica Integração Renato Martins Assunção DCC - UFMG 2012 Renato Martins Assunção (DCC - UFMG) Análise Numérica 2012 1 / 1 Introdução Calcular integrais é uma tarefa rotineira em engenharia,

Leia mais

Distribuições Amostrais e Estimação Pontual de Parâmetros

Distribuições Amostrais e Estimação Pontual de Parâmetros Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 19 de Maio de 2011 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição

Leia mais

Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / a LISTA DE MAT-32

Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / a LISTA DE MAT-32 1 Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / 2012. 1 a LISTA DE MAT-32 Nos exercícios de 1 a 9, classi car e apresentar, formalmente, solução (ou candidata a solução)

Leia mais

Exercícios de programação

Exercícios de programação Exercícios de programação Estes exercícios serão propostos durante as aulas sobre o Mathematica. Caso você use outra linguagem para os exercícios e problemas do curso de estatística, resolva estes problemas,

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

Área e Teorema Fundamental do Cálculo

Área e Teorema Fundamental do Cálculo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área e Teorema Fundamental

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

SME Cálculo Numérico. Lista de Exercícios: Gabarito

SME Cálculo Numérico. Lista de Exercícios: Gabarito Exercícios de prova SME0300 - Cálculo Numérico Segundo semestre de 2012 Lista de Exercícios: Gabarito 1. Dentre os métodos que você estudou no curso para resolver sistemas lineares, qual é o mais adequado

Leia mais

1.1 Exemplo da diferença da média da população para a média amostral.

1.1 Exemplo da diferença da média da população para a média amostral. 1 Estatística e Probabilidades Inferência Estatística consiste na generalização das informações a respeito de uma amostra, para a sua população. A Probabilidade considera modelos para estimar informações

Leia mais

ME-310 Probabilidade II Lista 0

ME-310 Probabilidade II Lista 0 ME-310 Probabilidade II Lista 0 1. Sejam A e B eventos disjuntos tais que P(A) = 0.1 e P(B) = 0.. Qual é a probabilidade que (a) A ou B ocorra; (b) A ocorra, mas B não ocorra; (c) repita (a) e (b) se os

Leia mais

Roteiro para o Terceiro Laboratório de Cálculo Numérico /1

Roteiro para o Terceiro Laboratório de Cálculo Numérico /1 Roteiro para o Terceiro Laboratório de Cálculo Numérico - 2008/1 Prof. Dr. Waldeck Schützer June 23, 2008 DM/UFSCar Nesta terceira aula de laboratório, vamos utilizar o Octave para aproximar funções e

Leia mais

Distribuição gaussiana

Distribuição gaussiana Apêndice D Distribuição gaussiana Existem diversas situações práticas em que não é possível prever o resultado, apenas a probabilidade de um determinado resultado ocorrer. No dia a dia lidamos com alguns

Leia mais

ESTATÍSTICA COMPUTACIONAL

ESTATÍSTICA COMPUTACIONAL ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Simulação O que é simulação? Reprodução de um

Leia mais

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO ESTATÍSTICA APLICADA À ADMINISTRAÇÃO Thiago Marzagão DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE Thiago Marzagão (IDP) ESTATÍSTICA APLICADA À ADMINISTRAÇÃO 2/2016 1 / 35 variáveis discretas vs variáveis contínuas

Leia mais

Aula 7 Intervalos de confiança

Aula 7 Intervalos de confiança Aula 7 Intervalos de confiança Nesta aula você aprenderá um método muito importante de estimação de parâmetros. Na aula anterior, você viu que a média amostral X é um bom estimador da média populacional

Leia mais

MAT146 - Cálculo I - Cálculo de Áreas

MAT146 - Cálculo I - Cálculo de Áreas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Anteriormente, definimos a área de uma região plana como sendo o limite de uma soma de Riemann e que tal limite é uma integral definida.

Leia mais

Matemática para a Economia II - 7 a lista de exercícios Prof. Juliana Coelho

Matemática para a Economia II - 7 a lista de exercícios Prof. Juliana Coelho Matemática para a Economia II - 7 a lista de exercícios Prof. Juliana Coelho - Cacule a integral dupla I fx, y) dxdy onde f e R são dados abaixo. R a) fx, y) x + y e R [, ] [, ]; b) fx, y) x + xy + e R

Leia mais

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira

Leia mais

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição Instrumentação Industrial Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição Introdução a Metrologia O que significa dizer: O comprimento desta régua é 30cm. A temperatura

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis

Leia mais

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC 4ª LISTA DE EXERCÍCIOS - LOB1012 Variáveis Aleatórias Contínuas, Aproximações e TLC Assunto: Função Densidade de Probabilidade Prof. Mariana Pereira de Melo 1. Suponha que f(x) = x/8 para 3

Leia mais

1 a Lista de Exercícios Prof a. Vanessa Rolnik. seguir e indique o tipo de erro quando a representação não for possível.

1 a Lista de Exercícios Prof a. Vanessa Rolnik. seguir e indique o tipo de erro quando a representação não for possível. Tópicos de Análise Numérica 1 a Lista de Exercícios Prof a. Vanessa Rolnik 1. Considere o sistema PF( 1, 3, -4, 4) de base 1, 3 dígitos na mantissa, menor expoente -4 e maior expoente 4.Quantos números

Leia mais

Métodos Estatísticos

Métodos Estatísticos Métodos Estatísticos 5 - Distribuição Normal Referencia: Estatística Aplicada às Ciências Sociais, Cap. 7 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Distribuição de Probabilidades A distribuição

Leia mais

14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas

14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas 4. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas Os valores assumidos por uma variável aleatória contínua podem ser associados com medidas em uma escala contínua como, por exemplo,

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Método de Newton para polinômios

Método de Newton para polinômios Método de Newton para polinômios Alan Costa de Souza 26 de Agosto de 2017 Alan Costa de Souza Método de Newton para polinômios 26 de Agosto de 2017 1 / 31 Seja f(x) uma função polinomial de grau n. A princípio.

Leia mais

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade Probabilidade Variáveis Aleatórias Distribuição de Probabilidade Variáveis Aleatórias Variável Aleatória Indica o valor correspondente ao resultado de um experimento A palavra aleatória indica que, em

Leia mais

Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Gráficos Material online: h-p://www.im.ufal.br/professor/thales/calc12010_2.html O que f nos diz sobre f? O que f nos diz sobre f? f (x) < 0 f (x) > 0 f(x) =x 2 f (x) =2x x>0 f (x) > 0 x

Leia mais

Lista de exercícios de MAT / II

Lista de exercícios de MAT / II 1 Lista de exercícios de MAT 271-26 / II 1. Converta os seguintes números da forma decimal para a forma binária:x 1 = 37; x 2 = 2347; x 3 =, 75; x 4 =(sua matrícula)/1; x 5 =, 1217 2. Converta os seguintes

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

6.3 Valor Médio de uma Variável Aleatória

6.3 Valor Médio de uma Variável Aleatória 6. 3 V A L O R M É D I O D E U M A V A R I Á V E L A L E A T Ó R I A 135 1. Considere uma urna contendo três bolas vermelhas e cinco pretas. Retire três bolas, sem reposição, e defina a v.a. X igual ao

Leia mais

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL Aula 6 META Estudar o comportamento e aplicação das Variáveis Aleatórias Contínuas, bem como da Distribuição Normal. OBJETIVOS Ao final

Leia mais

x P(X = x) 0,1 0,7 0,2

x P(X = x) 0,1 0,7 0,2 GET001 Fundamentos de Estatística Aplicada Lista de Exercícios Módulo IV Parte a Profa. Ana Maria Farias 2017-1 CAPÍTULOS 1 e 2 1. Com objetivo de planejamento, um banco determinou a distribuição de probabilidade

Leia mais

Razão para rejeitar H 0

Razão para rejeitar H 0 Processo do teste de hipótese Hipótese de pesquisa: a idade média da população é 5 H : μ = 5 H 1 : μ 5 É X = improvável se μ =5? População Selecionar amostra aleatória Sim: Rejeite Ho Para definir pouco

Leia mais

Métodos Quantitativos para Ciência da Computação Experimental

Métodos Quantitativos para Ciência da Computação Experimental Métodos Quantitativos para Ciência da Computação Experimental Revisão Virgílio A. F. Almeida Maio de 2008 Departamento de Ciência da Computação Universidade Federal de Minas Gerais FOCO do curso Revisão

Leia mais

Capítulo 5. Variáveis aleatórias. 5.1 Introdução

Capítulo 5. Variáveis aleatórias. 5.1 Introdução Capítulo 5 Variáveis aleatórias 5.1 Introdução Em experimentos aleatórios cujo espaço amostral contém alguns eventos de interesse é, em geral, mais fácil lidar como uma variável aleatória, isto é, é mais

Leia mais

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 28 de Agosto, 2013 Probabilidade: uma Introdução / Aula 8 1 Desigualdades de Markov e

Leia mais

Queremos resolver uma equação diferencial da forma. dy dx. = f(x, y), (1)

Queremos resolver uma equação diferencial da forma. dy dx. = f(x, y), (1) Resolução Numérica de Equações Diferenciais Método de Runge Kutta Queremos resolver uma equação diferencial da forma dy dx = f(x, y), (1) Isto é: queremos obter a função y(x) sabendo sua derivada. Numericamente:

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Aproximações Lineares e Diferenciais. Aproximações Lineares e Diferenciais. 1.Aproximações Lineares 2.Exemplos 3.Diferenciais 4.

Aproximações Lineares e Diferenciais. Aproximações Lineares e Diferenciais. 1.Aproximações Lineares 2.Exemplos 3.Diferenciais 4. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aproximações Lineares

Leia mais

COS767 - Modelagem e Análise Aula 3 - Simulação

COS767 - Modelagem e Análise Aula 3 - Simulação COS767 - Modelagem e Análise Aula 3 - Simulação Validando resultados da simulação Média e variância amostral Teorema do Limite Central Intervalo de confiança Organizando as execuções da simulação Verificando

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Integrais - Aplicações I. Daniel 26 de novembro de 2016

Integrais - Aplicações I. Daniel 26 de novembro de 2016 Integrais - Aplicações I Daniel 26 de novembro de 2016 1 Sumário Aplicações da Integral Construção de Fórmulas Integrais Aplicação da Estratégia de Integrais Definidas Áreas entre duas Curvas Volume por

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Podemos

Leia mais

Distribuição de Probabilidade. Prof. Ademilson

Distribuição de Probabilidade. Prof. Ademilson Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.

Leia mais

Intervalos Estatísticos para uma única Amostra - parte I

Intervalos Estatísticos para uma única Amostra - parte I Intervalos Estatísticos para uma única Amostra - parte I Intervalo de confiança para média 14 de Janeiro Objetivos Ao final deste capítulo você deve ser capaz de: Construir intervalos de confiança para

Leia mais

Modelagem e Avaliação de Desempenho. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2016

Modelagem e Avaliação de Desempenho. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2016 Modelagem e Avaliação de Desempenho Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2016 Simulação de Sistemas Simulação é a técnica de solução de um problema pela análise de

Leia mais

Respostas da Série de Exercícios Funções Multivariadas e outras. Lista 3A

Respostas da Série de Exercícios Funções Multivariadas e outras. Lista 3A Respostas da Série de Exercícios Funções Multivariadas e outras Problema 1 Lista 3A Observar que N1 e N2 são números inteiros de tal forma que N1+N2 5 isto é: N1=1,...4 e N2=1,..5-N1. Cada par de valores

Leia mais

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017 padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições

Leia mais

Técnicas de. Integração

Técnicas de. Integração Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO 7.4 Integração de Funções Racionais por Frações Parciais Nessa seção, vamos aprender como integrar funções racionais reduzindo-as a uma soma de

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos CÁLCULO L NOTAS DA DÉCIMA OITAVA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos a primeira técnica de integração: mudança

Leia mais

Departamento de InformáAca - PUC- Rio. Hélio Lopes Departamento de InformáAca PUC- Rio. A plataforma R

Departamento de InformáAca - PUC- Rio. Hélio Lopes Departamento de InformáAca PUC- Rio. A plataforma R Introdução à Simulação Estocás5ca usando R INF2035 PUC- Rio, 2013.1 Departamento de InformáAca - PUC- Rio Hélio Lopes Departamento de InformáAca PUC- Rio A plataforma R R é uma linguagem de programação

Leia mais

Unidade: Integração Numérica. Unidade I:

Unidade: Integração Numérica. Unidade I: Unidade: Integração Numérica Unidade I: 0 Unidade: Integração Numérica Integração Numérica Quando temos funções que não podem ser integradas ( f(x) e 2 x, por exemplo) ou são de difícil integração, utilizamos

Leia mais

1 Distribuição Uniforme

1 Distribuição Uniforme Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 03 Aula 8 Professor: Carlos Sérgio UNIDADE 4 - Distribuições Contínuas (Notas de Aula) Distribuição Uniforme

Leia mais

aproximação polinomial - integral aproximada T. Praciano-Pereira Dep. de Matemática Univ. Estadual Vale do Acaraú 23 de abril de 2007

aproximação polinomial - integral aproximada T. Praciano-Pereira Dep. de Matemática Univ. Estadual Vale do Acaraú 23 de abril de 2007 Cálculo Numérico Computacional Sol. da 7a. Lista aproximação polinomial - integral aproximada T. Praciano-Pereira Dep. de Matemática Univ. Estadual Vale do Acaraú 2 de abril de 27 1-1 -2 "dados" Exercícios

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório? Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

Redes Complexas Aula 7

Redes Complexas Aula 7 Redes Complexas Aula 7 Aula retrasada Lei de potência Distribuição Zeta Propriedades Distribuição Zipf Exemplo Wikipedia Aula de hoje Distribuição de Pareto Medindo lei de potência Estimando expoente Exemplos

Leia mais

Distribuições Amostrais e Estimação Pontual de Parâmetros

Distribuições Amostrais e Estimação Pontual de Parâmetros Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 2012/02 1 Introdução 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição

Leia mais

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprimento de Arco

Leia mais

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber 5 Distribuição normal de probabilidade Estatística Aplicada Larson Farber Seção 5.1 Introdução às distribuições normais Propriedades de uma distribuição normal Suas média, mediana e moda são iguais. Tem

Leia mais

Distribuições Discretas

Distribuições Discretas META: Estudar o comportamento das Variáveis Aleatórias Discretas, bem como das Distribuições Binomial e Poisson e suas aplicações. Entender o comportamento de uma Variável aleatória Contínua. OBJETIVOS:

Leia mais

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Um teorema de grande importância e bastante utilidade em probabilidade

Leia mais